What is compressed sensing?

--- regress to "sparse" explanation
try to encode data with small number of variables

single pixel camera:
10 Gigapixels of images, but jpg still 2MB? why is that?
compression.
many cameras compress image even before storing it.
What if we can get same resolution jpg with only 2megapixel sensor?
or 2 mega - repeated measurements at "single pixel"
Incredible resolution with 10 Gigapixels?? (ignoring lens quality...)

hash (sketch) of data:
Hubble telescope: incredibly clarity, but
 - communication with Earth expensive
 - sensing (battery) expensive
Sense and encode pictures, let Earth decode

Data often sparse+noise:
 Very few actual events of interest, but readings not exactly 0 since noise
Decode sparse measurements filtering out noise

Formal Problem Set-up:

Data is $S = d$-dimensional vector with $m \ll d$ non-zero elements
"m-sparse"

example:
$S = [0 \ 1 \ 0 \ 0 | 0 \ 1 \ 0 | 0 \ 0 | 0 \ 0 | 0 \ 0 | 1 \ 0]$
d = 32
m = 8 \ll 32

(if noisy, maybe 1 actually large value, and 0 actually very small value <= .05)

recover in $N = O(m \log (d/m))$ (random) measurements:
 $x_i = d$ random vector (e.g. Gaussians or \{-1,0,+1\})

example:
$x_i = [-1 \ 0 \ 1 \ 0 | 0 \ 1 \ -1 | 1 \ 0 \ -1 \ 0 | 0 \ 1 \ -1 \ 0 | 1 \ 0 | 0 \ -1 | 0 \ 1 \ 1 \ 0]$
\[y_1 = 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 -1 0 -1 0 0 0 0 0 0 1 0 0 = 2 \]

\[y_i = <S, x_i> \]

each element of S "hit" by 0-mean, random variable

- only really lose "log factor"
 + since sparse storage requires \(\log(d) \) to store location of each 1
 + each measurement requires about \(\log(d) \) storage to get correct precision.
 + if S is not 0/1, but 0/x, then don't even really lose log-factor, just constant

How do we "recover" S from Y?
** we know X (used to measure), an N x d matrix**
random, but seed known

Simplest form of data recovery: "Orthogonal Matching Pursuit" (OMP)

* Find measurement column \(j \) (not row used to measure)
 \[x_j = \text{argmax}_{j \in X} |<y, x_j>| \]
 represents single index of S that explains most about Y
* Find weight
 \[\gamma = \text{argmin}_{\gamma} \| Y - x_j \gamma \| \]
 our "guess" of \(s_j \) is \(\gamma \)

now what? Don't want to find part already explained by \(\gamma = s_j \)

Let "residual" \(r_0 = Y \)
\[r_1 = Y - x_{\{j_1\}} \gamma_1 \]
\[... \]
\[r_t = r_{\{t-1\}} - x_{\{j_t\}} \gamma_{\{j_t\}} \]

Use rounds on \(t \)
1: * Find measurement index
 \[j_t = \text{argmax}_{j \in [N]} |<r_{\{t-1\}}, x_j>| \]
2: * Find weight
 \[\gamma_t = \text{argmin}_{\gamma} \| r_{\{t-1\}} - x_{\{j_t\}} \gamma \| \]
3: * Set new residual
 \[r_t = r_{\{t-1\}} - x_{\{j_t\}} \gamma_t \]
 if \(\| r_t \| = 0 \) stop

NOTES:
- can add regularization term into loss-function in step 2 (implicit in step 1)
i.e. $\| Y - x_{j_t} \gamma \| + |\gamma|$
- can re-solve optimal LS in step 2

 2: $\gamma_{[1..t]} = \text{argmin}_{\gamma \in \mathbb{R}^t} \| T - x_{[1..j_t]} \gamma_{[1..t]} \|$

 3: $r_t = Y - x_{[1..j_t]} \gamma_{[1..t]}$
- can speed up LS @ 2 by maintaining partial decomposition of Y
 (QR decomposition)
- Converges: always $\| r_t \| < \| r_{t-1} \|$
 coordinate descent (Frank-Wolfe algorithm, shows $1/\varepsilon$ steps apx within ε)
- new $x_{[j_t]}$ always "linearly independent" of $X_{[1..j_{t-1}]}$
 adding new type of "explanation" towards Y

$N = O(m \log d)$ sufficient: like "Coupon Collector"
 key to analysis: $\langle x_i, x_i' \rangle$ is small for all i, i' in $[N]$

Similarity to "random projection" for dimensionality reduction.
Says (roughly): if original data is sparse (most points only along a few axes)
- can recover data exactly after projecting to linear subspace

SVD algorithm works like this!
 we consider all "measurement indices" directions in S^d
 each subsequent one is orthogonal on data
 decomposes since $\| P \|_2^2 = \sum_{i=1}^d \| p_i \|_2^2$
 --> works exactly for any k

Explanatory Variables
 if OMP is stopped early, then $X_{[j_1...j_t]}$ are few explanatory variables.
 avoids over fitting if not all error is recovered.

stop at $\| r_t \|_2 < \text{constant}$, get all large indices (loses noise)
stop at $\| r_t \|_{\infty} < \text{constant}$, only get large indices (none with noise)