MCMD L18 : MapReduce | filtering for MST

MapReduce

D = Massive Data

Mapper(D): d in D -> {(key, value)}

Shuffle({(key, value)}) -> group by "key"

Reducer {{"key, value_i}} -> ("key, f(value_i))

Can repeat, constant # of rounds

MRC Model:
N = size of data
O(N^{1-eps}) memory on single machine (eps>0 constant)
so can't fit all on one machine
at most N^{1-eps} machines total
Shuffle = O(N^{2-2eps})
so can't shuffle more data than memory
Constant # rounds

"Filtering" idea:
consider subproblems -> drop many data points
recur until fits in memory, solve in-core

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

Given graph G=(V,E)
Assume |V|=n and |E| = m = n^{1+c}
typical large graphs have c in [0.08, 0.5]
size of input is N = O(n^{1+c})

Find MST: (minimum spanning tree)
<MSF = minimum spanning forest, may not be connected>

each machine has memory M = 2 * n^{1+eps} = O(N^{1-gamma})
for 0 < eps < c and gamma > 0
(otherwise |G| <= M)
P = Theta(n^{c-eps}) so data just fits on machines
Map:
Partition E -> \{E1, E2, ... Ek\}
so E_i = \Theta(M)
\(k = 2(|E|/M)\)
(each edge e a random number \(i\) in \([k]\)) -> (i, e)

Reduce:
compute MSF(V, E_i) -> (V, E_i')
\(E' = \text{Union}_i E_i'\)

If |E'| < M, solve on 1 machine
else : repeat M+R

Proof:
3 parts (A) gives correct MST
(B) finishes in constant number of rounds
(C) no node has more than 2 * \(n^{1+\epsilon}\) wp.

(A) Correctness:
Each edge thrown out was part of cycle, and was longer than all other edges.
-> not in MST
-> no edges in full MST thrown out.

(B): Constant number of rounds:
Each round decreases the size by a factor about \(n^{\epsilon}\).
\(m_1 = |E'| \leq k(n-1) = O(n^{1+c-\epsilon})\)
\(m_r = m_{r-1} / n^\epsilon\)
-> requires \(c/\epsilon\) iterations

Another view: If \(n^{1+c} = N\), and \(n^{1+\epsilon} = M\),
then requires \(R = \log_M N\) rounds.

R = \(\log_M N\) seems to be the goal in the number of rounds needed for hard problems...

(C) no Memory overflow:
Lemma. No machine has \(|E_i| > M = 2 * n^{1+\epsilon}\) wp > 1/2
(follows from Markov bound)

++++++++++++++++++++++++++++
Chernoff Inequality
Let \(\{X_1, X_2, \ldots, X_r\} \) be independent RVs
Let \(\Delta_i = \max(X_i) - \min(X_i) \)
Let \(S = \sum_i X_i \)

\[
\Pr\left[|S - \sum_i E[X_i]| > \alpha \right] < 2 \exp(-2 \alpha^2 / \sum_i (\Delta_i)^2)
\]

often: \(\Delta = \max_i \Delta_i \) then:
\[
\Pr\left[|S - \sum_i E[X_i]| > \alpha \right] < 2 \exp(-2 \alpha^2 / r \Delta^2)
\]

Let \(X_i \) represent edge \(i \) is in node \(j \)
\(\Delta_i = 1-0 = 1; \Delta = 1 \)
\(S = \) number of edges on node \(j \)
\(\sum_i E[X_i] = n^{1+\epsilon} \)
Let \(\alpha = n^{1+\epsilon} \)
\[
\Pr\left[S > 2 \times n^{1+\epsilon} \right] \leq \Pr\left[|S - n^{1+\epsilon}| > n^{1+\epsilon} \right] < 2 \exp\left(-2 \left(n^{1+\epsilon}\right)^2 / n^{1+c}(1)^2\right) \leq 2 \exp(-2 n^{1+2\epsilon-c}) \]
let \(\beta = 1+\epsilon-c \) be a constant, \(\beta > 0 \)

with high probability (whp) (probability \(\leq e^{-\text{poly}(n)} \)):
any node \(j \) has fewer than \(2 \times n^{1+\epsilon} \) edges
to show for all \(k = n^{1+\epsilon} \) nodes, we need to use union bound:
no node has probability greater than \(e^{-(\beta+\epsilon)/\log(n^{1+\epsilon})} > n^{\beta} \)
easy to show that \(n^{\beta+\epsilon}/\log(n^{1+\epsilon}) > n^{\beta} \)
all nodes \(j \) has fewer than \(2 \times n^{1+\epsilon} \) edge whp

Also solves # connected components
Or assign component id to each vertex

Also w/ "filtering"
- maximal matchings
- approximate maximal weighted matchings
- minimum cut