MCMD L3: Basic I/O data structures + sorting

Disk --I/O--> RAM --CPU
N = size of problem
B = block size
M = size of memory
T = size of output
I/O = block move between disk + memory

Basic Data structures:

Stack: FILO
<> [] [....]
Maintain push/pop blocks in RAM

Queue: FIFO
push -> [] [....] [] -> pop
Maintain push and pop blocks in RAM
O(N/B) push/pop operations

Sorting:

< M/B sorted lists (queues) merged in O(N/B) I/Os

[....] [] -> []
[....] [] -> []
... -> [] [....]
[....] [] -> []

Unsorted list (queue) distributed w/ < M/B splits in O(N/B) I/Os

| | [] [....]
[.....] [] -> | | [] [....]
| | [] [....]
| | [] [....]

Merge Sort: <how to do it?>
- create N/M (size M) sorted lists
- merge list together O(M/B) at a time
 <number>

[... ...] 1
[M][M][M] [M][M] N/M (sorted v)
Do you use Merge sort in internal memory?
- *quick*, heap, bucket?

Selection

Find median in $O(N/B)$ time.
http://www.ics.uci.edu/~eppstein/161/960130.html

Median(D,k=N/2)
Input: Data set D, size N.
(1) Partition D into sets of size 5. Find median of each -> M size N/5.
(2) $m = \text{Median}(M, |M|/2)$
(3) L items l in D w/ $l < m$
 R items r in D w/ $r < m$
(4) - if $|L| = N/2-1$ return m
 - if $|L| > N/2$ return Median(L, k)
 - else return Median($R, k-|L|-1$)

What is runtime $T(N)$?
- Step (1)+(3) in $O(N/B)$ I/Os
- Step (2) in time $T(N/5)$
- Step (4) in time at most $T(N(7/10))$

$T(N) = O(N/B) + T(N/5) + T(N(7/10)) = ???$
 = $O(N/B)$ I/Os

[Generalizes to any k]

Quick Sort ("Distribution Sort")

(1) Compute Theta(M/B) splitting elements
 $O(M/B) * O(N/B) = O(MN/B^2)$
(2) Compute $O(M/B)$ unsorted lists of equal size
(3) Recur on each list
 $T(N) = O(N/B * (M/B)) + (M/B) T(NB/M)$
 = $O(???)$
= O((M/B) * N/B \log_{(M/B)} (N/B))

Extra (M/B) term -- Any ideas?
A: Find \sqrt{M/B} elements in O(N/B) I/Os
 - partitions lists into size at most (3/2) N/\sqrt{M/B}
 \quad O((N/B) \log_{\sqrt{M/B}} (N/M)) = O((N/B) \log_{M/B} (N/B))

Sorting Lower Bound:
 \Omega((N/B) \log_{M/B} (N/B))

even stronger, permuting takes \Omega((N/B) \log_{M/B} (N/B)).
Takes \Theta(N) in internal memory.