CS7960 L15 : Parallel | Selection + Max

PRAM

1 disk
P processors
n input items

Each time step a processor can:
read, write, operate (+,-,*,<<,...)

shared memory: CRCW (although CREW more realistic)

Key technique : Accelerating Cascades
Use fast, large work algorithms until threshold
Switch to slower, less work algorithms.

2 examples: Selection, Max

Selection (n):
INPUT A = [a_1, a_2, ..., a_n]
(unsorted)

Select select(k,A) item a_i s.t.
|\{a_j in A \mid a_j < a_i\}| <= k-1
|\{a_i in A \mid a_j > a_i\}| <= n-k

Sequential? O(n)

PRAM: O(log n * log log n) time, O(n) work

Algorithm 1.

Sort A->B \(O(n \log n)\) Work, \(O(\log n)\) time.
Return B(k).

Algorithm 2.

Reduces problem of size \(m\) -> \((3/4)m\)
* \(O(m)\) work, \(O(\log m)\) PTime.
* requires \(O(\log n)\) rounds
* Total: \(O(\log^2 m)\) time, \(O(m)\) work

Input A (size \(m\))

1. A into \(m/\log m\) blocks \(A_1, A_2, \ldots, A_{m/\log m}\) of size \(\log m\)
2. PARDO (\(h = 1\) to \(\log m\))\(x_h =\) sequential-median\((A_h)\)
3. \(X = \{x_1, \ldots, x_{m/\log m}\}\)
 Use \(x =\) median\((X)\) (via Alg1\((X)\)) \(O(m)\) work, \(O(\log m)\) time
4. Partition A to \(L, M, R\) s.t.
 l in \(L\) has \(a < x\)
 m in \(M\) has \(m = x\)
 r in \(R\) has \(r > x\)
5. If \(k \leq |L|\) recur on select\((k, L)\)
 If \(k > |L|, k < |L| + |M|\) return \(x\)
 else recur on select\((k - |L| - |M|, R)\)

Fact: \(\min\{|L|, |R|\} > \frac{m}{4}\)
 -> recursive call has size at most \((3/4)m\)

1. (free)
2. \(O(\log m)\) time, \(O(m)\) work
3. $O(\log m)$ time, $O(m)$ work
4. $O(1)$ time, $O(m)$ work
5. recur
 $T(m) = O(\log m) + T((3/4) m) = O(\log m)$ for $O(\log m)$
 rounds = $O(\log^2 m)$
 $W(m) = O(m) + W((3/4) m) = O(m)$ [geometrically
decreasing]

Accelerating Cascades:
1. Run Alg 2 until size $m = n / \log n$ \mid $\log_{4/3} \log
 n = O(\log \log n)$ rounds
 $O(\log n \log \log n)$ time, $O(n)$ Work [dominates]
2. Run Alg 1 $O(\log n)$ time, $(n / \log n * \log(n/\log n)) =
 O(n)$ Work

 Key technique!

Max (n):
INPUT A = [a_1, a_2, ..., a_n]
 (unsorted)
Return largest element.

Sequential? $O(n)$

PRAM: $O(\log \log n)$ time, $O(n)$ work

Algorithm 1.

$O(1)$ time, $O(n^2)$ work. ?
Compare all $O(n^2)$ pairs. Element which never loses is max.

Algorithm 2.

$O(\log \log n)$ time, $O(n \log \log n)$ work?

Subdivide A into \sqrt{n} equal sized sub-arrays

$A_1 = \{a_1, \ldots, a_{\sqrt{n}}\}$

$A_2 = \{a_{\sqrt{n}+1}, \ldots, a_{2\sqrt{n}}\}$

$
\vdots
$

$A_{\sqrt{n}} = \{a_{n-\sqrt{n}}, \ldots, a_n\}$

ParDo $h = 1$ to \sqrt{n}

$x_h = \text{Alg2-Max}(A_h)$

$X = \{x_1, \ldots, x_{\sqrt{n}}\}$

return $x = \text{Alg1-Max}(X)$

$T(n) = T(\sqrt{n}) + O(1) = O(\log \log n)$

$W(n) = \sqrt{n} \ W(\sqrt{n}) + O(n) = O(n \log \log n)$

Note $n = 2^{2^t}$ (for some t)

then $\sqrt{n} = \sqrt{2^{2^t}} = 2^{2^{t-1}}$ <- doubly geometrically decreasing

Accelerating Cascades:

1. Divide A into $n/\log \log n$ blocks $A_1, A_2, \ldots, A_{n/\log \log n}$
 each of size $\log \log n$.
 ParDo ($h = 1$ to $\log \log n$)
 $x_h = \text{Linear-Max}(A_i)$

2. $X = \{x_1, \ldots, x_{n/\log \log n}\}$
 return $x = \text{Alg2-Max}(X)$
Step 1 takes $O(\log \log n)$ time, and $O(n)$ Work
Step 2 takes $O(\log \log n)$ time, and $(n / \log \log n) \log \log n = O(n)$ Work