
OPTIMIZING RANKING EFFECTIVENESS AND FAIRNESS

by

Tao Yang

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2023

Copyright © Tao Yang 2023

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Tao Yang

has been approved by the following supervisory committee members:

Jeff M. Phillips , Chair(s) TBD
Date Approved

Qingyao Ai , Member TBD
Date Approved

Shandian Zhe , Member TBD
Date Approved

Aditya Bhaskara , Member TBD
Date Approved

Parth Gupta , Member TBD
Date Approved

by Mary W. Hall , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Advanced ranking techniques have improved AI-powered information services that

significantly changed people’s lives. For example, search engines that rank information

according to their utilities to user’s queries have helped billions of people better finish

their tasks in daily work; recommendation systems that rank products/movies/news ac-

cording to the user’s interests have completely changed how people discover information

every day. Therefore, how to construct and optimize ranking systems is one of the most

important research problems in the field of Information Retrieval (IR). When optimizing

ranking systems, there are two important criteria to measure the quality of result rankings

in IR systems. The first criterion is ranking effectiveness, which refers to the ability of a

ranking system to effectively present results based on their relevance to the users’ needs.

The second criterion is ranking fairness, which refers to the ability of a ranking system to

present results fairly. Many approaches have been proposed to optimize ranking effec-

tiveness and fairness, yet they still suffer from limitations like over-simplistic modeling,

computational inefficiency, and suboptimal performance. In this dissertation, we develop

practical, efficient, and effective methods to address those issues.

There are two main parts in this dissertation. In the first part, we investigated methods

of effectiveness optimization. We first introduced a new type of bias in ranking effective-

ness optimization, exploitation bias, that is caused by exploiting user behavior as ranking

features and leads to suboptimal performance for existing ranking methods. To address

the exploitation bias, we propose an uncertainty-aware empirical Bayes-based ranking

algorithm. The proposed algorithm effectively mitigates exploitation bias and reaches su-

perior ranking performance by discriminately treating behavior and non-behavior signals

in input features in a Bayes way.

In the second part, we further investigated methods for ranking effectiveness and fair-

ness joint optimization. Firstly, we found that the uncertainty in relevance estimation

can make existing fair ranking methods sub-optimal. To address it, we proposed a novel

Marginal-Certainty-aware Fair algorithm that jointly optimizes effectiveness and fairness

while mitigating the uncertainty in relevance estimation. Secondly, we found that existing

fair ranking methods are mostly greedy algorithms that greedily optimize rankings for the

next immediate session. We developed a fair ranking algorithm that plans ahead by jointly

optimizing multiple ranklists together to reach a global optimum.

iv

For my parents.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Challenges in Ranking optimization . 2
1.2 Contributions . 3
1.3 Dissertation Organization . 4

2. BACKGROUND . 6

2.1 The Workflow of Ranking Service . 6
2.2 Ranking Utility Measurement . 6
2.3 Partial and Biased Feedback . 10
2.4 Related Work . 10

3. MITIGATING EXPLOITATION BIAS IN LEARNING TO RANK WITH AN
UNCERTAINTY-AWARE EMPIRICAL BAYES APPROACH 15

3.1 Introduction . 16
3.2 Proposed Method . 17
3.3 Experiments . 26
3.4 Conclusion . 36

4. MARGINAL-CERTAINTY-AWARE FAIR RANKING ALGORITHM 38

4.1 Introduction . 39
4.2 Proposed Method . 40
4.3 Experiments . 46
4.4 Conclusions . 55

5. FARA: FUTURE-AWARE RANKING ALGORITHM FOR FAIRNESS OPTI-
MIZATION . 56

5.1 Introduction . 57
5.2 Proposed Method . 58
5.3 Theoretical Analysis . 65
5.4 Experiments . 67
5.5 Conclusions . 77

6. SUMMARY AND FUTURE WORK . 78

REFERENCES . 80

vii

LIST OF FIGURES

2.1 Workflow of ranking services. 7

3.1 Toy example to show the exploitation bias. Old item A and new item G have
the same non-behavior (xnb) features, while item G’s behavior features (xb)
is 0 as it has not been shown to users before. Item G will be discriminated
against if the LTR model over-exploits and heavily relies on xb. 31

3.2 Ranking performance (MQ2007, W/-Behav setting). 33

3.3 Ranking performance with different entering probability η in simulation (see
Eq. 3.26) on MQ2007. We only consider using user behavior situations here
(except BM25). 37

3.4 Ablation Study of EBRank on dataset MQ2007. W/o-Explo. means excluding
MC(d) in Eq. 3.5 when generating ranklists. Only-Prior means only using
the prior model part α

α+β of R̂ (in Eq. 3.16) to rank items. Only-Behav. means

only using the behavior part C
n of R̂ (in Eq. 3.16) to rank items. 37

4.1 cNDCG@cutof f in the post-processing setting. FairK and MCFair overlap.
PLFair and ExploreK overlap. 50

4.2 Effectiveness vs. unfairness tolerance in the post-processing setting (a,b) and
the online setting (c,d). Given the same unfairness, the higher curves or
points lie, the better their performances are. 51

4.3 FairCo boosted by exploration with marginal certainty based exploration.
(MQ2008) . 53

4.4 Ablation study of MCFair with different combinations of the three parts in
Eq. 4.12 on MQ2008. Only considering one part is shown as a scatter point.
When considering more than one part, we will get a curve that is generated
by increasing the weight of the last part. For example, for Eff.+Uncert.+Fair.
and Eff.+Fair., we increase the weights of Fair. i.e., the fairness part when
optimizing a ranked list. For Eff.+Uncert. and Fair.+Uncert., we increase the
weights of uncertainty. Arrows show how curves develop when increasing
the weight of the last part. 53

5.1 The ranklist construction order of the horizontal allocation and vertical allo-
cation. 72

5.2 c-NDCG vs. unfairness tolerance in the post-processing setting and the on-
line setting. Given the same unfairness, the higher curves or points lie, the
better their performances are. Our methods FARA and FARA-Horiz. lie
higher than all fair baselines in all figures. ILP and LP are unavailable for
MSLR10k and Istella-S due to time costs (refer to Table 5.3). 72

5.3 The numbers of planning session ∆T ’s influence on FARA in the post-processing
setting on MQ2008. α is set as 1. 76

5.4 Ablation study of exploration in the online setting. The higher curves lie, the
better their performances are. 76

ix

LIST OF TABLES

2.1 A summary of notations. 7

2.2 Comparison of different amortized fairness methods. Attributes include whether
they can achieve amortized fairness, work with personal relevance or not,
need to do down sampling or not, and their computational complexity. Fair-
Rec is not an amortized fairness method, but we still include it here for
completeness. 13

3.1 Datasets statistics. For each dataset, the table below shows the number of
queries, the average number of candidate docs for each query, the number of
features, the relevance annotation y’s range, and the feature id of the BM25
to be used in our experiments. 26

