MCMD L8.5 : Streaming | Count Min Sketch

Streaming Algorithms

Stream : A = \langle a_1, a_2, ..., a_m \rangle
 ai in [n] size log n
Compute f(A) in poly(log m, log n) space

Let f_j = |\{a_i in A | a_i = j\}|

F_1 = sum_j f_j = m == total count
F_2 = sqrt{sum_j f_j^2} == RMS count

Goal:

eps-FREQUENCY-ESTIMATION: Build data structure S.
For any j in [n], hat{f}_j = S(j) s.t.
 \[f_j - eps*F_1 \leq hat{f}_j \leq f_j \]
 MG
 \[f_j \leq hat{f}_j \leq f_j + eps F_1 \]
 CMS (today)
 \[|f_j - hat{f}_j| \leq eps F_2 \]
 CS (maybe)

aka eps-approximate phi-HEAVY-HITTERS:
 Return all f_j s.t. f_j > phi
 Return no f_j s.t. f_j < phi - eps*m

Count-Min Sketch [Cormode + Muthukrishnan '05]

t independent hash functions \{h_1, \ldots, h_t\}
each h_i : [n] \rightarrow [k]

2-d array of counters:
 h_1 -> [C_{1,1}] [C_{1,2}] ... [C_{1,k}]
 h_2 -> [C_{2,1}] [C_{2,2}] ... [C_{2,k}]

 h_t -> [C_{t,1}] [C_{t,2}] ... [C_{t,k}]

for each a \in A -> increment C_{i, h_i(a)} for i in [t].

hat{f}_a = min_{i in [t]} C_{i, h_i(a)}

Set t = log(1/delta)
Set k = 2/eps
How to implement \(h : \mathbb{R} \rightarrow [m] \)?

\[h_a \text{ in } H. \text{ Let } a \text{ be a large real number: say } a = \text{Unif}(0,1) \ast 10000 \]

Define \(h_a(x) = \text{floor}(m \ast \text{frac-part}(x \ast a)) \)

\(\text{frac-part}(15.324) = 0.234 \)

\(\text{floor}(15.324) = 15 \)

Clearly \(f_a \leq \hat{f}_a \)

\(\hat{f}_a \leq f_a + W. \) What is \(W \)?

One hash function \(h_i \).

Add to \(W \) when there is a collision \(h_i(a) = h_i(j) \). \(\text{wp } 1/k \)

Random variable \(Y_{i,j} \)

\(Y_{i,j} = \{ f_j \text{ wp } 1/k, 0 \text{ wp } 1-1/k \} \)

\(E[Y_{i,j}] = f_j/k \)

Random variable \(X_i = \sum_{j \in [n], j \neq a} Y_{i,j} \)

\(E[X_i] = \sum_j f_j/k = F_1/k = \epsilon * F_1/2 \)

Markov Inequality

\(X \) a rv and \(a > 0 \)

\[\Pr[|X| \geq a] \leq E[|X|]/a \]

\(X_i > 0 \) so \(|X_i| = X_i \)

Setting \(a = \epsilon F_1 \) then

\[E[|X_i|]/a = (\epsilon F_1/2)/(\epsilon F_1) = 1/2 \]

\[\Pr[X_i \geq \epsilon F_1] \leq 1/2 \]

Now for \(t \) *independent* hash functions:

\[\Pr[\hat{f}_a - f_a \geq \epsilon F_1] \]

\[= \Pr[\min_i X_i \geq \epsilon F_1] \]

\[= \Pr[\forall i \in [t] \ (X_i \geq \epsilon F_1)] \]

\[= \prod_i \Pr[X_i \geq \epsilon F_1] \]

\[\leq 1/2^t \]

\[= \delta \text{ (since } t = \log(1/\delta) \) \]
Hence:
\[f_a \leq \hat{f}_a \leq f_a + \varepsilon F_1 \]
- first inequality always holds
- second inequality holds \(\wp > 1 - \delta \)

Space:
each of \(k t \) counters requires \(\log m \) space
\(O(k t \log m) \)
Store \(t \) hash functions: \(\log n \) each
\(O((k \log m + \log n)^t) = O((1/\varepsilon) \log m + \log n) \log (1/\delta) \)

turnstile model: add or subtract (as long as is there)

