MapReduce

Big data $D = \{D_1, D_2, \ldots, D_m\}$
 too big for one machine
each D_i on machine i

[Each machine has limited memory! ... compared to data]

proceeds in rounds (3 parts):
1. Mapper
 all d in D -> $(k(d), v(d))$
2. Shuffle
 moves all (k, v) and (k', v') with $k=k'$ to same machine
3. Reducer
 $\{(k,v_1), (k,v_2), \ldots,\}$ -> output usually $f(v_1,v_2,\ldots)$

1.5: Combiner
 if one machine has multiple $(k,v_1), (k,v_2)$
 then performs part of Reduce before Shuffle.

Can think of output of Reducer as D_i on machine i.
Then can string multiple MR-rounds together.

*** key-value pairs can encode much deeper computing power
 + Mapper $f(D_i)$ -> $\{(k_i,v_i)\}_j$ -> with $(k_i = i, v_i = \text{input to node } i)$
*** Provides very rubout system, many fail-safes if node goes down, gets slow...
*** very simple!

-------- EXAMPLE --------

Histogram into k bins
Mapper d in D -> $(k=\text{bin}(d), 1)$
 (combiner)
Reducer $(k=i, v) -- \text{output} = \text{sum } v$

Page Rank:

Internet stored as big matrix M (size=nxn)
 + sparse, 99%+ of entries are 0
 $([M[a,b] = 0] \Rightarrow \text{no link from page } a \text{ to page } b)$
\[P = \beta M + (1-\beta) B \quad \text{where } B[a,b] = 1/n \]
\[
\beta \approx 0.85
\]

Page-rank vector: \(q_* = P^t q \) as \(t \to \infty \) (here \(t = 50 \) to 75 ok)
"importance of webpage" (other details too, but this is computational hard part)

Problems:
- \(M \) is sparse, but \(B \) (implicit) and \(P^n \) is dense! Too BIG to store
 --> \(q_i \) is \(O(n) \) can always store, so just compute
 \[
 q_{[i+1]} = \beta * M * q_i + (1-\beta) e/n
 \]
 \(t \) times
- Still very big computation. Gigabytes.
 Many machines and machine crash!
 --> MapReduce!

simple: assume \(q \) fits in one machine (twice: e.g. \(q_i \) and \(q_{[i+1]} \))

 --> break \(M \) into vertical stripes
 \[
 M = [M1 \ M2 \ldots \ Mk]
 \]
 (and \(q \) into \(q = [q_1; q_2; \ldots; q_k] \) = horizontal split)
 then
 Mapper \(i \to (key=i' \text{ in } [k] \); val = (row=r of \(M_i \) * \(q_i \)) \)
 Reducer: adds values to get each element \(q[i'] \) * \(\beta \) + \((1-\beta)/n \)

big \(q \): what if \(q \) does not fit in a single machine?

option 1: Tiling.

\(M \) into \(\sqrt{k} \) x \(\sqrt{k} \) blocks
\[
M = [M_{11} \ M_{12} \ldots M_{1\sqrt{k}}; \ M_{21} \ M_{22} \ldots M_{2\sqrt{k}}; \ldots; \ M_{\sqrt{k}1} \ M_{\sqrt{k}2} \ldots M_{\sqrt{k}\sqrt{k}}]
\]

Mapper:
\(k \) machines each get one block \(M_\{i,j\} \)
 and get sent \(q_i \) for \(i \) in \([\sqrt{k}] \)

Reducer:
on each row \(i' \), adds \(M_\{i,j\} \) \(q_i \) to \(q[i'] \)
and does \(q_+[i'] = q[i'] \ast \beta + (1-\beta)/n \)

Problems:
- each \(q_i \) (for \(i \) in \(\sqrt{k} \)) is sent \(\sqrt{k} \) places
- thrashing: on \(M_{i,j} \)
 --> solution: striping -> prefetching
 on \(q_+ \) (each column \(M_{i,j} \) may add to \(q_+[i'] \))
 --> solution: blocking on \(M_{i,j} \) (\(\sqrt{k} \times \sqrt{k} \) blocks)
 read \(M_{i,j} \) once || read,write \(q/q_+ \) \(\sqrt{k} \) times

Example:

\[
M = \begin{bmatrix}
0 & 1/2 & 0 & 0 \\
1/3 & 0 & 1 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0 \\
\end{bmatrix}
\]

stripe:
\[
M1 = \begin{bmatrix}
0; 1/3; 1/3; 1/3 \\
\end{bmatrix}
\]
stored as \((1: (1/3,2) (1/3,3) (1/3,4)) \)
\[
M2 = \begin{bmatrix}
1/2; 0; 0; 1/2 \\
\end{bmatrix}
\]
stored as \((2: (1/2,1) (1/2,4)) \)
\[
M3 = \begin{bmatrix}
0; 1; 0; 0 \\
\end{bmatrix}
\]
stored as \((3: (1,3)) \)
\[
M4 = \begin{bmatrix}
1/3; 1/2; 0 0 \\
\end{bmatrix}
\]
stored as \((4: (1/3,1) (1/2,2)) \)

block:
\[
M11 = \begin{bmatrix}
0 1/2; 1/3 0 \\
\end{bmatrix}
\]
stored as \((1: (1/2,2)) (2: (1/3,1)) \)
\[
M12 = \begin{bmatrix}
0 0; 1 1/2 \\
\end{bmatrix}
\]
stored as \((4: (1,1) (1/2,2)) \)
\[
M21 = \begin{bmatrix}
1/3 0; 1/3 1/2 \\
\end{bmatrix}
\]
stored as \((1: (1/3,3)) (2: (1/3,3) (1/2,4)) \)
\[
M22 = \begin{bmatrix}
0 1/2; 0 0 \\
\end{bmatrix}
\]
stored as \((3: (1/2,4)) \)

Note that some blocks have no effect on some vector elements they are responsible for
 --> \(M22 \) has no effect on \(q_+[3] \).
 --> \(M12 \) has no use for \(q[3] \).
 This is quite common, and can be used to speed up.