3.2 The ranking performance. The best performances within each feature setting
are bold. ∗ and † indicate statistical significance over other models in the
same or all feature settings, respectively. Cold-NDCG and Warm-NDCG are
the same within the W/o-Behav feature setting since behavior signals are not
used in both settings. 32

3.3 Features’ exploitation ratio (Eq. 3.28) in the learnt linear model on dataset
MQ2007. xb Ratio is the behavior features’ exploitation ratio. Max xnb Ratio
is the maximum exploitation ratio of non-behavior features. Exploitation
ratios for UCBRank, EBRank and BM25 are not included since they do not
contain xb in their linear model. 35

4.1 Unfairness and average time for generating 1k ranklists during simulation
in the post-processing setting, where α, if available, are set to the maximum
value. The standard deviation is in the parentheses. By setting α to the maxi-
mum value, we compare algorithms’ fairness capacity to mitigate unfairness.
Time costs for ILP and LP on Istella-S are estimated by only running 1k steps
instead of the total simulation steps indicated in Sec. 4.3.1.3. Due to the time
cost, unfairness performances of ILP and LP on the larger Istella-S dataset
are NA in Table. 50

5.1 Datasets statistics. For each dataset, the table below shows the number of
queries, the average number of docs for each query, and the relevance anno-
tation y’s range. 67

5.2 Comparison of cNDCG@(1,3,5) and unfairness tolerance in the post-processing
setting. Significant improvements or degradations with respect to FairCo
are indicated with +/-. Within fair algorithms, the best performance with
statistical significance is bolded and underlined. Here, α is set to the maxi-
mum value (see Sec. 4.3.1.3 for α’s range) for each fair algorithm respectively,
which means that all algorithms are trying their best to optimize ranking fair-
ness and the numbers in the table represents their unfairness lower bound.
Results are rounded to one decimal place. 73

5.3 The average time (seconds per 1k ranklists) cost with standard deviations
in parentheses. Since ILP and LP are time-consuming on large datasets, the
time costs on MSLR-10k and Istella-S are estimated by only running 1k steps
instead of the total simulation steps indicated in Sec. 4.3.1.3. 75

xi

CHAPTER 1

INTRODUCTION

Advanced ranking techniques have revolutionized AI-powered information services,

leading to profound changes in people’s lives. For instance, search engines that prioritize

information relevance to user queries have significantly enhanced productivity for bil-

lions in their daily work tasks. Likewise, recommendation systems, which rank products,

movies, or news based on individual user preferences, have completely transformed the

way people discover information on a daily basis. Consequently, the construction and

optimization of ranking systems stand out as one of the foremost research challenges

within the field of Information Retrieval (IR).

When it comes to optimizing ranking systems, there are two crucial criteria for assess-

ing the quality of result rankings. The first criterion is known as "ranking effectiveness",

which pertains to a ranking system’s capacity to efficiently present results according to

their relevance to users’ needs. For instance, by training a ranking model to directly

predict the relevance of each item, we can arrange items in the descending order of their

relevance scores, thereby creating ranked lists. This approach facilitates user convenience

by allowing them to focus their attention on the top-ranked items, saving them time and

effort in satisfying their information needs.

The second criterion is "ranking fairness", which concerns the ability of a ranking sys-

tem to offer results in a fair manner. For instance, in the context of job recommendations, if

a ranking system solely emphasizes ranking effectiveness by ordering items exclusively by

relevance, only a limited number of top candidates will consistently receive user attention.

This could lead to a situation where other highly qualified candidates are rarely considered

for positions. Therefore, it is imperative to strike a balance between effectiveness and

fairness in ranking optimization.

Numerous methodologies have been proposed to enhance ranking effectiveness and

2

fairness. However, these methods often suffer from shortcomings such as oversimplified

modeling, computational inefficiencies, and suboptimal performance. In the course of

this dissertation, we develop practical, efficient, and effective approaches to address these

challenges.

1.1 Challenges in Ranking optimization
Ranking optimization is the key problem in IR, and there are several fundamental

challenges.

• Modern ranking systems mostly employ learning-to-rank (LTR) models, where rel-

evance signals derived from user behavior are used to optimize ranking systems.

While prior research has illustrated the effectiveness of incorporating user behavior

signals, such as clicks, into LTR algorithms as features, we posit that existing LTR

algorithms, which treat behavior and non-behavior signals in input features indis-

criminately, may yield suboptimal outcomes in practical applications. This is due

to the inherent challenge posed by the utilization of user behavior signals since user

behavior signals are usually strongly correlated with the ranking objective and can

only be gathered for items that have already been exposed to users. Consequently,

the ranking system will be biased toward items that have already been exposed to

users and those items will have an unfair advantage over others. We refer to the

unfair advantage as the exploitation bias that detrimentally impacts the long-term

performance of the system.

• Many fair-ranking approaches have been proposed to optimize ranking effectiveness

and fairness at the same time. Nevertheless, as demonstrated in this dissertation,

these techniques only achieve sub-optimal performance since they predominantly

rely on relevance estimation, often without considering the associated uncertainty,

namely, the variance associated with the estimated relevance.

• Besides, our investigation also reveals that a majority of the current fair ranking

techniques rely on greedy algorithms that prioritize optimizing rankings for the

immediate, upcoming session or request. As outlined in this study, adhering to such

a short-term, myopic approach will result in suboptimal performance over the long

run.

3

Recognizing the challenge of addressing all the issues at once, we have divided the

project into multiple tasks, each dedicated to addressing distinct facets of the problem.

Presented below are the principal contributions and outcomes achieved in this disserta-

tion:

1.2 Contributions
The contribution of this thesis can be summarized as follows:

• Mitigating Exploitation Bias in Learning to Rank with an Uncertainty-aware Em-

pirical Bayes Approach

In this project, we address the issue of exploitation bias, and we introduce EBRank,

an empirical Bayes principles based ranking algorithm. Specifically, in addressing

the exploitation bias stemming from behavioral features within ranking models,

EBRank first relies solely on non-behavioral features to establish a prior estimation

of relevance. Throughout the deployment and serving of ranking systems, EBRank

leverages observed user behaviors to iteratively refine the posterior relevance esti-

mation via empirical Bayes modeling, instead of concatenating these behaviors as

features directly into the ranking models. Furthermore, EBRank incorporates an

uncertainty-aware exploration strategy, actively seeking to gather user behaviors for

empirical Bayesian modeling, thereby enhancing the overall ranking performance.

Empirical experiments conducted on three publicly available datasets substantiate

the effectiveness, practicality, and notable superiority of EBRank over other state-of-

the-art ranking algorithms.

