L11 -- spectral clustering
[Jeff Phillips - Utah - Data Mining]

Graph $G = (E,V)$
$V =$ vertices $\{a,b,c,d,e,f,g,h\}$
$E =$ edges $\{(a,b), (a,c), (a,d), (b,d), (c,d), (c,e), (e,f), (e,g), (f,g), (f,h)\}$

unordered pairs

Draw graph:

```
a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 0 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0
```

adjacency matrix

What are the best 2 clusters of vertices?

Top-Down Clustering:
- find best cut into 2 (or more pieces)
- recur on pieces

Today we'll mainly talk about finding the one best subset S subset V

$Vol(S) =$ # edges with at least one edge in V
$Cut(S,T) =$ # edges with one edge in S, and one in T

normalized cut $NCut(S,T) = \frac{Cut(S,T)}{Vol(S)} + \frac{Cut(S,T)}{Vol(T)}$

goal is to find cut with smallest "normalized cut" (S subset P, $T = P \setminus S$)
- other similar measures that are also good.
- this one gives small edges split + good balance

$S = \{h\} \rightarrow NCut = 1/1 + 1/11 = 1.09$
$S = \{e,f,g,h\} \rightarrow NCut = 2/6 + 2/7 = 0.62$
Graph as Matrix:

adjacency matrix:
A =
 a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 0 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

degree matrix: "diagonal matrix"
D =
 a b c d e f g h
a 3 0 0 0 0 0 0 0
b 0 2 0 0 0 0 0 0
c 0 0 3 0 0 0 0 0
d 0 0 0 3 0 0 0 0
e 0 0 0 0 3 0 0 0
f 0 0 0 0 0 3 0 0
g 0 0 0 0 0 0 2 0
h 0 0 0 0 0 0 0 1

Laplacian matrix:
L = D - A =
 a b c d e f g h
a 3 -1 -1 -1 0 0 0 0
b -1 2 0 -1 0 0 0 0
c -1 0 3 -1 -1 0 0 0
d -1 -1 -1 3 0 0 0 0
e 0 0 -1 0 3 -1 -1 0
f 0 0 0 0 -1 3 -1 -1
g 0 0 0 0 -1 -1 2 0
h 0 0 0 0 0 -1 0 1

Note that each row and column sums up to 0:
- think of D as being flow into a vertex
- and A as the flow out of the vertex
(We'll see other useful concepts like this)

An *eigenvector* of a matrix M, is a vector v s.t.
 Mv = lambda*v,
where lambda is a scalar. lambda is the corresponding "eigenvalue."
usually restrict that $||x|| = 1$

There are several eigenvectors of L (Laplacian): sort by lambda

<table>
<thead>
<tr>
<th>lambda</th>
<th>0.278</th>
<th>1.11</th>
<th>2.31</th>
<th>3.46</th>
<th>4</th>
<th>4.82</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>1/sqrt(8)</td>
<td>-0.36</td>
<td>0.08</td>
<td>0.10</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>-0.42</td>
<td>0.18</td>
<td>-0.64</td>
<td>-0.38</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>-0.20</td>
<td>-0.11</td>
<td>0.61</td>
<td>0.03</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>-0.36</td>
<td>0.08</td>
<td>0.10</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>0.17</td>
<td>-0.37</td>
<td>0.21</td>
<td>-0.54</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>0.36</td>
<td>-0.08</td>
<td>-0.10</td>
<td>-0.28</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>0.31</td>
<td>-0.51</td>
<td>-0.36</td>
<td>0.56</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>1/sqrt(8)</td>
<td>0.50</td>
<td>0.73</td>
<td>0.08</td>
<td>0.11</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

$[V,lambda] = \text{eig}(L)$ in MATLAB or OCTAVE

** Smallest eigenvalue of L (any laplacian) is 0.

** Second Smallest eigenvalue/vector is VERY important.
- it tells us how to cut the graph
- it tells us how "best" to put all vertices on a single line
+ in first eigenvector v_2, those < θ in S, those > θ in T
 S = {a,b,c,d} T = {e,f,g,h}
+ can check all cuts by v_2, use one with best NCut

** Third eigenvector v_3 can be used for 4-way cut
 ++ above 0 v_2, above 0 v_3 S = {h}
 +- above 0 v_2, below 0 v_3 T = {e,f,g}
 +- below 0 v_2, above 0 v_3 U = {a,b,d}
 -- below 0 v_2, above 0 v_3 R = {c}

Tells us how to draw a graph:
 x-axis values along v_2
 y-axis values along v_3
 (scale values by $1/\sqrt{\lambda_i}$)

Or: use first k eigenvectors to embed in R^k. Then run
 - k-means, or
 - other Euclidean clustering algorithms.

** The smaller the eigenvalue, the more important the vector.

** Adjacency matrix does not need to be 0-1. Can fill with similarity value.
 - But good to cut off small values at 0, so matrix is "sparse" makes more efficient.