Overview

In this assignment you will explore the use of \(k \)-grams, Jaccard distance, min hashing, and LSH in the context of document similarity.

You will use four text documents for this assignment:

As usual, it is highly recommended that you use LaTex for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory: http://www.cs.utah.edu/~jeffp/teaching/latex/

1 Creating \(k \)-Grams (40 points)

You will construct several types of \(k \)-grams for all documents. All documents only have at most 27 characters: all lower case letters and space. Yes, the space counts as a character in character \(k \)-grams.

[G1] Construct 2-grams based on characters, for all documents.
[G2] Construct 3-grams based on characters, for all documents.
[G3] Construct 2-grams based on words, for all documents.

Remember, that you should only store each \(k \)-gram once, duplicates are ignored.

A: (20 points) How many distinct \(k \)-grams are there for each document with each type of \(k \)-gram? You should report \(4 \times 3 = 12 \) different numbers.

B: (20 points) Compute the Jaccard similarity between all pairs of documents for each type of \(k \)-gram. You should report \(3 \times 6 = 18 \) different numbers.

2 Min Hashing (30 points)

We will consider a hash family \(\mathcal{H} \) so that any hash function \(h \in \mathcal{H} \) maps from \(h : \{k\text{-grams}\} \to [m] \) for \(m \) large enough (To be extra cautious, I suggest over \(m \geq 10,000 \)).

A: (25 points) Using grams \(G2 \), build a min-hash signature for document \(D1 \) and \(D2 \) using \(t = \{20, 60, 150, 300, 600\} \) hash functions. For each value of \(t \) report the approximate Jaccard similarity between the pair of documents \(D1 \) and \(D2 \), estimating the Jaccard similarity:

\[
\hat{JS}_t(a, b) = \frac{1}{t} \sum_{i=1}^{t} \left\{ \begin{array}{ll}
1 & \text{if } a_i = b_i \\
0 & \text{if } a_i \neq b_i
\end{array} \right.
\]

You should report 5 numbers.
B: (5 point) What seems to be a good value for \(t \)? You may run more experiments. Justify your answer in terms of both accuracy and time.

3 LSH (30 points)
Consider computing an LSH using \(t = 160 \) hash functions. We want to find all documents pairs which have Jaccard similarity above \(\tau = .4 \).

A: (8 points) Use the trick mentioned in class and the notes to estimate the best values of hash functions \(b \) within each of \(r \) bands to provide the S-curve

\[
f(s) = 1 - (1 - s^b)^r
\]

with good separation at \(\tau \). Report these values.

B: (24 points) Using your choice of \(r \) and \(b \) and \(f(\cdot) \), what is the probability of each pair of the four documents (using \([G2]\)) for being estimated to having similarity greater that \(\tau \)? Report 6 numbers. (Show your work.)

4 Bonus (3 points)
Describe a scheme like Min-Hashing for the Andberg Similarity, defined \(\text{Andb}(A, B) = \frac{|A \cap B|}{|A \cup B| + |A \Delta B|} \). So given two sets \(A \) and \(B \) and family of hash functions, then \(\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = \text{Andb}(A, B) \). Note the only randomness is in the choice of hash function \(h \) from the set \(\mathcal{H} \), and \(h \in \mathcal{H} \) represents the process of choosing a hash function (randomly) from \(\mathcal{H} \). The point of this question is to design this process, and show that it has the required property.

Or show that such a process cannot be done.