Assignment-based Clustering

Input: data X and dist $d : X \times X \to \mathbb{R}$

Centers
$C = \{c_1, c_2, c_3, c_4\}$

$\phi_C(x) = \arg\min_{c \in C} d(x, c)$

Voronoi Diagram

$X \rightarrow S_1, S_2, \ldots, S_n$

$S_i \cap S_j = \emptyset$

$X = S_1 \cup S_2 \cup \ldots \cup S_n$

$S_j = \{ x \in X \mid \phi_C(x) = c_j \}$
\[\text{Cost}_k(X, C) = \sum_{x \in X} d(\phi_c(x), x)^2 \]

\[\mathcal{C} \leftarrow \text{minimize Cost}_k \]

\(k \)-means clustering formulation

\[\text{Cost}_\infty(X, C) = \max_{x \in X} d(\phi_c(x), x) \]

\(k \)-center (Gonzalez)

\[\text{Cost}_1(X, C) = \sum_{x \in X} d(\phi_c(x), x) \]

\(k \)-median

\(k \)-medioid

\[\text{minimize Cost}_1(X, C) \]

s.t. \(C \subseteq \text{subset} \)
Gonzalez Algo. 12-Center outliers poorly w/ outliers

\[\hat{C} \subset X, d \text{ metric} \]

\[C^* \subset \text{optimal} = \arg\min \text{cost}_D(X, C) \]

D. Choose \(c, c \in X \) arbitrarily

1. \(\text{for } j = 2 \text{ to } n \)

\[\text{Set } c_j = \arg\max_{x \in X} d(x, \phi_{c_{j-1}}(x)) \]

\[\hat{C} \subset \tilde{C} \subset X \]

\[C_1 = \{ c_1, \ldots, c_n \} \]

\[C_{j-1} = \{ c_1, \ldots, c_j \} \]

Provides 2-approximation

\[\text{cost}_D(X, \hat{C}) \leq 2 \cdot \text{cost}_D(X, C^*) \]
K-means clustering

Lloyd's Algorithm:

Choose **k** prototype vectors \(\mathbf{c}_1, \ldots, \mathbf{c}_k \) randomly from the data.

1. **Repeat**
 - **For all** \(x \in X \) assign \(\phi_c(x) \) to \(\mathbf{c}_j \) if \(d(x, \mathbf{c}_j) \leq d(x, \mathbf{c}_i) \) for all \(i \neq j \).
 - **Let** \(c_j = \text{average} \{ \phi_c(x) \} \)

2. Until \(C \) is fixed

Cost of assignment:

\[
\text{Cost}_k(X,C) = \sum_{x \in X} \min_{j} d(x, c_j) = \sum_{j} \left(\sum_{x \in S_j} d(x, c_j) \right)
\]
k-means++

L-initialize Lloyds Also

\[C_j = \{ c_1, c_2, \ldots, c_j \} \]

0. Choose \(c_1 \in X \) arbitrarily \(C_1 = \{ c_1 \} \)

1. for \(j = 2 \) to \(k \)

Choose \(c_i \) from \(X \) w/ prob proportional to \(d(x, \phi_{c_{i-1}}(x))^2 \)

Partition of Unity

\[\sum_{i=1}^{k} \omega_i = 1 \]

\[\omega_i = \frac{w(x_i)}{\sum_{i=1}^{k} w(x_i)} \]

Choose \(\omega = 0.432 \) \(\omega_j \) \(\omega(x_j) \)

M4D Sec 2.41
Choosing \hat{K}

"elbow technique"