L25 -- Bloom Filters + Quantiles
[Jeff Phillips - Utah - Data Mining]

Streaming Algorithms

Stream : A = <a1,a2,...,am>
ai in [n] size log n
Compute f(A) in poly(log m, log n) space
 "one pass"

Let f_j = |{a_i in A | a_i = j}|
F_1 = sum_j f_j = m == total count

Bloom Filters

Maintain set S subset [u]
 allow false positives
 no false negatives

Initialize Array B of n bits all 0
have k hash functions {h1, h2, ..., hk} in \H

Put a_i in A in set S:
 for j = 1 to k
 set B[hj(a_i)] := 1

Check if a_i in A in set S:
 for j = 1 to k
 if (B[hj(a_i)] == 0) --> return NO
 return YES

*** No false negatives
*** Some false positives

Analysis:
m bits:
n items

probability a bit not set to 1 by 1 hash function:
 1-1/m

probability bit not set to 1 by k hash functions:
 (1-1/m)^k
on inserting n elements, probability a bit is 0:
\[(1-1/m)^{kn}\] (*)

on inserting n elements, probability a bit is 1:
\[1 - (1-1/m)^{kn}\]

probability of false positive:
\[(1 - (1-1/m)^{kn})^k\]
\[\approx\]
\[(1 - e^{-kn/m})^k\]

[(*)) not quite right, assumes independence of bits being set]

So what is the "right" value of k?
\[k \approx (m/n) \ln 2\]

Quantiles:

Let $[u]$ be an ordered set.
Let A be multiset in $[u]$ size n

Quantile:
Given x in $[u]$
\[-\rightarrow A_x = \{a \in A \mid a \leq x\}\]
\[-\rightarrow |A_x|/n\]

eps-quantile:
for any x in $[u]$
\[-\rightarrow return q(x) s.t.\]
\[|q(x) - |A_x|/n| \leq \eps\]

*** Like a histogram ***

Old best algorithm: Greenwald-Khanna

Maintain set of break points:
\[\{b_1, b_2, \ldots, b_k\}\] such that know approximate
$q(bj)$ for each bj
sometimes insert new points,
occasionally delete old points if too dense

works ok, but very complicated analysis.
\[k = O((1/\eps) \log(\eps n) \log (u))\]

New best algorithm: mergeable summaries

Maintain set S of $k \sim (1/\epsilon)$ points
- $q(x) = |S_x| / k$
- each point "worth" $1/k$

merge two summaries S_1, S_2
- sort S_1 cup S_2
 - size = $2k$
- reduce size, pick all even points or all odd points
 + unbiased
 + size k
- If $k = O((1/\epsilon) \sqrt{\log(1/\epsilon)})$ error does not grow

But what if $|S_1| \neq |S_2|$?
- let $N = 2^s$ for smallest s s.t. $2^s \geq n$

store:
- S as $h = \log(1/\epsilon)$ levels
- level l in $[\log(1/\epsilon)]$
 - level represents $N/(2^l)$ points
 - level $h+1$ is random "buffer" : sample of constant size
- Each level is size $k = O((1/\epsilon) \sqrt{\log(1/\epsilon)})$
 - levels are either empty or full

 on merge, merge equal weight levels.
 + points only "move down" in levels

Size now $k^*h = O((1/\epsilon) \log^{3/2} (1/\epsilon))$

Streaming: each new point is merged into random buffer