Homework 2: Convergence and Linear Algebra

Instructions: Your answers are due at the beginning of class on the due date. You can either turn in a paper copy, or a pdf version through canvas. I recommend using latex (http://www.cs.utah.edu/~jeffp/teaching/latex/) for producing the assignment answers. If the answers are too hard to read you will loose points, entire questions may be given a 0 (e.g. sloppy pictures with your phone’s camera are not ok, but very careful ones are)

Please make sure your name appears at the top of the page.

You may discuss the concepts with your classmates, but write up the answers entirely on your own. Be sure to show all the work involved in deriving your answers! If you just give a final answer without explanation, you may not receive credit for that question.

1. [20 points] Consider two random variables \(C \) and \(T \) describing how many coffees and teas I will buy in the coming week; clearly neither can be smaller than 0. Based on personal experience, I know the following summary statistics about my coffee and tea buying habits: \(\mathbb{E}[C] = 3 \) and \(\text{Var}[C] = 1 \) also \(\mathbb{E}[T] = 2 \) and \(\text{Var}[T] = 5 \).

 (a) Use Markov’s Inequality to upper bound the probability I buy 4 or more coffees, and the same for teas: \(\Pr[C \geq 4] \) and \(\Pr[T \geq 4] \).

 (b) Use Chebyshev’s Inequality to upper bound the probability I buy 4 or more coffees, and the same for teas: \(\Pr[C \geq 4] \) and \(\Pr[T \geq 4] \).

2. [30 points] Consider a parked self-driving car that returns \(n \) iid estimates to the distance of a tree. We will model these \(n \) estimates as a set of \(n \) scalar random variables \(X_1, X_2, \ldots, X_n \) taken iid from an unknown pdf \(f \), which we assume models the true distance plus unbiased noise. (The sensor can take many iid estimates in rapid fire fashion.) The sensor is programmed to only return values between 0 and 20 feet, and that the variance of the sensing noise is 64 feet squared. Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \). We want to understand as a function of \(n \) how close \(\bar{X} \) is to \(\mu \), which is the true distance to the car.

 (a) Use Chebyshev’s Inequality to determine a value \(n \) so that \(\Pr[|\bar{X} - \mu| \geq 1] \leq 0.5 \).

 (b) Use Chebyshev’s Inequality to determine a value \(n \) so that \(\Pr[|\bar{X} - \mu| \geq 0.1] \leq 0.1 \).

 (c) Use the Chernoff-Hoeffding bound to determine a value \(n \) so that \(\Pr[|\bar{X} - \mu| \geq 1] \leq 0.5 \).

 (d) Use the Chernoff-Hoeffding bound to determine a value \(n \) so that \(\Pr[|\bar{X} - \mu| \geq 0.1] \leq 0.1 \).

3. [30 points] Consider the following 3 matrices:

\[
A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 5 & 2 \\ -1 & 2 & -3 \\ 4 & 3 & 5 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 1 & 6 \\ -1 & 7 & 2 \\ 3 & 3 & -2 \end{bmatrix}
\]

Report the following:
(a) AB
(b) $B + C$
(c) Which matrices are full rank?
(d) $\|C\|_F$
(e) $\|B\|_2$
(f) C^{-1}

4. **[20 points]** Consider the following 3 vectors in \mathbb{R}^9:

\[
\begin{align*}
\mathbf{v} &= (1, 2, 4, 5, -1, 2, 4, 2, 1) \\
\mathbf{u} &= (-2, 3, -4, 3, 1, -3, -2, 3, 6) \\
\mathbf{w} &= (3, 1, 4, -3, -7, -2, 2, 3, 1)
\end{align*}
\]

Report the following:

(a) $\langle v, w \rangle$
(b) Are any pair of vectors orthogonal, and if so which ones?
(c) $\|u\|_2$
(d) $\|w\|_\infty$