We will introduce this work in Chapter 3

• Marginal-Certainty-aware Fair Ranking Algorithm

We introduce a novel algorithm called MCFair, which stands for Marginal-Certainty-

aware Fair ranking algorithm, to address the inherent uncertainty in relevance esti-

mation when optimizing ranking fairness. MCFair simultaneously optimizes fair-

ness and user utility while the relevance estimation is continuously updated. Within

the framework of MCFair, we first formulate a ranking objective that considers un-

certainty, fairness, and ranking effectiveness. Subsequently, we employ the gradient

of this ranking objective directly as the ranking score. Theoretically, we proved

4

that MCFair is optimal for the aforementioned ranking objective. Empirically, our

findings demonstrate that on semi-synthesized datasets, MCFair exhibits effective-

ness and practicality, consistently delivering superior performance in comparison to

state-of-the-art fair ranking methods.

We will introduce this work in Chapter 4

• FARA: Future-aware Ranking Algorithm for Fairness Optimization

We introduce a novel fair ranking algorithm called FARA, which stands for Future-

Aware Ranking Algorithm. In contrast to the conventional approach of myopically

optimizing rankings for the immediate session, FARA adopts a forward-thinking

strategy by simultaneously optimizing multiple ranklists and preserving them for

future sessions. The key methodology employed by FARA involves leveraging Taylor

expansion of the fairness objective to assess how future ranklists will impact the

overall fairness of the system. Building on this analysis, FARA implements a two-

phase optimization algorithm. In the first phase, it addresses an optimal future expo-

sure planning problem, and in the second phase, it constructs the optimal ranklists

based on the previously determined future exposure plan. Theoretically, we provide

evidence to establish that FARA is the optimal solution for the joint optimization

of ranking relevance and fairness of multiple future ranklists. Empirically, our

extensive experiments conducted on three semi-synthesized datasets demonstrate

the efficiency and effectiveness of FARA.

We will introduce this work in Chapter 5

1.3 Dissertation Organization
The rest of this dissertation is structured as follows:

In Chapter 2, we provide some notations and mathematical backgrounds about ranking

optimization that are essential to our work. Then we review related prior work in ranking

optimization.

In Chapter 3, we introduce the Mitigating Exploitation Bias in Learning to Rank with

an Uncertainty-aware Empirical Bayes Approach [1], an uncertainty-aware empirical Bayes-

based ranking algorithm that optimizes ranking effectiveness.

In Chapter 4, we introduce the Marginal-Certainty-aware Fair Ranking Algorithm [2],

5

which jointly optimizes fairness and ranking effectiveness, while relevance estimation is

constantly updated in an online manner.

In Chapter 5, we introduce the FARA: Future-aware Ranking Algorithm for Fairness Op-

timization [3], which plans ahead by jointly optimizing fairness and ranking effectiveness

of multiple future ranklists together.

In Chapter 6, at the end, we summarize the dissertation and discuss future directions.

CHAPTER 2

BACKGROUND

Ranking techniques have been extensively studied and used in modern Information Re-

trieval (IR) systems such as search engines, recommender systems, etc. When optimizing

ranking systems, ranking effectiveness and ranking fairness are two important criteria to

measure the quality of result rankings. Many approaches have been proposed to optimize

ranking effectiveness and fairness, yet they still suffer from limitations like over-simplistic

modeling, computational inefficiency, and suboptimal performance.

In this section, we give the background knowledge for this dissertation. A summary of

notations is shown in Table 2.1.

2.1 The Workflow of Ranking Service
In Figure 2.1, we show the workflow of ranking service. At time step t, a user issues

a query, and there are several candidate items corresponding to this query. Then the

relevance estimator predicts the relevance of each candidate item and the ranking opti-

mization methods will generate the ranked list by optimizing the ranking objective based

on relevance estimation. There are a few different ranking objectives can be adopted here.

For example, the ranking objective can be to jointly optimize effectiveness and fairness [4].

After examining the ranked list, the user provides their feedback, such as clicks. With

user’s feedback, the relevance estimator updates relevance estimation for future ranking

optimization.

2.2 Ranking Utility Measurement
Ranking is a two-sided market from which users and item providers both draw utility.

Optimization and evaluation should consider both sides.

7

Figure 2.1: Workflow of ranking services.

Table 2.1: A summary of notations.
d,q,D(q) For a query q, D(q) is the set of candidates items. d ∈D(q) is an item.
e,r,c All are binary random variables indicating whether an item d is examined (e = 1),

perceived as relevant (r = 1) and clicked (c = 1) by a user respectively.
R,ρi ,E,π,n R = P (r = 1|d), is the probability of an item d perceived as relevant. ρi = P (e =

1|rnk(d) = i,π) is the examination probability of item d when it is put in ith rank
in a ranklist π. E is item’s accumulated exposure (see Eq.2.10). n is the number
of times item d has been presented to users.

ks,kc Users will stop examining items lower than rank ks due to selection bias (see
Eq. 2.14). kc is the cutoff prefix to evaluate cNDCG and kc ≤ ks.

xb,xnb xb denotes ranking features derived from user feedback behavior, while xnb

denotes ranking features derived from non-behavior features.

2.2.1 The User-side Utility (Effectiveness)

Before introducing the user-side utility, we define the relevance R(d,q) as the proba-

bility of an item d to be relevant to query q:

R(d,q) = P (r = 1|d,q) (2.1)

where r is a binary random variable indicating d perceived by a user as relevant to query

q or not. As users are the main clients of ranking systems, it is important to optimize and

evaluate ranking performance from the user side. The user-side utility, also referred to

as effectiveness, is usually used to measure a ranking system’s ability to put relevant items

on top ranks. One widely-used user-side utility measurement is Discounted Cumulative

Gain [5], denoted as DCG. For a ranked list π corresponding to a query q, we define

DCG@kc as:

DCG@kc(π) =
kc∑
i=1

R(π[i],q)λi (2.2)

where π[i] indicates the ith ranked item in the ranked list π; R(π[i],q) indicates item

π[i]’s relevance to query q; cutoff kc indicates the top ranks we evaluate; λi indicates the

8

weight we put on ith rank. λi usually monotonically decreases as rank i increases since

top ranks are generally more important. For example, λi is sometimes set to 1
log2(i+1) . We

follow [6] and set λ as the examining probability ρ:

DCG@kc(π) =
kc∑
i=1

R(π[i],q) · ρi (2.3)

where ρi is users’ examining probability of the ith item in π, i.e.,

ρi = P (ei = 1) (2.4)

where ei is a binary variable indicating the ith item being examined or not. Then, we can

define the normalized-DCG (NDCG) by normalizing DCG@kc(π) with DCG@kc(π∗):

NDCG@kc(π) =
DCG@kc(π)
DCG@kc(π∗)

(2.5)

where π∗ is the ideal ranked list constructed by arranging items by their true relevance.

