L14 -- Random Projection
[Jeff Phillips - Utah - Data Mining]

Two techniques:
- random projections to subspace (data independent)
- basis selection

P in RAd and [Pl =n
goal: mu : P -> RAk (k << d)
s.t. max_{p,q in P}
(1-eps) llp-qll <= IImu(p) - mu(g)ll <= (1+eps) |lp-qll

Idea: randomly project the data to a subspace.

How to get a random vector? 777
1. compute random Gaussian variable x_i in RAd
2. normalize to u_i = x_i/lIx_ill

Then ~muCy_i) = <p, u_i>
Lets focus on simpler problem for now:
for one p in P (s.t. llpll = 1)

(1-eps/2) llpllIA2 <= | Imu(p)|1A2 <= (1l+eps/2)11pl A2

sgrt{(l-eps/2)} > (l-eps) and sqrt{(l+eps/2)} < (1-eps)
pretend just eps/2 = eps ...

[Ipl1A2 = sum_{i=1}Ad |Ip_il A2
But, it has the same problem as homework.
ECII~mu(p) | 1A2] == 777

[IplIA2/d <--- too small

let mu(p) = ~mu(p) * d
now E[I Imu(p)|1A2]

lIpl1A2

[1pl1A2 <= (d-1) |lplIA2 = Delta_i
Var[ |l Imu(p)1A2] = 1

Worst case | Imu(p)l[A2

Can use Chernoff Bound
- expected value = 0@
- bounded variance [or bounded worst case]

Choose k random directions {u_1l, u_2, ..., u_k} <-- basis
mu(p)_i = <p, u_i> * sqrt{d/k}



mu(p) in RAk
[Tmu(p) 1122 = sum_{i=1}Ak |Imu(p)_il A2

ECIImuCp)11A2 - 1lpllA2] =@

ECI ImuCp)_illA2 - IIpllA2/k] = @

Var[ | Imu(p)1A2] <= |lpl|

Var[l ImuCp)_il1A2] = IIpll/k

Var_i = Var[l Imu_i(p) 1 1A2/11pl1A2] = 1/k

Prl 11imuCp)l1A2 - IlplIA2 | > eps IlpllA2] =
PrCl TimuCp) 1 1A2/11plIA2 - 1 | > eps] <
2 exp(- epsA2 / 4 sum_{i=1}Ak Var_iAr2 ) =
2 exp(- epsA2 / 4 k (1/kA2) )
< delta’

k epsA2 /4 = 1n(2/delta')
k = (4/epsAr2) 1n(2/delta'))

0K, so with k = c/epsA2 log(1l/delta'), one norm is preserved.
now think of each Ilp - qll for p,q in P a norm that needs preserving
with [Imu(p) - mu(g)!!l = |ImuCp-q)l |
since mu is linear, then mu(p) - mu(q) = mu(p-q)
{n choose 2} < nA2 such norms
set delta' = delta/nA2
then chance that each norm has error is at most delta/nA2

then chance any has norm error is sum_{i=1}AnA2 delta/nA2 = delta
<<<<<< Union Bound >>>>>>>

So k = c/epsAr2 log(nA2/delta)
= 0((1/epsr2) log (n/delta))
Problems:

- not as good as SVD (optimal in some sense)
- does not preserve dimension-structure
- ignores data distribution
Advantages:
+ very easy to implement
+ ignores data distribution (oblivious)



+ can be implemented very fast (only need random {-1,0,+1} matrix)
+ if sparse -> no longer sparse (strangely, this prevents from being faster)

Column sampling

- returns set or t = (1/epsA2) k log k dimensions that is close to best k
from SVD.

simple
compute w(j) = |lp_jlIA2 of each column.
Select column proportional to w(j)
<<<<<<< just like k-means++ >>>>>>>>
assume that columns picked are j on J and ]| =t

set mu(p)_i = p_j * 1/w(3) * (d/t)
--> mu(P) = Q_t

P=USVAT

[U_k U_kA#] [S_k @; @ S_kA#] [V_k ; V_kA#]
U_k S_k V_KAT + U_kA# S_kA# (V_KAMAT
P_k = U_k S_k V_kAT

-> gives weak approximation, but very easy.
-> can do both rows and columns to get both subspace and "coreset"

[P - mu(P)I1_2A2 = sum_{p in P} |lp - mu(p)|1_2A2
[P - mu_k(P)I1_2A2 = sum_{p in P} |lp - mu_k(p)I1_2A2
where mu_k is the best linear rank-k projection (from SVD)

[P - Q_tl1_2A2 <= |IP - P_kl1_2A2 + eps |IPII_FA2
and

[IP - Q_tlII_FA2 <= |IP - P_kII|_FA2 + eps |IPII_FA2

Frobenious norm: [|IPII_FAZ2 = sum_{i=13}An |lp_il|_2A2

Better result:

1. Construct V_KkAT <--- subspace of the best rank-k approximation
defines mu_k( )

2. Let w'(3) = IIQV_KAT)_jl1A2 = sum_{p in P} (<mu_k(p), x_i>)A2

3. Select t = (1/epsr2) k log k columns: ]

mu'(p)_i =p_j * 1/w'(3) * (d/t)
mu'(P) = Q'_t



Now:
[P - Q_tlII_FA2 <= |IP - P_kII_FA2 + eps |IP - P_kII_FA2
[P - Q_tlII_FA2 <= (1+eps)|IP - P_kl|_FA2

-> gives better approximation
-> takes about as long as SVD_k, but gives better result

t = (1/epsr2) k log k
(1/epsr2) comes from Chernoff bound, need to bound error
k log k comes from Coupon Collector, need to hit each top k component



