L22: Markov Chains

Jeff M. Phillips

April 8, 2020

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

<ロ> <@> < E> < E> E のQの

 [L1] Only your current position matters going forward, don't worry about the past.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

• [L3] In the limit, everyone has perfect karma.

raphs
Mathematically:
$$G = (V, E)$$
 where
 $V = \{a, b, c, d, e, f, g\}$ and
 $E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{f, g\}, \{f, h\}\}\}.$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

Markov Chain

1/2 to the Va 20 16 \bigvee node set, P probability transition matrix, q initial state. $T = [0\ 1\ 0\ 0\ 0\ 0\ 0]$ or $q^T = [0.1\ 0\ 0\ 0.3)0(0.6)0\ 0]$. e.g. е 0 0 0 0 0 0 0 1/3 0 0 $\frac{1/3}{1/3}$ 0 $\frac{1}{3}$ $\frac{1}{3}$ 0 1/31/31/3000000 0 0 P =0 1/31/20 1/21 0 0 0 1/30 1/3 0

Transitions 👃

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

T

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$

$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{2} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \begin{bmatrix} \frac{1}{9} \\ 0 & 0 & \frac{1}{7} & 0 \end{bmatrix}^{T}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Transitions

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}^{T} .$$

$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 \end{bmatrix}^{T} .$$

$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T} .$$
In the limit: $q_{n} = P^{n}q$

$$\chi_{0} \downarrow \qquad \chi_{n} \downarrow \chi_{n} \downarrow \chi_{n}$$

Transitions

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}^{T} .$$
$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \end{bmatrix}^{T} .$$
$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 \end{bmatrix}^{T} .$$
$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T} .$$

In the limit: $q_n = P^n q$

[L1] Only your current position matters going forward, don't worry about the past.

to this to about Two ways

Markov Chains

(1) Only comsider 1 possible location at a time (eg. q.= [v, 1, 0, v,) Random Walk 2 Probabilite distribution on stades egg $g = (\frac{1}{10}, 0, \frac{7}{10}, 0, 0, \frac{6}{10}, 0, \dots)$

, MC is ersudic if Ergordic It so that I all not $g_n(j) > 0$ True it not () Lyclic @ has Absorbing & transland states (3) disconnerd.

Cyclic Examples

0.001 $\begin{pmatrix} 0 & 1 \\ (1) & 0 \end{pmatrix}$ 0.9 1/21/2/ 1/21/21/2 1/41/21/21/2Q

Unconnected Examples

Limiting State

if MC is ergodic

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Limiting State

Let
$$P^* = P^n$$
 as $n \to \infty$.
Let $q_* = P^*q$.

[L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

・ロト ・ 一下・ ・ ヨト・・ ヨト・・

-

Delicate Balance

Let
$$P^* = P^n$$
 as $n \to \infty$.
Let $q_* = P^*q$.
Also $q_* = PP^*q$ thus $q_* = Pq_*$.

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$P_{i,j}q_*(i) = P_{j,i}q_*(j)$$

[L3] In the limit, everyone has perfect karma.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limiting State

$$q_* = \underbrace{(0.15, 0.1, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05)}_{= (\frac{3}{20}, \frac{1}{10}, \frac{3}{20}, \frac{3}{20}, \frac{3}{20}, \frac{3}{20}, \frac{3}{20}, \frac{1}{10}, \frac{1}{20})$$

Algorithms for computing 8x $(2) g_{x} = (P.P.P...(P_{g_{0}})) \qquad for i=1 \text{ for } m$ $g_{i} = Pg_{i-1}$ riturn 8x = 2m (3) $g_{\star} \approx (p^m) g_{\circ}$ $P^{m} = \prod_{\substack{i=1\\ p=1}}^{m} P = P^{m/2} \cdot P^{m/2}$ $P^{m/2} = P^{m/4} \cdot P^{m/4}$ (4) Random Walk Maintain explocit state g= [0,1,0,....0] => g= b geV Burn in Petrod 21000 stres each strp collect the next N: -> to neighbor on edge Usar = 5000 steps Collect (V, Vz, ... Vm) = S 8x(j) = (# VES s.t. U= j)

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

energy state 8 E(R) Probability particle in g propordinal to w(8)=e - E(8)