DCG@kc(π∗) is also referred to as IDCG@kc to normalize DCG@kc(πτ) and NDCG@kc(π) ∈

[0,1]. Furthermore, we could define Cumulative NDCG (cNDCG) as:

eff= cNDCG@kc =
t∑

τ=1

γ t−τNDCG@kc(πτ) (2.6)

Cum-NDCG@kc =
t∑

τ=1

γ t−τNDCG@kc(πτ) (2.7)

where 0 ≤ γ ≤ 1 is the discounted factor, t is the current time step. Note that γ

is usually set as a constant for all time steps. Compared to NDCG, cNDCG can better

evaluate effectiveness for online ranking services [7]. Besides, by ignoring γ , we can get

the average NDCG as,

aver-NDCG@kc =
∑t
τ=1 DCG@kc(πτ)
tDCG@kc(π∗)

=

∑
d∈D(q)R(d)

(∑t
τ=1

∑kc
j=1 Pj1πi [j]==d

)
tDCG@kc(π∗)

=

∑
d∈D(q)R(d)E

t@kc(d)

tDCG@kc(π∗)

(2.8)

where t is the current time step, Et@kc(d) is the cumulative exposure at top kc ranks,

Et@kc(d) =
t∑

τ=1

kc∑
j=1

Pj1πi [j]==d (2.9)

where πi [j] indicates the jth item in ranklist πi , 1 is an indicator function which means we

only accumulate item d’s exposure.

9

2.2.2 The Provider-side Utility (Fairness)

Since items’ rankings can determine their providers’ utility, it is also important to

optimize and evaluate ranking performance from the provider’s perspective. In the lit-

erature, Provider-side Utility1 is used to measure a ranking system’s ability to create

a fair environment for items and their providers. Since a fair environment should let

similar items be treated similarly, items of similar relevance should get similar exposure

in this fair ranking system, i.e., the amortized fairness principle [6, 8]. Following existing

works [6, 8, 9, 10], item d’s exposure is defined as its accumulated examination probability:

E(d) =
t∑

i=1

k∑
j=1

ρj1πi [j]==d (2.10)

where πi [j] indicates the jth item in ranked list πi , 1 is the indicator function which

indicates that ρj will contribute to E(d) only when πi [j] is item d. Then we follow [11]

to define the unfairness tolerance of a ranking algorithm as:

unfairness =
1

n(n− 1)

∑
dx∈D(q)

∑
dy∈D(q)

(
E(dx)R(dy)−E(dy)R(dx)

)2

fairness = −unfairness

(2.11)

where D(q) is the set of candidate items for query q. This unfairness measures the average

exposure disparity between item pairs, and fairness is just the negative of unfairness.

Besides, we use R or R(d) as R(d,q) for simpler notations in the later formulation. The

intuition of the above fairness measurement is that the optimal fairness can be achieved

when item exposure is proportional to their relevance, i.e., ∀dx,dy ∈ D(q), E
t(dx)
R(dx)

=
Et(dy)

R(dy)
.

In other words, exposure fairness means we should let items of similar relevance get

similar exposure. In this dissertation, we choose the exposure fairness evaluation proposed

by Oosterhuis [11] instead of the original evaluation proposed in [6]. The reason for the

choice is that the fairness evaluation in [6] needs to divide the exposure of an item by

its relevance, i.e., Et(d)
R(d)

, which has zero denominator problem when item d is irrelevant,

and R(d) is near zero. This dissertation uses average unfairness across different queries

to evaluate a ranking algorithm. We also refer to the average unfairness as the unfairness

tolerance.

1we use item fairness and provider-side fairness interchangeably

10

2.3 Partial and Biased Feedback
As shown in Figure 2.1, users’ feedback is usually used to update the relevance esti-

mation. However, users’ feedback could be partial and biased indicator of relevance since

users only provide meaningful feedback for items that they have examined,

c =

 r, if e = 1

0, otherwise
(2.12)

where e,r,c are binary random variables indicating whether an item is examined, per-

ceived as relevant, and clicked, respectively. Following existing works on click model [9,

12], we model the probability of click c as:

P (c = 1) = P (r = 1)P (e = 1) (2.13)

where P (e = 1) is the examination probability, r = 1 and e = 1 are independent. Fol-

lowing existing works[13, 14], we assume two kinds of biases in the examination in this

dissertation.

Positional Bias [15, 16]: The examination probability drops along ranks (also called posi-

tion), and we model it with P (rank(d|π)), where the examining probability only depends

on the rank.

Selection Bias [13, 17]: This bias exists when not all of the items are selected to be shown

to users, or some lists are so long that no user will examine the entire lists. We model this

by assuming that items ranked lower than rank ks won’t be examined by the user:

P (e = 1|d,π) =

 P (rank(d|π)), if rank(d|π) ≤ ks
0, otherwise

(2.14)

2.4 Related Work
First, I will introduce unbiased and online Learning to Rank (LTR) methods that opti-

mize ranking effectiveness based on user clicks. Then, I will introduce related works that

consider uncertainty in ranking optimization. Then, I will introduce different types of

proposed definitions of ranking fairness. Finally, I will introduce fair ranking algorithms

based on one type of fairness, i.e., amortized fairness, the fairness we consider in this

dissertation.

2.4.1 Unbiased and Online LTR

The analysis of how to optimize effectiveness with user clicks for Learning to Rank

(LTR) has been extensively studied in the last decade [18]. The major focus of these

11

studies is on how to effectively learn unbiased LTR models by training them with biased

click signals [16, 19]. Specifically, the studies of how to actively remove biases in labels

through online interpolations (i.e., online LTR) and how to address click bias from theoret-

ical perspectives (i.e., unbiased LTR) have received considerable attention. For example,

previous studies have developed different strategies to explore result relevance with bandit

learning [20, 20, 21, 22, 23, 24, 25] or stochastic ranking sampling [26] in online LTR

systems. To train LTR models with offline click logs, causal analysis techniques such as

counterfactual learning [13, 27, 28, 29, 30] have also been widely adopted in extracting

unbiased training objectives for LTR.

2.4.2 Uncertainty in Ranking

Model uncertainty has been widely studied in the community of ML and statistics [31,

32, 33]. In IR, one of the first studies that use model uncertainty for ranking is proposed

by Zhu et al. [34], in which they use the variance of a probabilistic language model as a

risk-based factor to improve the performance of retrieval models. Instead of optimizing

ranking performance directly, there are also studies that use model uncertainty to improve

query performance prediction [35, 36] and query cutoff prediction [37, 38]. Recently, as

neural retrieval models have become popular in modern IR systems, uncertainty estima-

tion techniques for deep learning models have been introduced into the studies of neural

IR [39, 40]. It has been shown that model uncertainty in neural networks can help us better

understand and analyze the behaviors of neural rankers, such as BERT-based models [41].

In contrast to previous studies, in this dissertation, I propose to use uncertainty for ranking

exploration in LTR. Instead of optimizing short-term ranking metrics directly, my work of

uncertainty-aware ranking optimization algorithm focuses on long-term ranking effect.

2.4.3 Ranking exploitation with behavior features

As an important relevance indicator, user behavior signals have been important com-

ponents for constructing modern IR systems [42]. [43, 44] showed that incorporating user

behavior data as features can significantly improve the ranking performance of top results.

