MCMD L5: I/O-Cache Oblivious + Parallel

Disk <---I/O---> RAM <--> CPU
N = size of problem
B = block size
M = size of memory
T = size of output
I/O = block move between disk + memory

Sorting N items:
Theta((N/B) log_{M/B} (N/B)) << N log_2 N

Cache-Oblivious Algorithms
[Frigo, Leiserson, Prokop, Ramachandran '99]

- design algorithms with good I/O efficiency without knowledge of M, B
- sometimes don't know M,B
- portable. Same code to different systems
- holds for all levels of hierarchy simultaneously
- does not work as well in practice.

Modeling assumptions
* Ideal Cache: cache always flushes the block that will be used furthest in future
 - LRU performs within constant factor
* Full Associativity: any block can go anywhere in cache (not always true - maybe 8 places)
 - can be gotten around using hashing, in expectation, with constant overhead
* Tall Cache: M > B^2 (usually M > B^{1+a} for a > 0 constant ok).

Scanning:
[N/B + 1] I/Os
- store elements in consecutive blocks of memory.
 ... | XXX [X | XXXX | XXXX | XXXX | XX] XX | ...
- Extra 1 because may not hit boundary exactly.

Array reversal?
[N/B + 1] I/Os (two scans from opposite ends)

Divide and Conquer:
Divide into subproblems until size is <M (and Theta(M)) or <B (and Theta(B))
Median Finding:
(A) Split D into N/5 sets of size 5 (adjacent)
(B) Find median of each set -> M
(C) Recursively compute median of M -> m
(D) Split D into L (l \in L < m) and R (r \in R >= m)
(E) Recur on L or R.

A : free
B : 2 scans | first on D, second records median to M
C : recursive call of size N/5
D : 3 scans | first on D, second and third records L and R
E : recursive call of size N(7/10)

T(N) = O(N/B + 1) + T(N/5) + T(7N/10) = O(N/B + 1)

Binary Search:
\(\Theta(\log N - \log B)\)
- recall if we know M,B then \(\Theta(\log N/\log B) = \Theta(\log_B N)\)

Merge Sort:
\(O((N/B) \log_2 (N/B))\)
- recall if we know M,B then \(\Theta((N/B) \log_{M/B} (N/B))\)
- same can be achieved with variation of Quick Sort == Distribution Sort
 or with "Funnel Sort" -- similar to merge sort but split \(N^{1/3}\) pieces
 and merge \(N^{1/3}\) way with a "funnel"

Parallel External Memory

P1 - \([M]\) \| \| \[D \]
P2 - \([M]\) \|I| \[I \]
P3 - \([M]\) \|/| \[S \]
... \|O| \[K \]
Pp - \([M]\) \| \| \[

- P CPUs.
- each CPU has private cache of size M
- block of size B
- P block transfers == 1 I/O (one for each CPU)
- Block level CREW

Scanning
\[\text{scan}_P(N) = O(N/PB + \log P) \text{ parallel I/Os} \]
if \(P \leq N/(B \log N) \) --> \(\text{scan}_P(N) = O(N/BP) \)

Sorting
\[\text{sort}_P(N) = O((N/PB) \log_{M/B} (N/B)) \text{ parallel I/Os} \]
if \(P \leq N/B^2 \)

Parallel Disk Model (PDM) for External Memory

\[
\begin{array}{c}
| \ | \ - d1 \\
|I| \ - d2 \\
P - [M] - |/| - d3 \\
|O| \ \\
| \ | - dD \\
\end{array}
\]

\(M < N, \ 1 \leq DB \leq M/2 \) (often \(M^2 \))

Assume transfers are synchronous, although faster otherwise.

[Vitter + Schriver '94]

sometimes ...
\[
\begin{array}{c}
p1 - [M1] - | \ | - d1 \\
p2 - [M2] - |I| - d2 \\
p3 - [M3] - |/| - d3 \\
... \ |O| \ \\
pP - [MP] - | \ | - dD \\
\end{array}
\]

Scanning: \(\Theta(N/DB) \)
Sorting: \(\Theta((N/DB) \log_{M/B} (N/B)) \)
Search: \(\Theta(\log_{DB} N) \)

Striping:
\[
... \ | 111 \ | 222 \ | 333 \ | 444 \ | 555 \ | 666 \ | 777 \ | 888 \ | 999 \ | ... \\
---> \\
D1 \ ... \ | 111 \ | 444 \ | 777 \ | ... \\
D2 \ ... \ | 222 \ | 555 \ | 888 \ | ... \\
D3 \ ... \ | 333 \ | 666 \ | 999 \ | ...
\]

Usually extending regular EM algorithms to striped discs is sufficient - a few new ideas needed...
How to stripe a single-disk queue?

TPIE : Templated Portable I/O Environment
(formerly, Transparent Parallel I/O Environment)
http://www.madalgo.au.dk/Trac-tpie

What do you think?
- How useful is it?
- How would you change/extend the model?