MapReduce

N = Massive Data

Mapper(N) -> { (key, value) }

Shuffle({(key, value)}) -> group by "key"

Reducer ("key, value_i) -> ("key, f(value_i))

Can repeat, constant # of rounds

Today: Simulate EREW PRAM in MR
 Simulate CRCW PRAM in MR
 Simulate BSP in MR
 + algorithms...

MUD (Feldman, Muthukrishnan, Sidiropoulos, Stein, Svitkina 2008)

Reducer size M = O(\log^c N)

Linear sketch streaming algorithms can be simulated in MR

Karloff, Suri, Vassilvistskii 2010

For some small constant \(\epsilon > 0 \) (e.g. 1/4)

Reducer Size = M = \(O(N^{1-\epsilon}) \)
P = \(O(N^{2-\epsilon}) \)
Simulate EREW PRAM with MR
in MR P = \(O(N^{1-\epsilon}) \)
R = \(O(\log^c N) \) = rounds

N = 1 billion
\log_2(N) \sim 30
(\log_2(N))^3 \sim 27,00
(\log_2(N))^4 \sim 810,000
(\log_2(N))^6 \sim 729 million
MST in MR

Minimum spanning tree of graph \(G=(V,E) \)
work with \(E=O(V^2) \)

- Partition \(V \) into sets \(\{V_i\} \) s.t. \(|V_i|=N/k\)
- on each pair \(V_i \cup V_j \),
 consider all edges \((v1,v2)=e\) in \(E \) s.t. \(v1,v2 \in V_i \cup V_j \)
- Return MSF on each \(V_i \cup V_j \), discard other edges.

"filter" (preview)

Goodrich, (Sitchinava, Zhang) 2011

Simulate CRCR PRAM and BSP with MR

\(R = \) # rounds

\(n_{\{r,i\}} \) size I/O of mapper/reducer \(i \) in round \(r \)

\(C_r = \sum_i n_{\{r,i\}} \)

\(C = \sum_{r=0}^{R-1} C_r \) == communication complexity

\(t_r = \) internal running time for round \(r \)
 \(\geq \max_i \{n_{\{r,i\}}\} \)

\(t = \sum_{r=0}^{R-1} t_r \)
 == total running time

\(L = \) latency of shuffle (number of steps mapper or reducer waits for shuffle)

\(B = \) bandwidth of shuffle network
 # elements delivered in unit of time (like block in I/O)

Total time \(T = \Omega(t + RL + C/B) \)

word count has \((R=1, C=\Theta(n), t=\Theta(n)) \)
"the" occurs 7\% of time = \(\Theta(n) \)

\(M = \) I/O buffer memory size: require \(n_{\{r,i\}} \leq M \)

If need to roughly fill memory each round, then:
\(T = \Omega(R(M+L) + C/B) \)
rounds + work in PRAM

Let $M = \Theta(n^{\epsilon})$ for $\epsilon > 0$
then algorithms can run in $O(\log_M N) = 1/\epsilon$ rounds, a constant!

Any BSP algorithm in R super-steps, with memory size of N and $P \leq N$
processors
\rightarrow simulated in MR in R rounds with $C = O(RN)$ with $M = O(N/P)$

Any CRCW PRAM (including sum on concurrent write)
with T steps w/ P processors, memory size N
\rightarrow simulated in MR in $R = O(T \log_M P)$ rounds
$C = O(T(N+P)\log_M(N+P))$ comm.complex.

Key idea: think of computation in the (dynamic) DAG model.
... edges defined based on data.

Prefix sum in $2 \log_M N$ rounds with $N \log_M N$ communication
each element has (a_i, i) $a_i=value$, $i=order$
return $(i, \text{sum}_{j=1}^i a_i)$

Just like PRAM/BSP algorithm, but with M-way split tree
stage 1 ($\log_M N$ rounds): sum of all items
stage 2 ($\log_M N$ rounds): filter down using partial prefix sums

key trick is to split indexes into chunks of size M each round

Can be extended when index values i are not consecutive and N not
known whp.

MultiSearch in $R=O(\log_M N)$ and $CC=O(N \log_M N)$
N searches on N data items

Sorting in $R=O(\log_M N)$ and $CC=O(N \log_M N)$

Minimal MapReduce Algorithms (Tao, Lin, Xiao 2013)
$N =$ massive data
$t =$ # machines
$m = N/t =$ space per machine

1) at all times $O(m)$ data per machine
2) each shuffle phase has $O(m)$ in- + out-traffic per machine
3) constant # rounds
4) $O(T_{seq} / t)$ total time (over all rounds) where T_{seq} is sequential runtime

(1) + (2) prevents partition skew
(3) prevents worrying too much about round overhead, total $O(N)$ traffic
(2) prevents curse-of-last-reducer
 makes stateless (if one goes down, can be re-routed)
(4) efficiency + speedup