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Garden of Forking Paths [Gelman + Loken 2013]

1. Simple classical test based on a unique test statistic, T , which
when applied to the observed data yields T (y).

2. Classical test pre-chosen from a set of possible tests: thus,
T (y ;�), with preregistered �. For example, � might
correspond to choices of control variables in a regression,
transformations, and data coding and excluding rules, as well
as the decision of which main e↵ect or interaction to focus on.

3. Researcher degrees of freedom without fishing: computing a
single test based on the data, but in an environment where a
di↵erent test would have been performed given di↵erent data;
thus T (y ;�(y)), where the function �(·) is observed in the
observed case.

4. “Fishing”: computing T (y ;�j) for j = 1, . . . , J: that is,
performing J tests and then reporting the best result given
the data, thus T (y ;�best(y)).
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