MCMD L8 : Streaming | Heavy Hitters = Approximate Counts

Streaming Algorithms

Stream : A = ⟨a₁,a₂,...,aₘ⟩
ai in [n] size log n
Compute f(A) in poly(log m, log n) space

Let fⱼ = |{aᵢ in A | aᵢ = j}|

MAJORITY: if some fⱼ > m/2, output j
else, output NULL

one-pass requires Ω(min{m,n}) space

Simpler:
FP-MAJORITY: if some fⱼ > m/2, output j
else, output anything

How good w/ O(log m + log n) (one counter c + one location l)?

...#

c = 0, l = X
for (aᵢ \in A)
 if (aᵢ = l) c += 1
 else c -= 1
 if (c <= 0) c = 1, l = aᵢ
return l

Analysis: if fⱼ > m/2, then
 if (l != j) then c decremented at most < m/2 times, but c > m/2
 if (l == j) can be decremented < m/2, but is incremented > m/2
if fⱼ < m/2 for all j, then any answer ok.

----- another view of analysis ------

Let fⱼ > m/2, and k = m - fⱼ.
After s steps, let gₛ = unseen elements of index j
 let kₛ = unseen elements != index j
 let cₛ = c if l!=j, and -c if l==j
Claim: gₛ > c+kₛ
 base case (s=0, or even s=1) easily true.
Inductively 4 cases:
\(a_i = l = j : (g_s \text{ decremented, } c \text{ decremented}) \)
\(a_i = l != j: (c \text{ incremented, } k_s \text{ decremented}) \)
\(a_i != l != j: (c \text{ decremented, } k_s \text{ decremented}) \)
\(a_i != l = j : (k_s \text{ decremented, maybe } c \text{ incremented}) \)

Since at the end \(g_s = k_s = 0 \), then
\[
0 > c + 0, \text{ implies } c < 0, \text{ and } l==j.
\]

FREQUENT: for \(k \), output the set \(\{j : f_j > m/k\} \)
also hard.

k-FREQUENCY-ESTIMATION: Build data structure \(S \).
For any \(j \) in \([n]\), \(\hat{f}_j = S(j) \) s.t.
\[
f_j - m/k <= \hat{f}_j <= f_j
\]
aka eps-approximate phi-HEAVY-HITTERS:
\[
\text{Return all } f_j \text{ s.t. } f_j > \phi \\
\text{Return no } f_j \text{ s.t. } f_j < \phi - \epsilon \cdot m \\
\text{(any } f_j \text{ s.t. } \phi - \epsilon \cdot m < f_j < \phi \text{ is ok)}
\]

Misra-Gries Algorithm [Misra-Gries '82]

Solves k-FREQUENCY-ESTIMATION in \(O(k(\log m + \log n)) \) space.

Let \(C \) be array of \(k \) counters \(C[1], C[2], \ldots, C[k] \)
Let \(L \) be array of \(k \) locations \(L[1], L[2], \ldots, L[k] \)

Set all \(C = 0 \)
Set all \(L = X \)

for (\(a_i \) in \(A \))
 if (\(a_i \) in \(L \)) <at index \(j >
 \[C[j] += 1 \]
 else <\(a_i \) !in \(L >
 if (|L| < k)
 \[C[j] = 1 \]
 \[L[j] = a_i \]
 else
 \[C[j] -= 1 \text{ forall } j \in [k] \]
 for (\(j \) in \([k] \))
 if (\(C[j] <= 0 \)) set \(L[j] = X \)
On query q in [n]
 if (q in L {L[j]=q}) return \(\hat{f}_q = C[j] \)
 else return \(\hat{f}_q = 0 \)

Analysis

A counter \(C[j] \) representing \(L[j] = q \) is only incremented if \(a_i = q \)

\(\hat{f}_q \leq f_q \)

If a counter \(C[j] \) representing \(L[j] = q \) is decremented, then \(k-1 \) other counters are also decremented.
This happens at most \(\frac{m}{k} \) times.
A counter \(C[j] \) representing \(L[j] = q \) is decremented at most \(\frac{m}{k} \) times.

\(f_q - \frac{m}{k} \leq \hat{f}_q \)

How do we get an additive \(\epsilon \)-approximate FREQUENCY-ESTIMATION ?
i.e. return \(\hat{f}_q \) s.t.
\(|f_q - \hat{f}_q| \leq \epsilon m \)

Set \(k = \frac{2}{\epsilon} \), return \(C[j] + \frac{(m/k)}{2} \)

Space \(O((1/\epsilon) \log m + \log n) \)

Also:
\(\epsilon \)-approximate \(\phi \)-HEAVY-HITTERS for any \(\phi > m \epsilon \) in
space \(O((1/\epsilon) \log m + \log n) \)

Can solve \(k \)-FREQUENT optimally in two passes w/ \(O(k \log n + \log m) \) space.
Run M-G algorithm w/ \(k \) counters.
For each stored location, make second pass and count exactly.