L14 -- Random Projection
[Jeff Phillips - Utah - Data Mining]

Two techniques:
- random projections to subspace (data independent)
- basis selection

P in \mathbb{R}^d and $|P| = n$
goal: $\mu : P \rightarrow \mathbb{R}^k$ ($k \ll d$)
 s.t. $\max_{p, q \in P}$
 $(1-\varepsilon) \|p-q\| \leq \|\mu(p) - \mu(q)\| \leq (1+\varepsilon) \|p-q\|

Idea: randomly project the data to a subspace.

How to get a random vector? ???
1. compute random Gaussian variable x_i in \mathbb{R}^d
2. normalize to $u_i = x_i/\|x_i\|$

Then $\approx \mu(y_i) = \langle p, u_i \rangle$

Lets focus on simpler problem for now:
for one p in P (s.t. $\|p\| = 1$)
 $(1-\varepsilon/2) \|p\|^2 \leq \|\mu(p)\|^2 \leq (1+\varepsilon/2) \|p\|^2$

$sqrt{(1-\varepsilon/2)} > (1-\varepsilon) \text{ and } sqrt{(1+\varepsilon/2)} < (1-\varepsilon)$
pretend just $\varepsilon/2 = \varepsilon ...$

$\|p\|^2 = \sum_{i=1}^d \|p_i\|^2$

But, it has the same problem as homework.
$E[\|\approx \mu(p)\|^2] == ??$
$\|p\|^2 / d \quad <<< \text{too small}$

let $\mu(p) = \approx \mu(p) * d$
now $E[\|\mu(p)\|^2] = \|p\|^2$

Worst case $\|\mu(p)\|^2 - \|p\|^2 \leq (d-1) \|p\|^2 = \Delta_i$
$Var[\|\mu(p)\|^2] = 1$

Can use Chernoff Bound
- expected value $= 0$
- bounded variance [or bounded worst case]

Choose k random directions $\{u_1, u_2, \ldots, u_k\} \quad \text{basis}$
$\mu(p)_i = \langle p, u_i \rangle * sqrt{d/k}$
\(\mu(p) \) in \(\mathbb{R}^k \)

\[||\mu(p)||^2 = \sum_{i=1}^k ||\mu(p)_i||^2 \]

\[E[||\mu(p)||^2 - ||p||^2] = 0 \]
\[E[||\mu(p)_i||^2 - ||p||^2/k] = 0 \]
\[\text{Var}||\mu(p)||^2 \leq ||p|| \]
\[\text{Var}||\mu(p)_i||^2 = ||p||/k \]
\[\text{Var}_i = \text{Var}||\mu_i(p)||^2/||p||^2 = 1/k \]

\[\text{Pr}[| ||\mu(p)||^2 - ||p||^2 | > \epsilon ||p||^2] = \]
\[\text{Pr}[| ||\mu(p)||^2/||p||^2 - 1 | > \epsilon] < \]
\[2 \exp(- \epsilon^2 / 4 \sum_{i=1}^k \text{Var}_i^2) = \]
\[2 \exp(- \epsilon^2 / 4 k (1/k^2)) < \delta' \]

\[k \epsilon^2 /4 = \ln(2/\delta') \]
\[k = (4/\epsilon^2) \ln(2/\delta') \]

Ok, so with \(k = c/\epsilon^2 \log(1/\delta') \), one norm is preserved.

Now think of each \(||p - q|| \) for \(p, q \) in \(P \) a norm that needs preserving

with \(||\mu(p) - \mu(q)|| = ||\mu(p-q)|| \)

since \(\mu \) is linear, then \(\mu(p) - \mu(q) = \mu(p-q) \)

\[\binom{n}{2} < n^2 \] such norms

set \(\delta' = \delta/n^2 \)

then chance that each norm has error is at most \(\delta/n^2 \)

then chance any has norm error is \(\sum_{i=1}^n \delta/n^2 = \delta \)

\[<<<<<< \text{Union Bound} >>>>> \]

So \(k = c/\epsilon^2 \log(n^2/\delta) \)
\[= O((1/\epsilon^2 \log (n/\delta)) \]

Problems:
- not as good as SVD (optimal in some sense)
- does not preserve dimension-structure
- ignores data distribution

Advantages:
+ very easy to implement
+ ignores data distribution (oblivious)
+ can be implemented very fast (only need random {-1,0,+1} matrix)
+ if sparse -> no longer sparse (strangely, this prevents from being faster)

Column sampling

- returns set or t = (1/eps^2) k log k dimensions that is close to best k
 from SVD.

simple
compute w(j) = ||p_j||^2 of each column.
Select column proportional to w(j)
 <<<<<<< just like k-means++ >>>>>>>>
assume that columns picked are j on J and |J| = t

set mu(p)_i = p_j * 1/w(j) * (d/t)
--> mu(P) = Q_t

P = U S V^T = [U_k U_k^#] [S_k 0; 0 S_k^#] [V_k ; V_k^#]
 = U_k S_k V_k^T + U_k^# S_k^# (V_k^#)^T
P_k = U_k S_k V_k^T

-> gives weak approximation, but very easy.
-> can do both rows and columns to get both subspace and "coreset"

||P - mu(P)||_2^2 = sum_{p in P} ||p - mu(p)||_2^2
||P - mu_k(P)||_2^2 = sum_{p in P} ||p - mu_k(p)||_2^2
 where mu_k is the best linear rank-k projection (from SVD)

||P - Q_t||_2^2 <= ||P - P_k||_2^2 + eps ||P||_F^2
and
||P - Q_t||_F^2 <= ||P - P_k||_F^2 + eps ||P||_F^2

Frobenious norm: ||P||_F^2 = sum_{i=1}^n ||p_i||_2^2

Better result:
1. Construct V_k^T --- subspace of the best rank-k approximation
 defines mu_k()
2. Let w'(j) = ||(V_k^T)_j||^2 = sum_{p in P} (<mu_k(p), x_i>)^2
3. Select t = (1/eps^2) k log k columns: J
 mu'(p)_i = p_j * 1/w'(j) * (d/t)
 mu'(P) = Q'_t
Now:
\[\|P - Q_t\|_F^2 \leq \|P - P_k\|_F^2 + \varepsilon \|P - P_k\|_F^2 \]
\[\|P - Q_t\|_F^2 \leq (1+\varepsilon)\|P - P_k\|_F^2 \]

-> gives better approximation
-> takes about as long as SVD_k, but gives better result

\[t = \frac{1}{\varepsilon^2} k \log k \]
(1/\varepsilon^2) comes from Chernoff bound, need to bound error
k \log k comes from Coupon Collector, need to hit each top k component