Data Mining

Jeff M. Phillips

January 8, 2012
Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?
Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?

- What you can recover from data and what you cannot recover.
- Algorithms for how to recover it efficiently.
Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?

- What you can recover from data and what you cannot recover.
- Algorithms for how to recover it efficiently.

- How to think about data analytics.
Outline

Statistical Principals:
 ▶ 1. Understanding random effects

Data and Distances:
 ▶ 2. Similarity (find duplicates and similar items)
 ▶ 3. Clustering (aggregate close items)

Structure in Data:
 ▶ 3. Clustering (aggregate close items)
 ▶ 4. Regression (patterns in data)
 ▶ 5. Anomaly Detection (outliers in data)

Controlling for Noise and Uncertainty:
 ▶ 5. Anomaly Detection (outliers in data)
 ▶ 6. Link Analysis (prominent structure in large graphs)
 ▶ 7. Summaries (concise representation)
Modeling versus Efficiency

Two Intertwined Objectives:

- Model Data Correctly
- Process Data Efficiently
Statistical Principals

What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}

▸ When do items collide?
▸ When do you see all items?
▸ When is the distribution almost uniform?
Statistical Principals

What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}

▶ When do items collide?
▶ When do you see all items?
▶ When is the distribution almost uniform?
Statistical Principals

What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}

- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?
Statistical Principals

What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}

- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?
How to measure similarity between data?
Key idea: data \rightarrow point

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>income</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>joe</td>
<td>25</td>
<td>90K</td>
<td>1.85</td>
</tr>
<tr>
<td>bob</td>
<td>32</td>
<td>45K</td>
<td>1.52</td>
</tr>
<tr>
<td>sue</td>
<td>28</td>
<td>38K</td>
<td>1.61</td>
</tr>
</tbody>
</table>
Similarity

Given a large set of data P. Given new point q, is q in P?

Given a large set of data P. Given new point q, what is closest point in P to q?
Clustering

How to find groups of similar data.

- do we need a representative?
- can groups overlap?
- what is structure of data/distance?
Clustering

How to find groups of similar data.

- do we need a representative?
- can groups overlap?
- what is structure of data/distance?

- **Hierarchical clustering**: When to combine groups?
- **k-means clustering**: k-median, k-center, k-means++
- **Graph clustering**: modularity, spectral
- **Meta clustering**: which clusterings are good, close?
Regression

Consider a data set $P \in \mathbb{R}^d$, where d is BIG! Want to find representation of P in some \mathbb{R}^k

$\mu(P) \rightarrow Q \in \mathbb{R}^k$ so $\|p_i - p_j\| \approx \|q_i - q_j\|$

$Q \in \mathbb{R}^k$ should capture most data in P
Regression

Consider a data set $P \in \mathbb{R}^d$, where d is BIG!
Want to find representation of P in some \mathbb{R}^k

$\mu(P) \rightarrow Q \in \mathbb{R}^k$ so $\|p_i - p_j\| \approx \|q_i - q_j\|$

$Q \in \mathbb{R}^k$ should capture most data in P

- **L$_2$ Regression + PCA**: Common easy approach
- **Multidimensional Scaling**: Fits in \mathbb{R}^k with k small
- **Random Projections**: Faster and easier (different bounds)
- **L$_1$ Regression**: “Better”, Orthogonal Matching Pursuit
- **Special Topic**: Compressed Sensing
Anomaly Detection

What to do when data is noisy?

- **Identify it**: Find and remove outliers
- **Model it**: It may be real, affect answer
- **Embrace it**: Differential privacy *(special topic)*
- **Deal with it**: Scan Statistics
Link Analysis

How does Google Search work?
Converts webpage links into directed graph.

- **Markov Chains**: Models movement in a graph
- **PageRank**: How to convert graph into important nodes
- **MapReduce**: How to scale up PageRank
- **Communities**: Other important nodes in graphs
Summaries

Reducing massive data to small space. Want to retain as much as possible (not specific structure) error guarantees

- **OnePass Sampling**: Reservoir Sampling
- **Density Approximation**: Quantiles
- **MinCount Hash**: Sketching data, → abstract features
- **Spanners**: graph approximations
- [...] : ... on request ...
Themes

What are course goals?

▶ Intuition for data analytics
▶ How to model data
▶ How to process data efficiently
Themes

What are course goals?
▶ Intuition for data analytics
▶ How to model data
▶ How to process data efficiently

Work Plan:
▶ 2-3 weeks each topic.
 ▶ Overview classic techniques
 ▶ Focus on modeling / efficiency tradeoff
 ▶ Special topics
 ▶ Short homework for each (analysis + with data)
▶ Course Project (1/2 grade).
 ▶ Focus on specific data set
 ▶ Deep exploration with technique
 ▶ Ongoing refinement of presentation + approach
Data Group

Data Group Meeting
Thursdays @ 11:25am-12:25pm in FLUX Conference Room

http://datagroup.cs.utah.edu/dbgroup.php