However, incorporating behavior features without proper treatments could hurt the effec-

tiveness of LTR systems by amplifying the problem of over-exploitation and over-fitting,

i.e., exploitation bias [14]. Oosterhuis and de Rijke [45], Li et al. [46], Kveton et al. [47]

12

discussed the generation problems and cold-start problems when using behavior signals.

Some strategies were proposed to overcome the exploitation bias by predicting behavior

features with non-behavior features [48, 49] or by actively collecting user behavior for new

items [14, 46] via exploration.

2.4.4 Ranking Fairness

Along with the widespread application of machine learning techniques, determina-

tions based on those techniques can significantly affect people’s lives. Therefore, there

are growing interests in understanding those determinations’ social impacts [50, 51, 52,

53, 54, 55]. Among them, fairness gradually becomes one of the major concerns. Fairness

in Ranking is a relatively new topic and draws a lot of attention in recent years. Given

that ranking is a two-sided market, with customers on one side and product producers

on another side, we need to consider customers’ satisfaction as well as a fair environment

for product producers [56, 57, 58]. However, proposed definitions of fairness in ranking

vary a lot. Some of them focus on representation learning to achieve algorithmic fairness

where relevance rating should be independent of the sensitive attribute [59, 60, 61, 62].

Abdollahpouri et al. [63] and Pitoura et al. [64] give detailed surveys in those areas.

Another group of works take significantly different perspectives on the definition of rank-

ing fairness. They typically focus on how to allocate exposure to items fairly. For ex-

ample, post-processing methods [65, 66, 67] have been proposed to achieve group fair-

ness, which guarantees a certain frequency of items from different groups or producers in

top ranks. Patro et al. [68] proposes an allocation method, FairRec, to achieve individual

fairness, which guarantees an equal frequency for each items in ranking lists without

considering items’ relevance. However, only considering the frequency myopically ignores

that there exists a large skew in the distribution of exposure for different ranks such as

position bias [16, 69, 70].

2.4.5 Amortized Fairness

A more reasonable strategy is to achieve exposure fairness by allocating exposure pro-

portional to items’ relevance [6, 8]. In Table 2.2, we make a comparison between several

amortized fairness methods to see whether those methods work with personal relevance,

whether they need to do down-sampling, and their computational complexity. Note that

13

Table 2.2: Comparison of different amortized fairness methods. Attributes include
whether they can achieve amortized fairness, work with personal relevance or not, need to
do down sampling or not, and their computational complexity. FairRec is not an amortized
fairness method, but we still include it here for completeness.

Method
Attributes

Amortized
fairness

Personal
rele-
vance

Down
sam-
pling

Compu.
com-
plex.

LP [6] ✓ ✗ ✗ High
ILP [8] ✓ ✓ ✓ Medium

FairCo [71] ✓ ✓ ✗ Low
FairRec [68] ✗ ✓ ✗ Low

we assume there are a large number of candidate items when comparing. Specifically,

let’s consider a ranking task where there are m users, n items, and length of ranking

list returned to each user is k. Biega et al. [8] proposed to carry out m rounds integer

linear program (ILP) with n2 decision variables in each round to amortize exposure. Since

the size of decision variables is a bottleneck for ILP solvers, Biega et al. [8] proposed a

down-sampling step that helps to reduce the size of candidate sets in each round and

there are O(k2) decision variables in each round. Instead of trying to amortize exposure

dynamically, Singh and Joachims [6] adopts Linear Programming (LP) with n2 decision

variables to give a static probabilistic ranking, which is mostly infeasible, given a large

number of items. Besides, LP methods assume one single relevance distribution for items,

while the ILP method can work with personal relevance. Thus, the ILP method is more

suitable in personalized ranking given that the distribution of personal relevance vary

from person to person. Besides linear programming, Morik et al. [71] proposed a more

efficient fair ranking algorithm, FairCo, which first determine each item’s unfairness and

then boost ranking score of under-exposed items with a proportional controller. Following

a similar idea of FairCo, Yang and Ai [9] proposed a fair ranking method MMF which

introduced the idea of maximal marginal fairness and used it to achieve better fairness

at top ranks. Besides this, Yang et al. [4] proposed an offline post-processing fair rank-

ing method, VerFair. This method took advantage of the knowledge of all users at the

beginning in offline settings, to help achieve better fairness on top ranks given the same

effectiveness. Unlike the postprocessing method mentioned above, PG-Rank [10] chooses

to achieve amortized fairness in learning to rank procedure via policy learning. Oosterhuis

14

[11] proposed a stochastic Plackett-Luce (PL) ranking models to optimize relevance and

amortized fairness.

In this dissertation, the fairness we are considering is not about learning fair represen-

tations to achieve a fair model where relevance prediction should be independent of some

sensitive attribute [59, 60, 61]. Even if we can get a perfect and fair relevance prediction,

unfair exposure distribution still exists since there exists a large skew in exposure of

different ranks such as position bias [16, 69, 70]. In this dissertation, I will mainly focus on

how to achieve fair exposure according to amortized fairness principle, i.e., a propositional

relation between relevance and exposure.

CHAPTER 3

MITIGATING EXPLOITATION BIAS IN

LEARNING TO RANK WITH AN

UNCERTAINTY-AWARE EMPIRICAL BAYES

APPROACH

Ranking is at the core of many artificial intelligence (AI) applications, including search

engines, recommender systems, etc. Modern ranking systems are often constructed with

learning-to-rank (LTR) models built from user behavior signals. While previous studies

have demonstrated the effectiveness of using user behavior signals (e.g., clicks) as both fea-

tures and labels of LTR algorithms, we argue that existing LTR algorithms that indiscrimi-

nately treat behavior and non-behavior signals in input features could lead to suboptimal

performance in practice. Because user behavior signals often have strong correlations with

the ranking objective and can only be collected on items that have already been shown to

users, directly using behavior signals in LTR could create an exploitation bias that hurts

the system performance in the long run.

To address the exploitation bias, we propose EBRank, an uncertainty-aware empirical

Bayes based ranking algorithm. Specifically, to overcome exploitation bias brought by

behavior features in ranking models, EBRank uses a sole non-behavior feature-based prior

model to get a prior estimation of relevance. In the dynamic training and serving of

ranking systems, EBRank uses the observed user behaviors to update posterior relevance

estimation instead of concatenating behaviors as features in ranking models. Besides,

EBRank additionally applies an uncertainty-aware exploration strategy to explore actively,

collect user behaviors for empirical Bayesian modeling and improve ranking performance.

Experiments on three public datasets show that EBRank is effective, practical and signifi-

cantly outperforms state-of-the-art ranking algorithms.

