Search Engine == inverted index

web page = \{topics, words\} = \{terms\}
index \{terms\} -> <webpages>

Pre-Google:

spider = program that randomly visited webpages
 (it "crawled the web")
 on each page it compiled important "terms"
 and scored how relevant to each "term"

index = ranks webpages for each term
 "magic"
 (fast forward to now, still "magic")

search [____term____]
 -> top 10 webpages

**term spam
 - repeat the work "movie" 1000 times
 - find high-ranked pages, copy entire page into html
 "trick, do in same color as background, and very small"

PageRank:
 IDEA 1:
 pages are only important if **linked to** from other pages

 p1 has \{terms1\}
p1 links to p2
 p2 has \{terms2\}
 p2 gets high score for term t if
 t in terms1 intersect terms2

 --> even better if hyper-text has "t"

Easy for spammer to put terms on his page
Hard for spammer to put terms on page linking to his page
 (Well not that hard: spam farm = many pages w/ \{terms\} linking to page)
IDEA 2: "Random Surfer Model" and how to defeat "spam farms"

Internet is big (directed) graph $G=(V,E)$
- V = webpages
- E = (directed) links from one page to another

random surfer:
- starts at one page
- clicks random link on that page

defines Markov chain (P,q)
where converged-to distribution $q_\ast = P^\ast q$
gives importance $q_\ast[v]$ of page v in V

INDEX (term) = top(k, f(page,term))
- $f(page,term) = MAGIC(q_\ast?page\ast term(page) + \sum \{q_\ast[link-to-page]\ast term(link-to-page)\})$

How to compute q_\ast
** don't compute P^n (why next lecture)
compute $q_1 = P \ast q$
- $q_2 = P \ast q_1$
- ...
- $q_n = P \ast q_{n+1}$

for $n = \text{between 50 and 75}$

Are we done?

Web graph is not ergodic
- may not be connected
- has transient nodes
 (might be cyclic, but that's not as big a deal)

Structure of Web:
- Big SCC = Strongly Connected Component
- IN = in components to SCC
- OUT = out components of SCC (cannot link back to SCC)
- T-OUT = tendrils out of IN
- T-IN = tendrils into OUT
- TUBE = paths from IN to OUT
- DISC = disconnected components
what happens to OUT: all probability accumulates
"spider traps"

Solution:
"taxation" : each random web-surfer has a chance of going to a TOTALLY random page
1-beta = fraction of random restarts (about beta = 0.85)
--> graph totally connected
--> no transient nodes
--> not cyclic

--> no spider traps
--> mixes faster

SPAM FARMS:
spammers control some large number of pages
(how can these pages trick PageRank?)
1: own pages
2: corrupted pages
e.g. "blog comments"

target page
 corrupted pages -> target
 own pages <--> target

 own pages accumulate "taxation moves"
 own pages keep rank of target, goes to own pages, and comes back

HOW DO WE DEFEAT SPAM FARMS?
Search for spam farm structure, and eliminate/black-ball it
- but structure can be changed + modified...

TrustRank:
+ certain pages are more trust-worthy
 YES: wikipedia, .edu .mil .gov pages, main Amazon pages, VERY high
PageRank
 NO: blogs, pages with many comments
 --> high-trust pages get more weight in PageRank (more random restarts?)

Spam Mass:
page has PageRank r, TrustRank t
s = (r-t)/r
IF s small, negative, then NOT Spam
IF s large, then likely Spam