L5: Locality Sensitive Hashing

Jeff M. Phillips

January 22, 2020

Family hash functions) $($

$$
\begin{aligned}
& P_{r} \\
&=\ln (p)=h(q)]
\end{aligned} \underset{\sim}{ } \quad=\sin (p, 8)
$$

Jaccard

1. 1 hash function

Triangle

$$
\hat{S S}(p, q)= \begin{cases}1 & h(p)=h(q) \\ 0 & 0 . t\end{cases}
$$

hash fable
2. hash function 3

$$
\begin{gathered}
\hat{S S}(P, q)=\frac{1}{2} \sum_{j=1}^{2}\left(h_{j}(p)=z_{j}\right) \\
\text { Also? }
\end{gathered}
$$

Euclidean
(Dot project)
Indicator Function

$$
\mathbb{1}(b)= \begin{cases}1 & \text { if } b=\text { Tree r } \\ 0 & \text { if } b=\text { False }\end{cases}
$$

Large Number of objects X

$$
X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}
$$

$\left(\begin{array}{c}\text { documents } \\ (k-g r a m s)\end{array}\right.$, IP addresses, customers)
Q1: Which pairs use similar?
Q2: Given query \&, which $x_{i} \in X$ are similar to 8 ?
n time

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots x_{n} \in \mathbb{R} \\
& \text { similarity } S_{\Delta}\left(q, x_{i}\right)=\max \left\{0,1-\left|q-x_{i}\right|\right\}
\end{aligned}
$$

1. Sort $x_{1}, x_{7} \ldots$
2. Build binary tree T
3. Find 8 in $T \quad P_{\sigma}\left[h(x)=h\left(x^{\prime}\right)\right] \log n+12$ $\eta \in$ unis $(0,1)$

Banding : How to combine hash,

$$
\begin{gathered}
P_{1} \rightarrow[3,5] \\
1 \begin{array}{llll}
11 & 56 \\
2 \\
h_{2} 4 \\
5 \\
6
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
P_{\sigma}\left[h_{1} h_{2}(p)=h_{1} h_{2}(\varepsilon)\right] \\
=s^{2}
\end{gathered}
$$

Much more selective
r bands, each with b hash functions

$$
\begin{aligned}
t & =\# \text { hash functions } \quad t \geq r-b \\
S(p, q) & =s \\
s^{b} & =\operatorname{Pr} \text { Pig collide in ont band. } \\
\left(1-s^{b}\right) & =\operatorname{Pr} \text { Pig don't collide }
\end{aligned}
$$

$\left(1-s^{b}\right)^{r}=\operatorname{Pr} \operatorname{Paq}$ doit collide in r bauds
$f(s)=1-\left(1-s^{b}\right)^{r}=\operatorname{Pr}$ p, q collide in at least one band.

LSH $b=3$ and $r=5 \quad t=15$
Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=3$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$
$\mathrm{LSH} b=3$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=6$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\operatorname{LSH} b=6$ and $r=15 \quad t=90$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=10$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

LSH $b=10$ and $r=15$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\mathrm{LSH} b=8$ and $r=100$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$
$\mathrm{LSH} b=8$ and $r=100$

Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

$\operatorname{LSH}(b=3, r=5) \&(b=6, r=15) \&(b=8, r=100)$
Probability of found collision $=1-\left(1-s^{b}\right)^{r}$
$\operatorname{LSH}(b=3, r=5) \&(b=6, r=15) \&(b=8, r=100)$
Probability of found collision $=1-\left(1-s^{b}\right)^{r}$

LSH for Eudidean Dist.

$$
\begin{aligned}
& d(p, 8) \Longleftrightarrow S_{E}\left(P_{1} q\right) \\
& \langle p, q\rangle \\
& =\sum_{j=1}^{p_{i}} p_{i} q_{i} \\
& h: \mathbb{R}^{d} \rightarrow[m] \\
& n \in \operatorname{unif}(0, T) \\
& v \in \mathbb{R}^{d},\|v\|=1 \\
& h_{n, v}(p)=\left(\frac{\lfloor\langle p, v\rangle-n\rfloor}{\text { floor }} \bmod m\right)
\end{aligned}
$$

