MCMD L14 : Parallel | Selection + Max

PRAM

1 disk
P processors
n input items

Each time step a processor can:
read, write, operate (+,-,*,<<,...)

shared memory: CRCW (although CREW more realistic)

Key technique: Accelerating Cascades
Use fast, large work algorithms until threshold
Switch to slower, less work algorithms.

2 examples: Selection, Max

Selection (n):
INPUT A = [a_1, a_2, ... , a_n]
(unsorted)

Select select(k,A) item a_i s.t.
|{a_j in A | a_j < a_i}| <= k-1
|{a_j in A | a_j > a_i}| <= n-k

"Find element ranked k in the sorted order"

Sequential? O(n)

PRAM: O(log n * log log n) Ptime, O(n) work

Algorithm 1.

Sort A->B O(n log n) Work, O(log n) Ptime.
Return B(k).
Algorithm 2.

Reduces problem of size \(m \rightarrow (3/4)m \)
* \(O(m) \) work, \(O(\log m) \) PTime.
* requires \(O(\log n) \) rounds
* Total: \(O(\log^2 m) \) Ptime, \(O(m) \) work

Input A (size \(m \))

1. A into \(m/\log m \) blocks \(A_1, A_2, \ldots, A_{m/\log m} \) of size \(\log m \)
2. PARDO (\(h = 1 \) to \(\log m \)) \(x_h = \text{sequential-median}(A_h) \)
3. \(X = \{x_1, \ldots, x_{m/\log m}\} \)
 Use \(x = \text{median}(X) \) (via Alg1(X)) \(O(m) \) work, \(O(\log m) \) time
4. Partition A to L, M, R s.t.
 \(l \) in L has \(a < x \)
 \(m \) in M has \(m = x \)
 \(r \) in R has \(r > x \)
5. If (\(k \leq |L| \)) recur on select\((k,L)\)
 If (\(k > |L|, k < |L|+|M| \)) return \(x \)
 else recur on select\((k - |L| - |M|, R)\)

Fact: \(\min(|L|, |R|) > m/4 \)
 \(\rightarrow \) recursive call has size at most \((3/4)m \)

1. \(\text{free} \)
2. \(O(\log m) \) Ptime, \(O(m) \) work
3. \(O(\log m) \) Ptime, \(O(m) \) work
4. \(O(1) \) Ptime, \(O(m) \) work
5. recur
\(T(m) = O(\log m) + T((3/4)m) = O(\log m) \) for \(O(\log m) \) rounds = \(O(\log^2 m) \)
\(W(m) = O(m) + W((3/4)m) = O(m) \) [geometrically decreasing]

Accelerating Cascades:
1. Run Alg 2 until size \(m = n / \log n \)
 \(\log_{4/3} \log n = O(\log \log n) \) rounds
 \(O(\log n \log \log n) \) Ptime, \(O(n) \) Work [dominates]
2. Run Alg 1 \(O(\log n) \) Ptime, \((n / \log n * \log(n/\log n)) = O(n) \) Work

Key technique!
Max (n):
INPUT A = [a_1, a_2, ..., a_n]
(unsorted)
Return largest element.

Sequential? O(n)

PRAM: O(log log n) Ptime, O(n) work

Algorithm 1.
O(1) Ptime, O(n^2) work. ?

Compare all O(n^2) pairs. Element which never loses is max.

Algorithm 2.
O(log log n) Ptime, O(n log log n) work?

Subdivide A into sqrt{n} equal sized sub-arrays
A1 = {a_1, ..., a_{sqrt{n}}}
A2 = {a_{1+sqrt{n}}, ..., a_{2sqrt{n}}}
...
A{sqrt{n}} = {a_{n-sqrt{n}}, ..., a_n}

PARDO h = 1 to sqrt{n}
 x_h = Alg2-Max(A_h) [recur]
X = {x_1, ..., x_{sqrt{n}}}
return x = Alg1-Max(X)

T(n) = T(sqrt{n}) + O(1) = O(log log n)
W(n) = sqrt{n} W(sqrt{n}) + O(n) = O(n log log n)

Note n = 2^{2^t} (for some t)
 then sqrt{n} = sqrt{2^{2^t}} = 2^{2^{t-1}} <- doubly geometrically decreasing

Accelerating Cascades:
1. Divide A into $n/\log \log n$ blocks $A_1,A_2,...,A_{n/\log \log n}$ each of size $\log \log n$.
 ParDo ($h = 1$ to $\log \log n$)
 $x_h = \text{Linear-Max}(A_i)$
2. $X = \{x_1, ..., x_{n/\log \log n}\}$
 return $x = \text{Alg2-Max}(X)$

Step 1 takes $O(\log \log n)$ time, and $O(n)$ Work
Step 2 takes $O(\log \log n)$ time, and $(n / \log \log n) \times \log \log n = O(n)$ Work