L22: Markov Chains

Jeff M. Phillips

April 8, 2020

Markov Chain: Life Lessons

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).
- [L3] In the limit, everyone has perfect karma.

Graphs

Mathematically: $G \equiv(V, E)$ where

$$
V=\{a, b, c, d, e, f, g\} \text { and }
$$

$$
E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{f, g\},\{f, h\}\}
$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise.
(For a directed graph, it may not be symmetric).

Markov Chain

Transitions d

$$
\begin{aligned}
& q_{1}=P q=\left[\begin{array}{c}
{\left[\begin{array}{c}
1 \\
2
\end{array}\right)} \\
u
\end{array} \quad 0 \quad \begin{array}{ccccc}
\left(\frac{1}{2} \eta\right. & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Transitionsls } \\
& \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& \stackrel{q_{2}}{\sim}=P\left(q_{1}\right) \stackrel{P P q}{=}=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Transitions $2 / 6 / 2 / 6 / 1 / 6$

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{array}\right] .
$$

Transitions

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right] .
$$

In the limit: $q_{n}=\widehat{P^{n}} q \quad \lim \quad n \rightarrow \infty$ not uniform

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} \text {. } \\
& q_{3}=P q_{2}=\left[\begin{array}{llllllll}
\frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

In the limit: $q_{n}=P^{n} q$
[L1] Only your current position matters going forward, don't worry about the past.

Two ways do thirte about
Max Row Chains
(1) Only comsider 1 possible
location at a time

$$
\begin{aligned}
&(\text { eg. } q=[0,1,0,0, \ldots 0] \\
& \longrightarrow \text { Random } W_{n}^{1} / l \text { e }
\end{aligned}
$$

(2) Probability distribution an states egg. $q=\left(\frac{1}{10}, 0, \frac{3}{10}, 0,0, \frac{6}{10}, 0 \ldots\right)$

Ergordic : MC is ergodic if $\exists t$ so thad f all $n>t$ $q_{n}(j)>0$.

True if not
(1) Cyclic
(2) has Absorbing \& transient states
(3) disconnect.

Cyclic Examples

Absorbing and Transient Examples

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\left(\begin{array}{ccccc}1 / 2 & 1 / 2 & 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$

$$
\left(\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 49 / 100 & 0 & 0 & 0 & 0 \\
0 & 1 / 100 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right)
$$

Unconnected Examples

$$
\left(\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Limiting State
if MC is ergodic

Let $P^{*}=\widetilde{\left(P^{n}\right)}$ as $n \rightarrow \infty$. in 1 step P^{*} pushes
Let $q_{*}=P^{*} q$. the state to the final state
qu vector, has weight for each node $q_{*}(j)$ fth node

Limiting State

$$
\begin{aligned}
& \text { Let } P^{*}=P^{n} \text { as } n \rightarrow \infty \text {. } \\
& \text { Let } q_{*}=P^{*} q \text {. }
\end{aligned}
$$

[L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Delicate Balance

$$
\begin{aligned}
& q_{*} \text { is on eigen- } \\
& \text { vector \& } P \text {. }
\end{aligned}
$$

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
Also $q_{*}=\frac{P q^{P *} q}{q_{*}}$ thus $q_{*}=P q_{*}$.
So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

Delicate Balance

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
Also $q_{*}=P P^{*} q$ thus $q_{*}=P q_{*}$.
So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$
P_{i, j} q_{*}(i)=P_{j, i} q_{*}(j)
$$

[L3] In the limit, everyone has perfect karma.

Limiting State

$$
\begin{aligned}
q_{*} & =0.15,0.1,0.15,0.15,0.15,0.15,0.1,0.05) \\
& =\left(\frac{3}{20}, \frac{1}{10}, \frac{3}{20}, \frac{3}{20}, \frac{3}{20}, \frac{3}{20}, \frac{1}{10}, \frac{1}{20}\right)
\end{aligned}
$$

Algorithins fa computing q_{*}
(1) $\operatorname{eig}(P) \Rightarrow$ top eisinuectos V_{1}

$$
\left.q_{*}=\frac{v_{1}}{\lambda v_{1} \|_{2}} \quad\|v\|_{1}=\sum_{j=1}^{n}\left|v v_{j}\right\rangle \right\rvert\,
$$

(2) $\left.q_{x} \approx P \cdot(P)\left(P \cdots\left(P q_{0}\right)\right)\right)$
for $i=1$ to m

$$
q_{i}=P_{q_{i-1}}
$$

(3) $q_{*} \approx\left(p^{m}\right) q_{0}$
ritucn $q_{x}=q_{m}$
(4) Random Waltz Maintain explicit state $P^{m / 2}=P$ $\left[\begin{array}{ll}\text { Tomen in Peitrod } \\ \approx 1000 \text { stro }\end{array}\right]$ each stip $\quad q=[0,1,0, \ldots .0] \Rightarrow q \equiv b \quad q \in V$ collect to neekt $v_{i} \rightarrow$ to neishbor on edse v_{i+1}

$$
\begin{aligned}
& \Rightarrow \text { sooo steps } v_{i} \rightarrow \text { to neecect }\left\{v_{1}, v_{z}, \ldots v_{m}\right\}=s \quad q_{x}(j)=\left(\frac{\# \text { ves s.t. } v=j}{m}\right) \\
& m
\end{aligned}
$$

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

$$
\begin{gathered}
\text { energy state } q(q)
\end{gathered}
$$

Metropolis Algorithm

> Martiou Chain $(V, P, 8)$

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953
repeat
Generate $u \sim K(v, \cdot) \quad \longleftarrow$ if $\left(w(u) \geq w\left(v_{i}\right)\right)$ then Set $v_{i+1}=\bar{u}$

else
With probability $w(u) / w(v)$ set $v_{i+1}=u$ else
Set $v_{i+1}=v_{i}$
until "converged"
return $V=\left\{v_{1}, v_{2}, \ldots,\right\}$

