L10 -- k-means clustering
[Jeff Phillips - Utah - Data Mining]

k-means clustering:
Find k points \(C = \{c_1, \ldots, c_k\} \), s.t.
- each \(p \) in \(P \) assigned \(\mu(p) = \arg\min_{c \in C} ||p - c|| \)
- minimize \(E(P,C,\mu) = \sum_{p \in P} ||p, \mu(p)||^2 \)

(like k-center minimize \(\max_{p \in P} ||p - \mu(p)|| \))
(k-median minimize \(\sum_{p \in P} ||p - \mu(p)|| \))

Lloyd's algorithm (1957 -> published 1982)

Choose k points (arbitrarily?) \(C \subset P \)
1. for all \(p \) in \(P \), find \(\mu(p) \) (closest center \(c \) in \(C \) to \(p \))
2. for all \(i \) in \([k]\) let \(c_i = \text{average}\{p \in P \mid \mu(p) = c_i\} \)
if (\(C \) changed, repeat)

say R rounds \(\Rightarrow O(R \cdot n) \)
(improved w/ faster NN search)

What is R?
finite. # of distinct clusters
 each step minimizes \(E(P,C,\mu) \)
with fixed \(k, d \) \(\Rightarrow R = O(n^{dk}) \) (Voronoi diagram)
 \(\rightarrow \) exponential in \(k,d \) (NP-Hard)
 \(R \approx 10 \), usually ok.

 smooth complexity: (perturb data randomly, \(\Rightarrow O(n^{35} \cdot k^{34} \cdot d^8) \) :) big
 but poly)
 on a lattice: \(O(d \cdot n^4 \cdot M^2) \)

How to choose initial centers \(C \)?

- random set of \(k \) points
 we know that collisions are likely (if \(k \) true clusters)
- randomly partition data \(P \) \(\rightarrow \{S_1, \ldots, S_k\} \), take mean of each
- MinMax
 (sensitive to outliers)

Choose first \(c_1 \) arbitrarily
\[C_1 = \{c_1\} \quad \text{(generally } C_i = \{C_1, C_2, \ldots, C_i\} \text{ \goal } C_k) \]

Let \(c_{i+1} = \arg \max_{p \in P \setminus C_i} d(p, \mu(p)) \)
- "always pick point furtherest from set of centers \(C_i \)"

- k-means++ (guarantees polynomial time, with some probability)

Choose first \(c_1 \) arbitrarily
\[C_1 = \{c_1\} \quad \text{(generally } C_i = \{C_1, C_2, \ldots, C_i\} \text{ \goal } C_k) \]

Choose \(c_{i+1} \) with \(\text{prob}_{p \in P \setminus C_i} ||p - \mu(p)||^2 \)
- "pick point proportional to distance from set of centers \(C_i \)"

- random re-starts (try multiple times, take the best)

How accurate is Lloyd's Algo?
- can be arbitrarily bad
- \((1+\epsilon)\)-approx in \(2^{(k/\epsilon)^{O(1)}}\) nd [Kumar,Sabharwal,Sen '04]
k-means++ is \(O(\log k)\) competitive (8 if well-separated)

Problems with k-means:
- Lloyd's Algo requires \(d(a,b) = ||a-b||\)
 -> can use \(C \subset P \) (slower to run step 2)
- effected by outliers. squared distance makes far points more important
 (k-medians: step 1 same, step 2 harder "Fermat-Weber problem", gradient descent)
- enforces equi-sized clusters. Voronoi partition.
 (draw mickey-mouse picture)
- EM formulation: Expectation-Maximization
 model each cluster as a Gaussian \(\mathcal{G}_i \) (centered at \(c_i \))
 1. for each point, find cluster with largest probability of containing that point
 2. for a cluster, find best fit Gaussian (\(c_i = \text{mean}, \text{covariance} = \) estimate each variance)
(allows for slanted (with PCA) and non-uniform clusters)

- has also been work in clustering to low-dimensional subspaces. Enforces that some covariances are 0, others "infinite" (at least uniform).

Speeding up k-means:
- run k-means on random sample of points. Once centers obtained, run on full set.

- run streaming with \((k \log k)\) clusters
 merge clusters at end
 (better: maintain hierarchy of clusters)

- BFR algorithm: Process points in batches
 - summarize batches (compact clusters as Gaussians + leftovers)
 - merge summaries