L12 -- Heavy Hitters in Streams
[Jeff Phillips - Utah - Data Mining]

Streaming Algorithms

Stream : \(A = \langle a_1, a_2, \ldots, a_m \rangle \)
\(a_i \in [n] \) size \(\log n \)
Compute \(f(A) \) in \(\text{poly}(\log m, \log n) \) space
"one pass"

Let \(f_j = |\{a_i \in A \mid a_i = j\}| \)
\(F_1 = \sum_j f_j = m \) == total count

Goal: Find all \(j \) s.t. \(f_j > \phi m \)
\(\phi = 1/k = \varepsilon \)

\(f_j - \varepsilon m \leq \hat{f}_j \leq f_j \) Misra-Greis [1985]
\(f_j \leq \hat{f}_j \leq f_j + \varepsilon m \) Count-Min [Cormode + Muthukrishnan '05]

FP-MAJORITY: if some \(f_j > m/2 \), output \(j \)
else, output anything

How good w/ \(O(\log m + \log n) \) (one counter \(c \) + one location \(l \))? ...

####################################
c = 0, \(l = X \)
for \((a_i \in A) \)
 if \((a_i = l) \) \(c += 1 \)
 else \(c -= 1 \)
 if \((c <= 0) \) \(c = 1, \ l = a_i \)
return \(l \)
####################################

Analysis: if \(f_j > m/2 \), then
if \((l \neq j) \) then \(c \) decremented at most \(< m/2 \) times, but \(c > m/2 \)
if \((l = j) \) can be decremented \(< m/2 \), but is incremented \(> m/2 \)
if \(f_j < m/2 \) for all \(j \), then any answer ok.

k-FREQUENCY-ESTIMATION: Build data structure \(S \).
For any j in $[n]$, $\hat{f}_j = S(j)$ s.t.
\[f_j - \frac{m}{k} \leq \hat{f}_j \leq f_j \]

aka eps-approximate phi-HEAVY-HITTERS:
- Return all f_j s.t. $f_j > \phi m$
- Return no f_j s.t. $f_j < \phi m - \epsilon m$
- (any f_j s.t. $\phi m - \epsilon m < f_j < \phi m$ is ok)

Misra-Gries Algorithm [Misra-Gries '82]

Solves k-FREQUENCY-ESTIMATION in $O(k(\log m + \log n))$ space.

Let C be array of k counters $C[1], C[2], \ldots, C[k]$
Let L be array of k locations $L[1], L[2], \ldots, L[k]$

############################
Set all $C = 0$
Set all $L = X$

for $(a_i \in A)$
 if $(a_i \in L)$ \textit{<at index j>}
 $C[j] += 1$
 else \textit{<a_i !in L>}
 if $(|L| < k)$
 $C[j] = 1$
 $L[j] = a_i$
 else
 $C[j] -= 1 \text{forall } j \in [k]$

for $(j \in [k])$
 if $(C[j] <= 0)$ set $L[j] = X$

############################
On query q in $[n]$
 if $(q \in L \{L[j]=q\})$ return $\hat{f}_q = C[j]$
 else return $\hat{f}_q = 0$

############################

Analysis

A counter $C[j]$ representing $L[j] = q$ is only incremented if $a_i = q$

\[\hat{f}_q \leq f_q \]
If a counter $C[j]$ representing $L[j] = q$ is decremented, then $k-1$ other counters are also decremented. This happens at most m/k times.

A counter $C[j]$ representing $L[j] = q$ is decremented at most m/k times.

$$f_q - m/k \leq \hat{f}_q$$

How do we get an additive ε-approximate FREQUENCY-ESTIMATION?

i.e. return \hat{f}_q s.t.

$$|f_q - \hat{f}_q| \leq \varepsilon m$$

Set $k = 2/\varepsilon$, return $C[j] + (m/k)/2$

Space $O((1/\varepsilon) \log m + \log n))$

Also:

ε-approximate phi-HEAVY-HITTERS for any $\phi > m \varepsilon$ in space $O((1/\varepsilon) \log m + \log n))$

COUNT MIN Sketch

t independent hash functions $\{h_1, ..., h_t\}$
Each $h_i : [n] \to [k]$

2-d array of counters:
$h_1 \to [C_{1,1}] [C_{1,2}] ... [C_{1,k}]$
$h_2 \to [C_{2,1}] [C_{2,2}] ... [C_{2,k}]$

...
$h_t \to [C_{t,1}] [C_{t,2}] ... [C_{t,k}]$

For each $a \in A$ -> increment $C_{i,h_i(a)}$ for $i \in [t]$

$\hat{f}_a = \min_{i \in [t]} C_{i,h_i(a)}$

Set $t = \log(1/\delta)$
Set $k = 2/\varepsilon$

Clearly $f_a \leq \hat{f}_a$

$\hat{f}_a \leq f_a + W$. What is W?
One hash function \(h_i \).
Adds to \(W \) when there is a collision \(h_i(a) = h_i(j) \). \(\text{wp} \ 1/k \)

random variable \(Y_{i,j} \)
\[Y_{i,j} = \{ f_j \ \text{wp} \ 1/k, \ 0 \ \text{wp} \ 1-1/k \} \]
\[E[Y_{i,j}] = f_j/k \]

random variable \(X_{i} = \sum_{j \in [n], j\neq a} Y_{i,j} \)
\[E[X_{i}] = E[\sum_{j} Y_{i,j}] = \sum_{j} f_j/k = F_1/k = \epsilon * F_1/2 \]

Markov Inequality
\(X \) a rv and \(\alpha > 0 \)
\[\Pr[|X| \geq \alpha] \leq \frac{E[|X|]}{\alpha} \]

\(X_{i} > 0 \) so \(|X_{i}| = X_{i} \)
setting \(\alpha = \epsilon F_1 \) then
\[E[|X|]/\alpha = (\epsilon*F_1/2)/(\epsilon F_1) = 1/2 \]
\[\Pr[X_{i} \geq \epsilon F_1] \leq 1/2 \]

Now for \(t \) *independent* hash functions:

\[\Pr[\hat{f}_a - f_a \geq \epsilon F_1] = \Pr[\min_i X_{i} \geq \epsilon F_1] \]
\[= \Pr[\forall_{i \in [t]} (X_{i} \geq \epsilon F_1)] \]
\[= \prod_{i \in [t]} \Pr[X_{i} \geq \epsilon F_1] \]
\[\leq 1/2^t \]
\[= \delta (\text{since} \ t = \log(1/\delta)) \]

Hence:
\[f_a \leq \hat{f}_a \leq f_a + \epsilon F_1 \]
- first inequality always holds
- second inequality holds \(\text{wp} > 1-\delta \)

Space:
each of \(k*t \) counters requires \(\log m \) space
\(O(k*t*\log m) \)
Store \(t \) hash functions: \(\log n \) each
\(O((k \log m + \log n)*t) = O((1/\epsilon \log m + \log n) \log (1/\delta)) \)

turnstile model: add or subtract (as long as is there)