16

3.1 Introduction
Ranking techniques have been extensively studied and used in modern Information

Retrieval (IR) systems such as search engines, recommender systems, etc. Among different

ranking techniques, learning to rank (LTR), which relies on building machine learning

(ML) models to rank items, is one of the most popular ranking frameworks [72]. In partic-

ular, industrial LTR systems are usually constructed with user behavior feedback/signals

since user behaviors (e.g., click, purchase) are cheap to get and direct indicate results’

relevance from the user’s perspective [73]. For example, previous studies [27, 73, 74] have

shown that, instead of using expensive relevance annotations from experts, effective LTR

models can be learned directly from training labels constructed with user clicks. Besides

using clicks as training labels, many industrial IR systems have also considered features

extracted from user clicks for their LTR models. For example, ranking features extracted

from clicks are used in search engines like Yahoo and Bing [42, 75]. Agichtein et al. [43]

has shown that, by incorporating user clicks as behavior features in ranking systems, the

performance of competitive web search ranking algorithms can be improved by as much

as 31% relative to the original performance.

However, without proper treatment, LTR with user behaviors can also damage ranking

quality in the long term [14, 46, 47]. Specifically, user behavior signals usually have high

correlations with the training labels, no matter whether the labels are constructed from

expert annotations or from users’ behavior. Such high correlation can easily make input

features built from user behavior signals, referred to as the behavior features, overwhelm

other features in training, dominate model outputs, and be over-exploited in inference.

Such an over-exploitation phenomenon would hurt practical ranking systems when user

behavior signals are unevenly collected on different candidate items [46, 48]. For example,

we can only collect user clicks on items already presented to users. Items that lack histor-

ical click data, including new items that have not yet been presented to users, would be

at a disadvantage in ranking. The disadvantage, referred to as the exploitation bias [14],

can be more severe when we use user clicks/behaviors as both labels and features, which

is a common practice in real-world LTR systems [14, 42, 48, 75, 76]. One similar concept

is selection bias [17]. However, selection bias usually refers to the bias that occurs when

user clicks are used as training labels. In contrast, exploitation bias goes one step further

17

and considers the bias that arises in a more realistic scenario where user behavior is both

the training labels and features.

In this dissertation, we address the above exploitation bias with an uncertainty-aware

empirical Bayesian based algorithm, EBRank. Specifically, we consider a general applica-

tion scenario where a ranking system is built with user behavior signals (e.g. clicks) in

both its input and objective function. We show that, without differentiating the treatment

of behavior signals and non-behavior signals in input features, existing LTR algorithms

could suffer severely from exploitation bias. By differentiating behavior signals and non-

behavior signals, the proposed algorithm, EBRank, uses a sole non-behavior feature based

prior model to give a prior relevance estimation. With more behavior data collected from

the online serving process of a ranking system, EBRank gradually updates its posterior rel-

evance estimation to give a more accurate relevance estimation. Besides, we also proposed

a theoretically principled exploration algorithm that joins the optimization of ranking

performance with the minimization of model uncertainty. Experiments on three public

datasets show that our proposed algorithm can effectively alleviate exploitation bias and

deliver superior ranking performance compared to state-of-the-art ranking algorithms. To

summarize, our contributions are

• Through simulation experiments, we demonstrate that existing LTR algorithms suf-

fer severely from exploitation bias.

• We propose EBRank, a Bayesian-based LTR algorithm that mitigates exploitation

bias.

• We propose an uncertainty-aware exploration strategy for EBRank that optimizes

ranking performance while minimizing model uncertainty.

3.2 Proposed Method
In this section, we first introduce some preliminary knowledge of this work, Then,

we propose an uncertainty-aware Empirical Bayes (EB) based learning to rank algorithm,

EBRank, which can effectively overcome exploitation bias. We formally introduce the

proposed algorithm EBRank In Sec .3.2.2. And we dive into the theoretical derivation

of EBRank, which includes ranking objectives, Empirical Bayes modeling, and uncertainty

reduction in Sec. 3.2.3, 3.2.4 and 3.2.5, repectively.

18

3.2.1 Prior Knowledge

Features. In this dissertation, LTR features are categorized into two groups based on

Qin et al. [42]. The first group is non-behavior features, denoted as xnb, which show items’

quality and the degree of matching between item and query. Example xnb can be BM25,

query length, tf-idf, features from pre-trained (large) language models, etc. Non-behavior

features xnb are usually stable and static. The second group is behavior features, denoted

as xb, which are usually derived from user behavior data, which can be click-through-rate,

dwelling time, click, etc. xb are direct and strong indicators of relevance from the user’s

perspective since xb are collected directly from the user themselves. Unlike xnb, xb are

dynamically changing and constantly updated. In this dissertation, we only focus on one

type of user behavior data, i.e., clicks. Extending our work to other types of user behaviors

is also straightforward, and we leave them for future studies.

Exploitation Bias. In Figure 3.1, we give a toy example to illustrate the exploitation

bias. The exploitation bias usually happens because behavior features in LTR models will

overwhelm other features since behavior features are strong indicators of relevance and

highly correlated with training labels. In this example in Figure 3.1, due to the overwhelm-

ing importance of behavior features, newly introduced item G will be discriminated by the

LTR model and ranked low when its user behavior information is missing.

Uncertainty in relevance estimation. In real-world applications, the true relevance R

is usually unavailable. Relevance estimation, denoted as R̂, is usually needed for ranking

optimization. However, R̂ usually contains uncertainty (variance), denoted as Var[R̂].

Furthermore, we introduce the query-level uncertainty in relevance estimation,

U (q) =
∑

d∈D(q)

Var[R̂(d,q)] (3.1)

which will be used to guide ranking exploration. We leave more advanced query-level

uncertainty formulations for future study.

3.2.2 The proposed algorithm: EBRank

In this section, we give a big picture of the proposed Empirical Bayesian Ranking

(EBRank) in Algorithm 3.1. Prior to serving users, we initialize a list, H, to store ranking

logs. At each time step, we append four elements, [ut,qt,πt,ct], to H. Here, ut,qt,πt,ct

are the user, the query, the presented ranklist, and the user clicks at time step t. If initial

19

ranking logs exist prior to using EBRank, we will also append them toH. Besides ranking

logs, we initialize a model fθ, referred to as the prior model, parameterized by θ, which

takes non-behavior features as input. fθ can be any trainable parameterized model, such

as a neural network, tree-based model and etc. When EBRank begins to serve users (t > 0),

new candidates will be constantly appended to each query’s candidates set, D(qt). Then

∀d ∈D(qt), we construct an auxiliary list A(d,qt) = [α,β,n,C,E], where
[α,β] = fθ

(
xnb(d,qt)

)
n=

∑
τ∈T (t,d,qt)

1

C =
∑

τ∈T (t,d,qt)

c(d|πτ)
ρrank(d|πτ)

E =
∑

τ∈T (t,d,qt)

ρrank(d|πτ)

T (t,d,qt) =
[
τ if I(d ∈ πτ)I(qτ = qt) for 0 ≤ τ < t

]
(3.2)

where the prior model fθ takes the non-behavior feature xnb as input and exports two

numbers, i.e., [α,β]. T (t,d,qt) is a subset of historical time steps when item d is presented

in query qt’s ranklists in the past and I is the indicator function. n is the number of times

that item d has been presented for query qt by time step t − 1. c(d|πτ) indicates whether

item d is clicked or not. C is the sum of weighted clicks on item d, and the weight is its

examination probability, E is the item’s exposure which is the accumulation of examination

probability.

