Overview
In this assignment you will explore the use of k-grams, Jaccard distance, min hashing, and LSH in the context of document similarity.

You will use four text documents for this assignment:

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory: http://www.cs.utah.edu/~jeffp/teaching/latex/

1 Creating k-Grams (40 points)
You will construct several types of k-grams for all documents. All documents only have at most 27 characters: all lower case letters and space.

[G1] Construct 2-grams based on characters, for all documents.
[G2] Construct 3-grams based on characters, for all documents.
[G3] Construct 2-grams based on words, for all documents.

Remember, that you should only store each k-gram once, duplicates are ignored.

A: (20 points) How many distinct k-grams are there for each document with each type of k-gram? You should report $4 \times 3 = 12$ different numbers.

B: (20 points) Compute the Jaccard similarity between all pairs of documents for each type of k-gram. You should report $3 \times 6 = 18$ different numbers.

2 Min Hashing (30 points)
We will consider a hash family \mathcal{H} so that any hash function $h \in \mathcal{H}$ maps from $h : \{k$-grams$\} \rightarrow [m]$ for m large enough (To be extra cautious, I suggest over $m \geq 10,000$).
A: (25 points) Using grams $G2$, build a min-hash signature for document $D1$ and $D2$ using $t = \{20, 60, 150, 300, 600\}$ hash functions. For each value of t report the approximate Jaccard similarity between the pair of documents $D1$ and $D2$, estimating the Jaccard similarity:

$$\hat{JS}_t(a, b) = \frac{1}{t} \sum_{i=1}^{t} \begin{cases}
1 & \text{if } a_i = b_i \\
0 & \text{if } a_i \neq b_i.
\end{cases}$$

You should report 5 numbers.

B: (5 points) What seems to be a good value for t? You may run more experiments. Justify your answer in terms of both accuracy and time.

3 LSH (30 points)
Consider computing an LSH using $t = 160$ hash functions. We want to find all documents which have Jaccard similarity above $\tau = 0.4$.

A: (8 points) Use the trick mentioned in class and the notes to estimate the best values of hash functions b within each of r bands to provide the S-curve

$$f(s) = 1 - (1 - s^b)^r$$

with good separation at τ. Report these values.

B: (24 points) Using your choice of r and b and $f(\cdot)$, what is the probability of each pair of the four documents (using $[G2]$) for being estimated to having similarity greater that τ? Report 6 numbers. (Show your work.)

4 Bonus (3 points)
Describe a scheme like Min-Hashing for the S-Dice Similarity, defined S-Dice$(A, B) = \frac{2|A \cap B|}{|A| + |B|}$. So given two sets A and B and family of hash functions, then $Pr_{h \in \mathcal{H}}[h(A) = h(B)] = S$-Dice$(A, B)$. Note the only randomness is in the choice of hash function h from the set \mathcal{H}, and $h \in \mathcal{H}$ represents the process of choosing a hash function (randomly) from \mathcal{H}. The point of this question is to design this process, and show that it has the required property.

Or show that such a process cannot be done.