Many datasets "text documents"
- homework assignments -> detect plagiarism
- webpages (news articles/blog entries) -> index for search (avoid duplicates)
 {same source duplicates, mirrors}
 {financial industry -> company doing good or bad?}
- emails -> place advertising

How do we compare?
 exactly the same is easy (similar is hard)
 -> abstract space
 \(\{R^d, \text{sets}\} \)

Distance: \(d(A,B) := \)
 - small if close
 - large if far
 - 0 if the same
 - in \([0, \infty]\)

Similarity: \(s(A,B) := \)
 - large if close
 - small if far
 - 1 if the same
 - in \([0,1]\)

Often can set \(d(A,B) = 1 - s(A,B) \) in \([0,1]\)

Jaccard Similarity

\(A = \{0,1,2,5,6\} \)
\(B = \{0,2,3,5,7,9\} \)
How similar are \(A,B \)?

\[
JS(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|\{0,2,5\}|}{|\{0,1,2,3,5,6,7,9\}|} = \frac{3}{8}
\]

Add clustering:
\(C_1 = \{0,1,2\}, \ C_2 = \{3,4\}, \ C_3 = \{5,6\}, \ C_4 = \{7,8,9\} \)
similar movies get similar clusters

\(A\text{-clu} = \{C_1,C_3\} \)
\(B\text{-clu} = \{C_1,C_2,C_3,C_4\} \)

\[
JS\text{-clust}(A,B) = JS(A\text{-clu},B\text{-clu}) = \frac{|\{C_1,C_3\}|}{|\{C_1,C_2,C_3,C_4\}|}
\]
How do we apply this to text?

All words in a document? "bag of words" (little context)

Singling:
 a "k-shingle" is a set of k consecutive items in a sequence.
 items = {words, characters}

I am Sam
Sam I am
I do not like green eggs and ham.
I do not like them, Sam I am.

k=1
[I] [am] [Sam] [do] [not] [like] [green] [eggs] [and] [ham] [them]

k=2
[I am] [am Sam] [Sam Sam] [Sam I] [am I] [I do] [do not] [not like] [like green] [green eggs] [eggs and] [and ham] [like them] [them Sam]

Size := O(k + n)
 k-shingle, n words
Space := O(k*n)

I am Sam
Sam I am

k-shingles on characters:

k=3:
[iam] [ams] [msa] [sam] [ami] [mia]

k=4:
[iams] [amsa] [msam] [sams] [sami] [amia] [miam]

How big to make k? characters of words? white space? punctuation? capitalization?

white space: "plane has touch down" "threw a touchdown"
How large should \(k \) be?

* \(k \) should be large enough so probably of (almost all) shingles in any documents in corpus is low.

- emails: \(k = 5 \) (small documents)
- research articles: \(k = 9 \) (large documents)

26 characters + whitespace = 27

27^5 = 14 million possible shingles

really about
20^5 possible shingles since "z,q,x" used rarely

With news articles:

"stop words" : {a you for the to and that it is ...}

\(k = 3 \) where first is a stop word

Jaccard w/ shingles:

\(A: I am Sam. \)
\(B: Sam I am. \)
\(C: I do not like green eggs and ham. \)
\(D: I do not like them, Sam I am. \)

\(k=2, \) words

\([I am] [am Sam] [Sam Sam] [Sam I] [am I] [I do] [do not] [not like] [like
green] [green eggs] [eggs and] [and ham] [like them] [them Sam] \)

\[A = \{[I am] [am Sam]\} \]
\[B = \{[Sam I] [I am]\} \]
\[C = \{[I do] [do not] [not like] [like green] [green eggs] [eggs and] [and ham]\} \]
\[D = \{[I do] [do not] [not like] [like them] [them Sam] [Sam I] [I am]\} \]

\(\text{Jac}(A,B) = 1/3 \)
\(\text{Jac}(A,C) = 0 \)
\(\text{Jac}(A,D) = 1/8 \)
\(\text{Jac}(B,C) = 0 \)
\(\text{Jac}(B,D) = 2/7 \)
\(\text{Jac}(C,D) = 3/11 \)