Large graph

\[G = (V,E) \]

Might be slow to handle if \(|V|\) large and \(|E| = |V|^{1+c}\)

want:

\[H = (V,E') \text{ close to } G \]

and

\[|E'| \sim |V| \log |V| \]

Technique 1:

degree of vertex \(v_i \) = \(d_i \)

Sample each edge \((i,j)\) w.p.

\[p_{ij} = \min\{1, \frac{t}{\min\{d_i, d_j\}}\} \]

re-weight sampled edged, inverse to probability chosen

or with same weight if chosen w.p. 1

Keep all edges of nodes with degree at most \(t \)

All other edges keep proportional to \(t/d_i \) for min degree endpoint

\[E[|E|] < t|V| \]

Set \(t = (1/\epsilon^2) \log n \)

--> Preserves "cut" within \(\epsilon \)

Useful in Spectral Clustering
Finding Communities

Laplacian

\[L_G = D_G - A_G \]

\[D_G = \text{diag}(d_1, d_2, \ldots, d_{|V|}) \]

\[A_G = \text{adjacency matrix} \]

Want sparse graph \(H \) s.t.

\[||L_G - L_H||_2 \leq \epsilon \]

\[(1-\epsilon) x^T L_G x \leq x^T L_H x \leq (1+\epsilon) x^T L_G x \quad \text{forall } x \in \mathbb{R}^n \]

(Technique 1 only works for \(x \) in \([0,1]^{\mid V\mid}\))

Technique 2:

*** Effective Resistance ***

\(R_{\text{eff}}(e) \) is effective resistance between end points \(e = (u,v) \)

\((u,v) \ (u,a) \ (a,v) \) all strength 1

\[R_{\text{eff}}(u,v) = \frac{1}{\frac{1}{2} + \frac{1}{1}} = \frac{2}{3} \]

Sample edges w.p. \(p_e \sim \text{"proportional to"} \ R_{\text{eff}}(e) \)
Weight edge as \(1/p_e \)

--> Take \(O((1/\epsilon^2) \ n \ \log n) \) edges (with replacement, add weights)

Analysis very similar to column sampling (L14).

Recent papers (2011) improve runtime to about \(O(|V| \ \log |V| \ \log(1/\epsilon)) \)

idea: construct rough approx \(H_1 \)
remove degree 1,2 nodes \(\rightarrow \ G_2 \) (contract edges)
construct rough approx \(H_2 \)
remove degree 1,2 nodes \(\rightarrow \ G_3 \)
... \log n \) rounds

Currently, these are not quite practical. But expect to be practical in next 5 years? May lead to many very useful techniques...

... but worry about the \((1/\epsilon^2) \) factor

Approach 2:

--

Spanners

Start with metric \(d_G(a,b) \) for all \(a,b \) in \(V \)

often: \(d_G(a,b) = \) shortest path in Euclidean graph
\(a,b \) in \(R^d \) (for small \(d \) e.g. \(d=2,3 \))
(can be low doubling-dimension)

sometimes \(G \) is complete graph (all edges)

\(G = (V,E) \)
if \((a,b) \) in \(E \), then \(d_G(a,b) = ||a-b|| \)
else (shortest path) = best combination

t-spanner \(H \) if
for all \(1 \leq d_H(a,b) / d_G(a,b) \leq 1+t \)
measure(H):
 + # edges
 + total weight
 + maximum degree
 (we want each of these things to be small)

Algorithms:
 + Greedy: start no edges. Sort pairs be distance (small -> large)
 If error > 1+t --> add edge
 (works ok, hard to say much about measure)
 + Cone Based: around each point, divide space into k > 6 cones.
 Each cone defines set of directions. Find closest point + connect
 angle = 2pi/k -> t <= 1/(1-sin(angle/2))
 + WSPD: Set of pairs \{\{(A,B)\} st. A, B subset V
 each (a,b) in exactly one pair
 \min_{a in A, b in B} d(a,b) >
 s*\max_{\{a1,a2 in A\} d(a1,a2), \max_{\{b1,b2 in B\} d(b1,b2)}

Compute with (compressed) Quad Tree:
 split node -> 4 (TL,TR,BL,BR)
 for all A,B in (TL,TR,BL,BR)
 if A,B s-WS -> into pairs
 else check all pairs in split(A) vs. split(B)

 --> size O(s^d |V|) and computed in O(|V| log |V| + s^d |V|)
 --> each pair forms the edge of a spanner