Noise in Data

- Spurious Readings (outliers)
- Measurement Error
 - Small full-dimensional noise
- Background Data
 - Missing data

Cross-Validation
- Outliers
- Uncertain Data
- Robust Estimators

Cross-Validation

Algo deals with noise, has a

- Clustering
- PCA + principal components
- Regression
 - Degree polynomial
 - Regularization parameter

\[\text{Error vs. Parameter} \]

\[L_p(A, \alpha) = \| P_y - P_x A \|_2 + \alpha \| A \|_2 \]
\[P_i - M(\alpha) \]

\[\text{M} \in \text{model} \]

\[\text{Err} (P, M) = L_p (M, \alpha) \]

\[M \in \text{model} (P_{\text{train}}, \alpha) = L_p (M, \alpha) \]

\[\text{Learn } \alpha = \arg \min_{\alpha} L_p (M^\alpha, P_{\text{test}}) \]

\[\text{Evaluate } \text{Err} (P_{\text{test}}, M) \]

\[P = [P_x, P_y] \]

\[\text{goal is find lineare regression } \]

\[\text{Ridge Regression} \]

\[L_p (\hat{\alpha}, \alpha) = (|P_y - P_x A|^2 + \alpha A^2) \]

\[\Rightarrow \hat{\alpha} = \left(P_x P_x^T + \alpha^2 I \right)^{-1} P_x P_y \]

\[\text{Goal: Find } \alpha \]

\[\text{minimizes } L_{P_{\text{test}}} (\hat{\alpha}, (P_{\text{train}}, \alpha)) \]

\[L_{P_{\text{test}}} (\ldots ; \alpha) = |P_y_{\text{test}} - P_x \hat{\alpha}| \]

\[\text{C-V} \]

\[\text{0-folds C-V} \]

\[\text{Leave-out one fold C-V} \]

\[\text{Train on all sets of k-1 points} \]

\[\text{Test on kth set} \]
Bootstrapping

- Sample with replacement
- \(T \in n \) items from \(\mathcal{R} \)
- \(M_i \in \text{model}(P_i) \)
- \(\{M_1, M_2, \ldots, M_k\} \)

Outliers

- Find + Remove Approach
- Density-based Approach

1. Build model \(M \) from input \(P \).
2. For all \(p \in P \), call \(r_p = d(M(P), p) \).
3. If \(r_p \) is "too large" it's an outlier.
4. Throw outliers away.

Normal Distribution

- 95% largest 1/50 data points
- \(P(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)
Density-based Approach

Reverse Nearest Neighbor

Heavy-Tail Distributions

Zinfl \(P(i) = c \cdot \left(\frac{1}{i} \right) \)

the 75% of 3.55° and 7.8°