Asmt 5: Regression

Turn in a hard copy at the start of class:
Wednesday, April 10
20 points

Overview
In this assignment you will explore regression techniques on high-dimensional data.
You will use a few data sets for this assignment:

- http://www.cs.utah.edu/~jeffp/teaching/cs5955/A5/M.dat
- http://www.cs.utah.edu/~jeffp/teaching/cs5955/A5/B.dat

This data sets are in matrix format and can be loaded into MATLAB or OCTAVE. By calling
load filename (for instance load M.dat)
it will put in memory the data in the file, for instance in the above example the matrix M. You can then
display this matrix by typing
M

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may
lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:

1 Singular Value Decomposition (5 points)
First we will compute the SVD of the matrix M we have loaded
[U,S,V] = svd(M)
Then take the top k columns components of M for values of k = 1 through k = 10 using
Uk = U(:,1:k)
Sk = S(1:k,1:k)
Vk = V(:,1:k)
Mk = Uk*Sk*Vk'

Compute and report the L_2 norm of the difference between M and Mk for each value of k using
\[\text{norm}(M-Mk,2) \]
Find the smallest value k so that the L_2 norm of $M-Mk$ is less than 10% that of M; k might or might not
be larger than 10.

2 Column Sampling (8 points)
Select t (for t from 1 to 30) columns \{c_1, c_2, ..., c_t\} using the two types of column sampling from the
matrix data set M.

Type 1: For each column $j M(:,j)$ calculate the squared norm $s_j = \text{norm}(M(:,j))^2$, and select t
columns proportional to the values s_j.

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah
Type 2: Calculate the SVD of \(M \): \([U, S, V] = \text{svd}(M)\). For each column \(j \) calculate the squared norm projected onto the column space of the top \(k \)-singular vectors:
\[
wj = \text{norm}(Uk*Uk'*M(:,j))^2,
\]
and select \(t \) columns proportional to the values \(w_j \). (Use \(k = 5 \).)

We now need to measure how accurate a subspace these columns represent. Construct a matrix with the sampled columns \(C = [c_1 c_2 c_3 \ldots c_t] \). Then create a projection matrix onto the column space of \(C \) as \(J = C*\text{inverse}(C'*C)*C' \). Finally calculate the \(L_2 \) norm of the difference between \(M \) and \(M \) projected onto the column space of \(C \) as \(\text{norm}(M - J*M,2) \).

If the \text{inverse} returns NaN, then try \text{pinv}.

A (4 points): Report this error for each choice of \(t \). Since this is a randomized algorithm, the values may vary. You should repeat this experiment several times to get good representative values. Also the nice plotting functions of MATLAB/OCTAVE may be useful as a replacement for presenting this data instead of reporting a series of numbers.

B (2 points): For both types of column sampling, estimate how large \(t \) need to be to reach the same error as the SVD approach with \(k = 5 \).

C (2 points): Using the values of \(t \) found in part B, for both types of column sampling, estimate the number of non-zero entries in these \(t \) columns sampled. Compare this value to the number of non-zero entries in \(V_5 \) constructed using the SVD.

3 Linear Regression (7 points)

We will find coefficients \(A \) to estimate \(X*A = Y \). We will compare two approaches least squares and ridge regression.

Least Squares: Set \(A = \text{inverse}(X' * X)*X'*Y \)

Ridge Regression: Set \(As = \text{inverse}(X'*X + s*\text{eye}(6))*X'*Y \)

A (3 points): Solve for the coefficients \(A \) (or \(As \)) using Least Squares and Ridge Regression with \(s = \{0.1, 0.3, 0.5, 1.0, 2.0\} \). For each set of coefficients, report the error in the estimate \(\hat{Y} \) of \(Y \) as \(\text{norm}(Y - X*A,2) \).

B (4 points): Create three row- subsets of \(X \) and \(Y \)

- \(X1 = X(1:8,:) \) and \(Y1 = Y(1:8) \)
- \(X2 = X(3:10,:) \) and \(Y2 = Y(3:10) \)
- \(X3 = [X(1:4,:); X(7:10,:)] \) and \(Y3 = [Y(1:4); Y(7:10)] \)

Repeat the above procedure on these subsets and cross-validate the solution on the remainder of \(X \) and \(Y \). Specifically, learn the coefficients \(A \) using, say, \(X1 \) and \(Y1 \) and then measure \(\text{norm}(Y(9:10) - X(9:10,:)*A,2) \).

Which approach works best (averaging the results from the three subsets): Least Squares, or for which value of \(s \) using Ridge Regression?
4 BONUS (5 points)
Consider a linear equation $B = AS$ where A is a measurement matrix filled with random values $\{-1, 0, +1\}$ (although now that they are there, they are no longer random), and B is the output of the sparse signal S when measured by A.

Use Orthogonal Matching Pursuit (as described in the notes) to recover the non-zero entries from S. Record the order in which you find each entry and the residual vector after each step.