3.2.2.1 Relevance estimation.

Based on A(d,qt), firstly, we estimate item’s relevance R̂(d,qt) as,

R̂(d,qt) =
C+α

n+α+ β
(3.3)

which is based on our empirical Bayes modeling in Sec. 3.2.3. The relevance estimation

R̂(d,qt) is a blending between C
n and α

α+β . When n > 0, Cn is an unbiased estimation of true

relevance R(d,qt)) (see Eq. (3.17). Relevance estimation C
n is limited as it requires n > 0,

i.e., item d has been selected for query qt before. Without this limitation, α
α+β , referred to

as prior relevance estimation, is solely based on non-behavior features. Similar to C
n , α

α+β

also theoretically approximates the true relevance R(d,qt) given an perfectly optimized

prior model fθ (more details is in later sections).

20

With the blending of the two parts, R̂ can overcome exploitation bias by nature since it

will rely more on α
α+β when n and C are small, i.e., new items. R̂ gradually relies more on

C
n when n and C increase and start to dominate, i.e., more user behaviors are observed.

3.2.2.2 Ranking exploration & construction.

Besides relevance, we introduce an exploration score for item d,

MC(d,qt) =
R̂(d,qt)(

E+α+ β
)2 (3.4)

which boosts candidates that have a higher estimated relevance R̂(d,qt) but a lower expo-

sure E. The exploration score helps to gain the greatest certainty at the current time step

according to our ranking uncertainty analysis in Sec. 3.2.5, With the relevance estimation

and the exploration score, we construct ranklist πt by sorting R̂(d,qt) + ϵMC(d,qt) in

descending order, i.e.,

πt = argsort-k

(
R̂(d,qt) + ϵMC(d,qt)|∀d ∈D(qt)

)
(3.5)

where a possible cutoff k might exist to show the top results only. ϵ is a hyper-parameter to

balance the two parts. The ranklist construction is based on the ranking objective proposed

in Sec. 3.2.3.

3.2.2.3 Prior model optimization.

The parameters θ in fθ will be periodically updated with the following loss,

l(d,q) = In>0

(
logB(α,β)− logB(C+α,n−C+ β)

)
(3.6a)

L=
∑
q∈Q

∑
d∈D(q)

l(d,q) (3.6b)

where B denotes the beta function. Note that α,β are fθ’s outputs. The loss is based on our

Empirical Bayes modeling in Sec. 3.2.4. The above loss to train fθ is based on items that

have been presented to users before (n > 0) since only those items could possibly have user

clicks, which is the best we can do. According to our empirical results, fθ(xnb) generalizes

well for items not presented before, i.e., n = 0. If there exist some initial ranking logs, fθ

can also be trained based on them. More analysis of the loss can be found in Sec. 3.2.4.3.

3.2.3 Uncertainty-Aware ranking optimization

In this section, we explain why Eq. 3.5 is optimal for constructing ranklists.

21

Algorithm 3.1: EBRank

1 t← 0;
2 H= [ut,qt,πt,ct] ∀t ∈ history;
3 Initialize the trainable parameters θ for prior model fθ;
4 Initialize hyper-parameter ϵ;
5 while True do
6 t← t+ 1;
7 User ut issues a query qt;
8 if New candidates introduced then
9 Dqt .append(new candidates)

10 ∀d ∈Dqt , construct A(d,qt) via Eq. (3.2);
11 With A(d,qt), get R̂(d,qt) via Eq. (3.16);
12 With A(d,qt) & R̂(d,qt), get MC(d,qt) via Eq. (3.24);
13 With R̂(d,qt) & MC(d,qt), get πt via Eq. (3.5);
14 Present πt to User ut and collect user’s clicks ct;
15 H.append([ut,qt,πt,ct];
16 if Prior-model-update then
17 Train fθ with loss L in Eq. (3.6)

3.2.3.1 The uncertainty-aware ranking objective.

As shown in Figure 2.1, at time step t, a user issues a query qt, and we propose the

following uncertainty-aware ranking objective to optimize ranklist πt,

max
πt

Obj = ˆDCG(πt)− ϵ∆U (πt) (3.7)

where ∆U (πt) = U (qt |πt) −U (qt) is the query-level uncertainty increment after pre-

senting πt to the user. ˆDCG is the estimated DCG (see Eq.2.3) based on the estimated

relevance R̂ instead of the unavailable true relevance R. ϵ is the coefficient to balance

the two parts. In Eq. (3.7), our real goal is to maximize the true DCG, but we only have

the estimated ˆDCG which is calculated based on estimated relevance. Hence, to effectively

optimize DCG via the proxy of optimizing ˆDCG, we need an accurate R̂(d,qt), which is why

uncertainty is also minimized in Eq. (3.7). Here we choose to minimize the incremental

uncertainty at time step t since only the incremental uncertainty is caused by πt.

3.2.3.2 Ranking optimization.

To maximize ranking objectives in Eq. (3.7) and optimize πt, we first reformulate ˆDCG

in Eq. (2.3) as,

ˆDCG(πt) =
∑

d∈D(qt)

R̂(d,qt) · ρrank(d|πt) (3.8)

22

As for ∆U (πt) in Eq. (3.7), inspired by [77], we carry out a first-order approximation

by considering incremental exposure ∆E,

∆U (πt) ≈
∑

d∈D(qt)

∂U (qt)

∂E(d,qt)
∆E(d,qt)

=
∑

d∈D(qt)

∂Var[R̂(d,qt)]
∂E(d,qt)

ρrank(d|πt)

=
∑

d∈D(qt)

−MC(d,qt)ρrank(d|πt)

(3.9)

where ∆E(d,qt) is the incremental exposure that item d will get at time t, i.e., ρrank(d|πt),

MC(d,qt) is the gradient of minus variance, dubbed Marginal Certainty, the speed to gain

additional certainty. Since ρrank(d|πt) ∈ (0,1) is relatively small, the first-order approxi-

mation in Eq. (3.9) should approximate well. In Eq. (3.9), we assume that Var[R̂(dx,qt)]

and E(dy ,qt) are independent for different items dx and dy , so ∂Var[R̂(dx,qt)]
∂E(dy ,qt)

= 0. We will

introduce how Var[R̂(d,qt)] and E(d,qt) are related in Sec 3.2.5.

Finally, the ranking objective in Eq. (3.7) can be rewritten as

max
πt

∑
d∈D(qt)

(
R̂(d,qt) + ϵMC(d,qt)

)
ρrank(d|πt) (3.10)

By assuming that ρrank(d|πt) descends as rank(d|πt) goes lower, the optimal πt should be

generated by sorting items according to
(
R̂(d,qt)+ϵMC(d,qt)

)
in descending order, which

validates Eq. (3.5).

3.2.4 Empirical Bayesian relevance model

In this section, we propose an empirical Bayesian relevance model that leads to rele-

vance estimation Eq. (3.3) and loss function Eq. (3.6).

