Overview

In this assignment you will explore different approaches to analyzing Markov chains. You will use one data set for this assignment:

- http://www.cs.utah.edu/~jeffp/teaching/cs5140/A8/M.dat

These data sets are in matrix format and can be loaded into MATLAB or OCTAVE. By calling

```
load filename
```

(for instance

```
load M.dat
```

it will put in memory the data in the file, for instance in the above example the matrix \(M \). You can then display this matrix by typing \(M \).

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:

http://www.cs.utah.edu/~jeffp/teaching/latex/

1 Finding \(q_* \) (100 points)

We will consider four ways to find \(q_* = M^t q_0 \) as \(t \to \infty \).

Matrix Power: Choose some large enough value \(t \), and create \(M^t \). Then apply \(q_* = (M^t)q_0 \). There are two ways to create \(M^t \), first we can just let \(M^{i+1} = M^i \ast M \), repeating this process \(t-1 \) times. Alternatively, (for simplicity assume \(t \) is a power of 2), then in \(\log_2 t \) steps create \(M^{2i} = M^i \ast M^i \).

State Propagation: Iterate \(q_{i+1} = M \ast q_i \) for some large enough number \(t \) iterations.

Random Walk: Starting with a fixed state \(q_0 = [0,0,\ldots,1,\ldots,0,0]^T \) where there is only a 1 at the \(i \)th entry, and then transition to a new state with only a 1 in the \(j \)th entry by choosing a new location proportional to the values in the \(i \)th column of \(M \). Iterate this some large number \(t_0 \) of steps to get state \(q'_0 \). (This is the burn in period.)

Now make \(t \) new step starting at \(q'_0 \) and record the location after each step. Keep track of how many times you have recorded each location and estimate \(q_* \) as the normalized version (recall \(\|q_*\|_1 = 1 \)) of the vector of these counts.

Eigen-Analysis: Compute \(\text{eig}(M) \) and take the first eigenvector after it has been \(L_1 \)-normalized.

A (40 points): Run each method (with \(t = 1024 \), \(q_0 = [1,0,0,\ldots,0]^T \) and \(t_0 = 100 \) when needed) and report the answers.

B (20 points): Rerun the Matrix Power and State Propagation techniques with \(q_0 = [0.1,0.1,\ldots,0.1]^T \). For what value of \(t \) is required to get as close to the true answer as the older initial state?

C (24 points): Explain at least one Pro and one Con of each approach. The Pro should explain a situation when it is the best option to use. The Con should explain why another approach may be better for some situation.

D (8 points): Is the Markov chain ergodic? Explain why or why not.
E (8 points): Each matrix M row and column represents a node of the graph, label these from 1 to 10 starting from the top and from the left. What nodes can be reached from node 4 in one step, and with what probabilities?

2 BONUS: Taxation (5 points)

Repeat the trials in part 1.A above using taxation $\beta = 0.85$ so at each step, with probability $1 - \beta$, any state jumps to a random node. It is useful to see how the outcome changes with respect to the results from Question 1. Recall that this output is the PageRank vector of the graph represented by M.

Briefly explain (no more than 2 sentences) what you needed to do in order to alter the process in question 1 to apply this taxation.