L23: PageRank

Jeff M. Phillips

April 13, 2020

Final Report

At most 4 pages/student. Don't cram in too much!

- Succinct title (and names) e Some fon Posters
- Problem definition and motivation.
- Explain your Data.
- key idea
- What did you do (which techniques, an implementation, a comparison, an extension)
- What did you learn? Artifacts (charts, plots, examples, math) and Intuition (in words, did it work?)

Wet page Similarity (Search)

- Inverted Index

$$
C \text { sorted page } l \text { iss tithe, url) }
$$

Define most relevant webpage

Crawlers: program: that waltzes around web: (1) read page updalt fenturíctor
(2) follow random hyper lints
inverted index ranting use hyporlinte info

$$
\text { <a hied "www.pic.com" }\rangle_{\frac{p i e c}{5}}\langle a\rangle
$$

Spamanes
build flees pages: link to yous page w/ hyperlink tag.

- Indexes : Alternative to scorch Engine Yahoo! and Zooksmat
Built an organized, curated colection of websites
delerate - pages are impostent it linted to delecate
badance by oth importond webpages. random MCMC" pabe is "vandom susfer" were to fird it.
Web is a bis graph $G=(V, E)$

$$
\begin{aligned}
& V=\{\text { set } b \text { all pages }\} \\
& E=\left\{E_{i j}=\operatorname{link} P_{i} \rightarrow P_{j}\right\}
\end{aligned}
$$

Dedine $M C \rightarrow q_{x} \Leftarrow$ converged distibution vector $q_{*}(j)$ says how impatent ragej is.

Compute q^{*} of Wiograph

- Keep tracts of crawlers: how frequent return.
- Buy bis computes: Compute erg (P)
p probtran (a)
- Precompute $P^{*}=$ P.P.P....P P
t too big

$$
\begin{array}{r}
q^{*}=q_{0} \leftarrow \text { last night } \\
\operatorname{din}^{J=1} \begin{array}{l}
\text { to } 50 \\
q_{j}=P_{q_{j-1}}
\end{array}
\end{array}
$$

power method

Anatomy of Web

$$
\text { is this } G \text { ergodic }
$$

Anatomy of Web

Can we make G ergodic?

- Teleportction/taxation
\rightarrow about once every 7 stoss
\rightarrow jump to random node.
P probtrans (G)
$\beta=0.15 \xrightarrow{\frac{q_{i-1}}{l_{i-1}}}$

$$
\begin{aligned}
R & =(1-\beta) P+\beta Q \\
& \rightarrow \text { dense } \\
R_{q i} & =((1-\beta) P+\beta Q) \varepsilon_{i-1} \\
& (1-\beta) P_{\text {gin }}+\beta \mathbb{1} / n \\
& +1 \text { victor }
\end{aligned}
$$

Trust Rank (2015?)
Only teleport to trusted pages.
$r \in q_{x}$ paserants
$t \in q_{*}$ trusted tremor h
$\frac{r(j)-t(j)}{r(j)}$ if (arse \rightarrow spam
\rightarrow truthfulness \& webpage

Word Count

Consider as input all of English Wikipedia stored in DFS. Goal is to count how many times each word is used.

Inverted Index

Consider as input all of English Wikipedia stored in DFS. Goal is to build an index, so each word has a list of pages it is in.

Phrases

Consider as input all of English Wikipedia stored in DFS. Goal is to build an index, on 3-grams (sequence of 3 words) that appears on exactly one page, with link to page.

Label Propagation (Graph)

Consider a large graph $G=(V, E)$ (e.g., a social network), with a subset of notes $V^{\prime} \subset V$ with labels (e.g., \{pos, neg\}). Each node stores its label (if any) and edges.
Assign a vertex a label if (a) unlabled, (b) has ≥ 5 labeled neighbors, (c) based on majority vote.

Label Propagation (Embedding)

Consider a data set $X \subset \mathbb{R}^{d}$, with a subset of points $X^{\prime} \subset X$ with labels (e.g., $\{$ pos, neg\}). Implicitly defines graph with $V=X$ and E using $k=20$ nearest neighbors.
Assign a vertex a label if (a) unlabled, (b) has ≥ 5 labeled neighbors, (c) based on majority vote.

Example PageRank

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 1 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Example PageRank

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 1 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Stripes:
$M_{1}=\left[\begin{array}{c}0 \\ 1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right] \quad M_{2}=\left[\begin{array}{c}1 / 2 \\ 0 \\ 0 \\ 1 / 2\end{array}\right] \quad M_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right] \quad M_{4}=\left[\begin{array}{c}0 \\ 1 / 2 \\ 1 / 2 \\ 0\end{array}\right]$
These are stored as $(1:(1 / 3,2),(1 / 3,3),(1 / 3,4))$, $(2:(1 / 2,1)(1 / 2,4)),(3:(1,3))$, and $(4:(1 / 3,1),(1 / 2,2))$.

Example PageRank

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 1 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Blocks:
$M_{1,1}=\left[\begin{array}{cc}0 & 1 / 2 \\ 1 / 3 & 0\end{array}\right] \quad M_{1,2}=\left[\begin{array}{cc}0 & 0 \\ 1 & 1 / 2\end{array}\right] \quad M_{2,1}=\left[\begin{array}{cc}1 / 3 & 0 \\ 1 / 3 & 1 / 2\end{array}\right] \quad M_{2,2}=\left[\begin{array}{cc}0 & 1 / 2 \\ 0 & 0\end{array}\right]$
These are stored as $(1:(1 / 2,2)),(2:(1 / 3,1))$, as $(2:(1,3),(1 / 2,4))$, as $(3:(1 / 3,1)),(4:(1 / 3,1),(1 / 2,2))$, and as $(3:(1 / 2,4))$.