--
Count Sketch:
t independent hash functions \(\{h_1, \ldots, h_t\} \)
each \(h_i : [n] \rightarrow [k] \)
t independent secondary hash functions \(\{g_1, \ldots, g_t\} \)
each \(g_i : [n] \rightarrow \{-1, +1\} \)
2-d array of counters:
\[h_1 \rightarrow [C_{1,1}] \ [C_{1,2}] \ldots \ [C_{1,k}] \]
\[h_2 \rightarrow [C_{2,1}] \ [C_{2,2}] \ldots \ [C_{2,k}] \]
\[\ldots \ \ldots \ \ldots \]
\[h_t \rightarrow [C_{t,1}] \ [C_{t,2}] \ldots \ [C_{t,k}] \]
for each \(a \in A \rightarrow \) adds \(g_i(a) \) to \(C_{i,h_i(a)} \) for \(i \) in \([t] \).
\[\hat{f}_a = \text{median}_{i \in [t]} C_{i,h_i(a)} \]
Set \(t = 2 \log(1/\delta) \)
Set \(k = 4/\varepsilon^2 \)

One hash function pair \(h_i, g_i \).
\[E[\hat{f}_a] = g_i(a) f_a \]
random variable: \(Y_{i,j} \) expected error caused by \(f_j \) on \(\hat{f}_a \)
\[Y_{i,j} = \{ f_j \text{ wp } 1/2k, -f_j \text{ wp } 1/2k, 0 \text{ wp } 1-1/k \} \]

random variable : \(X_i \) expected error of \(\hat{f}_a \)

\[X_i = \sum_j Y_{i,j} \]

\[E[X_i] = 0 \]

\(Y_{i,j} \) pairwise independent, so

\[\text{Var}[X] = \sum_j \text{Var}[Y_{i,j}] \]

\[\text{Var}[Y_{i,j}] = E[Y_{i,j}^2] - E[Y_{i,j}]^2 \]

\[E[Y_{i,j}^2] = f_j^2 / k \]

\[\text{Var}[X_i] = \sum_j f_j^2 / k \leq F_2^2 / k. \]

Chebyshev's Inequality:

\[X \text{ a rv and } b>0 \]

\[\Pr[|X-E[X]| \geq b] \leq \frac{\text{Var}(X)}{b^2} \]

using \(b = \varepsilon F_2 \)

\[\Pr[|X_i| \geq \varepsilon F_2] \leq \frac{F_2^2 / k}{(\varepsilon F_2)^2} = \frac{1}{k \varepsilon^2} \leq 1/4 \]

\[\text{since } k = 4 / \varepsilon^2 \]

--

\(t \) *independent* hash function pairs:

Recall: \(\hat{f}_a = \text{median}_i \{(f_a + X_i)/g_i(a)\} \)

\[\Pr[|f_a - \hat{f}_a| < \varepsilon F_2] \]

\[= \Pr[\text{median}_i X_i > \varepsilon F_2] \]

\[\leq 2 \Pr[t/2 \{i \in [t]\} (X_i \geq \varepsilon F_2)] \]

\[\leq 2 \prod_{i \in [t/2]} \Pr[X_i \geq \varepsilon F_2] \]

\[\leq 2 \cdot 1/4^{t/2} \]

\[\leq \delta \] (since \(t = 2 \log(1/\delta) \))

Space:

\(\text{each of } k*t \text{ counters requires } \log m \text{ space} \)

\(O(k*t \log m) \)

Store \(t \) hash function pairs: \(\log n \) each

\(O((k \log m + \log n)*t) \)
= O((1/\eps^2) \log m + \log n) \log (1/\delta))

--
--
CMS: \eps F_1 error
 space O((1/\eps) \log m + \log n) \log (1/\delta))
CS: \eps F_2 error
 space O((1/\eps^2) \log m + \log n) \log (1/\delta))

F_2 < F_1 (generally), but 1/\eps << 1/\eps^2
CMS very practical because of only (1/\eps) term.