L9 -- Hierarchical Clustering
[Jeff Phillips - Utah - Data Mining]

What is clustering?
- one of the most ambiguous topics ever!
 - I'll ambiguously define it.
 - Then I'll formally define it.
 - Then I'll tell you why you maybe should *not* formally define it!

Let P be a data set. (perhaps in \(\mathbb{R}^d \), but maybe not)
let \(d : P \times P \to \mathbb{R} \) be a metric distance on P

A cluster \(S \) is a subset of \(P \).
Typically we find a set \(\{S_1, S_2, \ldots, S_k\} \) subset \(P \)
s.t. \(S_i \) disjoint \(S_j \) and \(\bigcup_i S_i = P \)

goal:
- all for all points \(p_i, p_j \) in \(S \)
 \(d(p_i, p_j) \) is small
 "width"
- all (most) points \(p_i \) in \(S_i \), \(p_j \) in \(S_j \) and \(i \neq j \)
 \(d(p_i, p_j) \) is large
 "split"

Want "split"/"width" large.

Draw points in plane.
Illustrate possible clusters.
Illustrate split/width.

Hierarchical/Agglomerative Clustering!

If two points are close --> put them in the same cluster.
Repeat.

Init: All points are 1 point clusters.
WHILE (2 clusters are "close enough")
 Find two "closest" clusters: \(S_i, S_j \)
 Merge clusters.

2 parts remain to be specified: "close" and "close enough"
What is "close"?
- distance between "centers" of clusters
 - "center" = mean, center-point (median), center of MEB,
 - some representative = min distance to other points "Non-Euclidean"
- distance between closest points
- distance between furthest points
- average distance between all pairs of points in different clusters
- lowest radius of MEB between joined cluster
- smallest average distance between point and center

** there are often ties **

What is "close enough"?
- diameter, radius of MEB, average from center beneath threshold?
 - fixes scale (good/bad?)
- density beneath threshold.
 - "density" = # points/volume, # points/radius^d
- joined density jumps too quickly since last time "elbow"
- when we have k clusters

Hierarchy --> Phylogenetic Tree

Efficiency: (specific: closest to centroid, never stop)
 0(n^3)
 - 0(n) rounds
 - x 0(n^2) each round, check all pairs to find closest
 + 0(n) to recompute centroid

can reduce to 0(n^2 log n): maintain priority queue of 0(n^2) distance
 - updates affect 0(n) distances, each takes O(log n) time
 - 0(n) rounds | updates

k-center clustering
 "Gonzalez Algorithm 85"
"HAC" one form of greedy. Different form of greedy.
k-center clustering:
Find k points $C = \{c_1, ..., c_k\}$, s.t.
- each $p \in P$ assigned $\mu(p) = \arg \min_{c \in C} d(p,c)$
- minimize $\max_{p \in P} d(p, \mu(p))$

(like k-means minimize $\sum_{p \in P} d(p,\mu(p))^2$)
(k-median minimize $\sum_{p \in P} d(p,\mu(p))$)

k-center cluster optimally is NP-Hard.
 better than 2-appox --> also NP-Hard !!!

Choose first c_1 arbitrarily
$C_1 = \{c_1\}$ (generally $C_i = \{C_1, C_2, ..., C_i\} \ \\ \text{\ll goal } C_k$)

Let $c_{i+1} = \arg \max_{p \in P \setminus C_i} d(p,\mu(p))$
 "always pick point furtherest from set of centers C_i"

2-approx to optimal algorithm (worst case). Often much better.

$O(k^2 n) \ \ O(k)$ rounds x $O(kn)$ per round

$O(kn)$: maintain $\mu(p)$
$O(k)$ rounds
- maintain $\mu(P)$
- on new c_i, spend $O(n)$ to check each point if closer,
 update $t_j = \max_{p \in P \setminus C_i} d(p,\mu(p))$ s.t. $\mu(p) = c_j$
 for each $c_j \setminus C_i$
 update $t = \max_j t_j$

*** Works for any metric.
*** Biases centers to "edge" of data set.
 - heuristic to recenter: after run, find "clusteroid" of $\mu^{-1}(c_j)$ as new c_j