Asmt 2: Document Similarity and Hashing

Turn in through Canvas by 2:45pm, then come to class:
Wednesday, January 30
100 points

Overview
In this assignment you will explore the use of k-grams, Jaccard distance, min hashing, and LSH in the context of document similarity.
You will use four text documents for this assignment:

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:
http://www.cs.utah.edu/~jeffp/teaching/latex/

1 Creating k-Grams (50 points)
You will construct several types of k-grams for all documents. All documents only have at most 27 characters: all lower case letters and space. Yes, the space counts as a character in character k-grams.

[G1] Construct 2-grams based on characters, for all documents.
[G2] Construct 3-grams based on characters, for all documents.
[G3] Construct 2-grams based on words, for all documents.

Remember, that you should only store each k-gram once, duplicates are ignored.

A: (25 points) How many distinct k-grams are there for each document with each type of k-gram? You should report $4 \times 3 = 12$ different numbers.

B: (25 points) Compute the Jaccard similarity between all pairs of documents for each type of k-gram. You should report $3 \times 6 = 18$ different numbers.

2 Min Hashing (50 points)
We will consider a hash family \mathcal{H} so that any hash function $h \in \mathcal{H}$ maps from $h : \{k$-grams$\} \to [m]$ for m large enough (To be extra cautious, I suggest over $m \geq 10,000$; but should work with smaller m too).

A: (35 points) Using grams G2, build a min-hash signature for document D_1 and D_2 using $t = \{20, 60, 150, 300, 600\}$ hash functions. For each value of t report the approximate Jaccard similarity between the pair of documents D_1 and D_2, estimating the Jaccard similarity:

$$J_{\tilde{S}_t}(a, b) = \frac{1}{t} \sum_{i=1}^{t} \begin{cases} 1 & \text{if } a_i = b_i \\ 0 & \text{if } a_i \neq b_i \end{cases}$$

You should report 5 numbers.
B: (15 points) What seems to be a good value for t? You may run more experiments. Justify your answer in terms of both accuracy and time.

3 Bonus (3 points)

Describe a scheme like Min-Hashing for the Rodgers-Tanimoto, defined $RT(A, B) = \frac{|A \cap B|}{|A \cup B| + |A \Delta B|}$. So given two sets A and B and family of hash functions, then $\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = RT(A, B)$. Note the only randomness is in the choice of hash function h from the set \mathcal{H}, and $h \in \mathcal{H}$ represents the process of choosing a hash function (randomly) from \mathcal{H}. The point of this question is to design this process, and show that it has the required property.

Or show that such a process cannot be done.