What makes a good distance?

A distance $d(a,b)$ is a metric if

* $d(a,b) \geq 0$ (non-negativity)
* $d(a,b) = 0$ iff $a=b$ (identity)
* $d(a,b) = d(b,a)$ (symmetry)
* $d(a,b) \leq d(a,c) + d(c,b)$ (triangle inequality)

Not all distances follow this, but very convenient.

Euclidean Distance (in \mathbb{R}^d)

\[
d(a,b) = \sqrt{\sum_{i=1}^d (a_i - b_i)^2} = L_2(a,b) = \|a - b\|_2
\]

$L_p(a,b) = (\sum_{i=1}^d |a_i - b_i|^p)^{1/p}$

* $L_1 = \"manhattan distance\"

 - LSH via 1-stable distributions

 -- Cauchy distribution $(1/\pi)(1/(1+x^2))$

* $L_0 = \text{number of differences}$

 (used for comparing min-hash signatures)

 "Hamming distance"

 LSH via minhash (bounded $t=d$)

 almost 1-stable, can use close by .001-stable, but inefficient

* $L_\infty = \text{maximum distance}$

 - $\max(\sum_{i=1}^d |a_i - b_i|)$

 "rotation of L_1"

Is $L_2(a,b)$ a metric?

- non-negativity: square makes bigger than 0
- identity: if any coordinate different -> >0
- symmetry: $(a_i - b_i) = (b_i - a_i)$
- triangle: $<\text{draw triangle :}>$
Jaccard Distance:
\[d_J(a,b) = 1 - \text{Jac}(a,b) \]

Venn Diagram --> Symmetric Difference / Union

- non-negativity: intersection cannot exceed union
- identity: \(a \cap a = a \cup a = a \)
 - if \(a \neq b \), then \(a \cap b \) strict subset \(a \cup b \)
- symmetry: yes
- triangle: \(d_J(a,b) \leq d_J(a,c) + d_J(c,b) \)

Cosine Distance
"angle between vectors"
\[\cos(a,b) = \arccos\left(\sum_{i=1}^{d} a_i \cdot b_i\right) \in [0,\pi] \]

treats points \(a,b \) as "vectors". Does not care of magnitude, only "direction"

- non-negativity: by definition
- identity: treats multiples of vectors as equivalent (make unit vectors)
- symmetry: \(a_i \cdot b_i = b_i \cdot a_i \)
- triangle: geodesic distance on unit sphere
 - shortest rotation

Good when want to ignore scale of objects.

LSH: Choose random vector \(v \)
\[\text{if } \langle v, a \rangle > 0 \quad h(a) = +1 \]
\[\text{else} \quad h(a) = -1 \]
Can make \(v = \{-1,+1\}^d \)
Same as Jaccard, but \([0,\pi]\) instead of \([0,1]\)
 - (\(\gamma,\phi,(\pi-\gamma)/\pi,\phi/\pi\))-sensitive

Edit Distance
\(a, b \) strings

\[\text{edit}(a,b) = \# \text{ operations to make } a \rightarrow b \]
 - delete
 - insert

\(a = \) "mines"
\(b = \) "smiles"
edit(a,b) = 3
- insert 's' before 'm'
- delete 'n'
- insert 'l' after 'i'

many variations ("replace" operation)

non-negativity: # edits is non-negative
identity: only no edits if same
symmetry: can reverse operations
triangle: any intermediate -> equality
 any deviation -> more edits

Is this good for large text documents?
- slow to compute
- moving a sentence is a large edit, may change content little

- good for approximate string queries (google search, auto-correct)
 edit(a,b) > 3 is pretty large

Much work to approximate by L_1 distance (so can use LSH).
(eps,delta) keeps improving.

Graph Distance

Let $G = (V,E)$ be a graph
$V = \text{vertices}$
$E = \text{edges} \ E \subset V \times V$
edges can be ordered or unordered
 $(u,v) \ \{u,v\}$
edges can have weights $w_{\{u,v\}} = 1$ default
 (usually non-negative, infinite if non-existent)

<draw graph>

d(u,v) = \min \ # \text{edges between } (u,v)
Path $P = <u=r0,r1,r2,...,r{t-2},v=r{t-1}>$
such that $(u,r1), (r{t-2},v), (ri,r{i+1}) \text{ in } E$
length(P) = $\sum_{ri,r{i+1}} w_{\{ri,r{i+1}\}}$
d(u,v) = $\min_P <u...v> \text{ length(P)}$

Metric if $w_{\{u,v\}} > 0$, unordered
 non-negativity: sum non-negative weights
 identity: only if no edges
symmetry: can reverse edges
triangle: any intermediate on path \rightarrow equality
 any deviation of path \rightarrow violates min-length-path

Much work to approximate graph by L_1 or L_2 distance so can use LSH