L8 -- SIFT + Near-Neighbor Search
[Jeff Phillips - Utah - Data Mining]

Real Data:
text documents
key words searches
image data

Abstract Data w/ abstract distance:
sets of objects | Jaccard distance
strings | edit distance
SIFT features R^128 | Euclidean distance

What are SIFT features:
 (scale-invariant feature transform)

What is an image:

each [] has rgb-values (lets assume [0,1])

Each [] might have a SIFT feature
- only collect features for extremal points in "scale space"
corners of object in pictures, where color changes abruptly
-determine "scale" sigma at which feature is sharpest

Gradient Histogram:
[1][2][3]
[4][X][5]
[6][7][8]
--> gradient histogram:
something like: [1-X][2-X][3-X][4-X][5-X][6-X][7-X][8-X]
 shows relative change in magnitude

Consider 4x4 grid with scale sigma, vertex at X
for each grid cell i in $[16]$
 compute a gradient histogram (8 bins) H_i
 make it relative to H_X
 something like: $H_i = H_X / H_i$

X has $8 \times 16 = 128$ vector V_X
 normalize so $\|V_X\| = 1$
 if any component is $> .2$, reset to $.2$ and renormalize

Compare distance between $d(V_X, V_Y)$ as Euclidean distance.
Use approximate search to speed things up.

How to find (approximate) near neighbors

Set $P \subset R^d$ \(|P| = n. \ d \text{ is large (e.g. 128) } \)

Query point $q \in R^d$
$p^* = \arg \min_{p \in P} d(p, q)$

Goal: find p in P s.t.
 $\text{dist}(p, q) \leq (1+\eps)\text{dist}(p^*, q)$

centered at q:
 circle C_r radius $r = d(p^*, q)$
 circle C_r, \eps radius $(1+\eps)r$
 annulus $C_r, \eps \setminus C_r = \text{don't care}$

LSH not explicitly designed for ANN. Returns all within r, maybe within $(1+\eps)r$. Where r is fixed.
Can run with progressively larger values of r. But loses some factor. but works ok for very high d (see Andoni code: google "LSH")
kd-tree:
divide space by R^d into two points split in dimension i
 alternate i in $[d]$ in cyclic order
 each step have half remaining points each side

quad-tree:
divide space into 2^d axis-aligned rectangles each round,
 each has at most $n/2$ points (hopefully less)

R-tree:
split points into two covering rectangles each round
 searching in $O(2^d \log n)$

B-tree: (dim = 1)
split points into B sub-intervals each round.
 each "node" stored on one disk block of size B
 hard to implement efficiently for $d>1$

Stop when leaf has CONSTANT > 1 number of points

Now given a query q in R^d:
- find leaf which contains q (find closest point)
- search nearby nodes to see if closer
- don't search sub-trees if **all** further than $(1-\eps)d(p',q)$

* may need to search many subtrees. Runtime $\sim O(2^d \log n)$ or $O(\log^d n)$
* adds overhead to linear scan (IO efficient)
* with $\eps=0$, linear scan cheaper when $d > 5$ or so

Problem w/ high dimensions
- want ball, get cube
 volume ball(d, rad=1) = $\pi^{d/2}/\Gamma(d/2+1)$ radd
 $\sim \pi^{d/2}/((d/2)!)$
 gets small $\rightarrow 0$
 volume cube(d, rad=1) = 2^d
 gets large $\rightarrow \infty$

So with rectilinear search, we get everything in the d-cube, but want everything in d-ball

Approximate methods can go up to maybe $d=8-20$.
Google: "ANN" 3rd hit (which is amazing for the name Ann)
Advanced techniques:
how to choose better split?
 - cluster all data (k-means -> split k ways)
 - project to k-dim, split 2^k ways.
improve greatly if data is intrinsically in lower dimensions.