3.2.4.1 The observation modelling

At time step t, users issue the query qt. When there is no position bias and the binary

relevance judgments r are directly observable, the probability of observation of relevance

judgments for a (d,qt) pair prior to time step t is

P (r∗|R̄) =
∏

τ∈T (t,d,qt)

(
(R̄)r(d|πτ) × (1− R̄)(1−r(d|πτ))

)
(3.11)

where r∗ denotes users’ relevance judgments. 0 ≤ R̄ ≤ 1, and R̄ is a random variable that

denotes our estimated probability of r = 1. r(d|πτ) is the observation of random binary

variable r at time τ .

23

However, user relevance judgments are not observable, and we can only observe user

clicks for τ < t, although clicks are biased indicator of relevance according to Eq. (2.12). In

this dissertation, based on observable clicks, we introduce probability P (c∗|R̄) as a proxy

for P (r∗|R̄),

P (c∗|R̄) =
∏

τ∈T (t,d,qt)

(
(R̄)

c(d|πτ)
ρrank(d|πτ) × (1− R̄)

(1− c(d|πτ)
ρrank(d|πτ)

)
)

= (R̄)C × (1− (R̄))n−C
(3.12)

where c∗ denotes users’ clicks. c(d|πτ) indicates whether item d is clicked or not in ranklist

πτ , and ρrank(d|πτ) is item d’s examining probability in presented ranklist πτ . We use

P (c∗|R̄) as a proxy of P (r∗|R̄) since we noticed that logP (c∗|R̄) is an unbiased estimation

of logP (r∗|R̄) [78, 79],
Ee[logP (c∗|R̄)]

=
∑

τ∈T (t,d,qt)

(
Ee[c(d|πτ)]
ρrank(d|πτ)

log(R̄) + (1−
Ee[c(d|πτ)]
ρrank(d|πτ)

) log(1− R̄)
)

= logP (r∗|R̄)

(3.13)

where expectation Ee[c(d|πτ)] = ρrank(d|πτ)r(d|πτ) given Eq. (2.12) and Eq. 2.13. Al-

though the proof above takes a logarithm and the log-likelihood is unbiased instead of

likelihood itself, P (c∗|R̄) is still an effective proxy for P (r∗|R̄), which is validated by our

empirical results. One may note that [78, 79] have similar theoretical analysis here, but

our method is fundamentally different from theirs. They use − logP (c∗|R̄) as the final

ranking loss function, while we use P (c∗|R̄) as the observation probability, just one part of

the many components of our Bayes model.

3.2.4.2 The prior & posterior distribution.

Because the formulation P (c∗|R̄) is similar to a binomial distribution, we choose the

binomial distribution’s conjugate prior, the Beta distribution, as the prior distribution,

i.e., the prior relevance R̄ ∼ Beta(α,β),

P (R̄|θ) =
R̄α−1(1− R̄)β−1

B(α,β)
(3.14)

where B denotes the beta function.1. According to the theory of conjugate distribution [80],

the posterior distribution of R̄ also follows a beta distribution,

R̄ ∼ Beta(C+α,n−C+ β) (3.15)

1The beta distribution and the beta function are denoted as Beta and B respectively.

24

And we use the expectation of the posterior distribution as the posterior relevance estima-

tion R̂ to rank items (see Eq. (3.5),

R̂(d,qt) = E[R̄] =
C+α

n+α+ β
(3.16)

When n > 0, Cn is an unbiased estimation of true relevance R(d,qt))

Ec[
C
n
] =

1
n

∑
τ∈T (t,d,qt)

Ec[c(d|πτ)]
ρrank(d|πτ)

=
1
n

∑
τ∈T (t,d,qt)

ρrank(d|πτ)R(d,qt)

ρrank(d|πτ)

= R(d,qt)

(3.17)

3.2.4.3 Update prior distribution with observations

(α,β), decided by θ, are critical components in the posterior relevance estimation R̂.

To get the optimal θ, we perform the maximum a posterior (MAP) by maximizing the

marginal likelihood of the observed data [81] i.e., P (c∗|θ).

P (c∗|θ) =
∫
R̄
P (c∗|R̄)P (R̄|θ)dR̄

=

∫ 1
0 R̄

C+α−1(1− R̄)n−C+β−1dR̄

B(α,β)

=
B(C+α,n−C+ β)

B(α,β)

(3.18)

Maximizing the above probability is also equivalent to minimizing − logP (c∗|θ), which is

exactly the loss in 3.6a.

To investigate what is the optimal (α,β) during training, we take the derivative of the

loss function,

∂l(d,q)
∂α

= ψ(α)−ψ(α+ β)−
(
ψ(C+α)−ψ(n+α+ β)

)
(3.19)

where ψ is the Digamma function. Usually, by setting, ∂l(d,q)
∂α = 0, we could know the

optimal (α∗,β∗). However, to our knowledge, it is difficult to directly get (α∗,β∗) from the

above equation. Since ψ(x) ≈ log(x) with error O(1
x)[82], we use log function to substitute

ψ in Eq. (3.19), and set ∂l(d,q)
∂α = 0, and we get,

α∗

α∗+ β∗
− C+α∗

n+α∗+ β∗
= 0 (3.20)

It is straightforward to see that the optimal prior estimation should output (α∗,β∗) that

satisfies α∗
α∗+β∗ =

C
n , where C

n is an unbiased estimation of relevance R̄ given Eq. (3.17) as

long as n > 0. In Eq. (3.20), α∗,β∗ are not unique. To make α,β in Eq. (3.20) have unique

values, we fix β and only learn α for simplicity. We leave how to get unique α,β without

25

fixing one of them to future works.

3.2.5 Estimation of Marginal Certainty.

In this section, we introduce how to get the exploration score in Eq. 3.4. As indicated

in Eq. (3.1&3.9), to get the MC(d,qt), we first need to get the variance of R̂(d,qt). For

simplicity, we assume that the only random variable in R̂(d,qt) is c(d|πτ), where c(d|πτ)

and R̂(d,qt) are associated via C. Firstly, the variance of c(d|πτ) is
Var[c(d|πτ)] = Ec[c

2(d|πτ)]−E2
c [c(d|πτ)]

= Ec[c(d|πτ)]−E2
c [c(d|πτ)]

< ρrank(d|πτ)R(d,qt)

(3.21)

where

c2(d|πτ) = c(d|πτ) (3.22)

since c(d|πτ) is a binary random variable. Ec[c(d|πτ)] = ρrank(d|πτ)R(d|πt) according to

Eq. 2.13. According to the linearity of expectation, we can get the variance of R̂(d,qt),

Var[R̂(d|qt)] =
Var[C]

(n+α+ β)2

=

∑
τ∈T (t,d,qt)

1
ρ2
rank(d|πτ)

Var[c(d|πτ)]

(n+α+ β)2

<
R(d,qt)

∑
τ∈T (t,d,qt)

1
ρrank(d|πτ)

(n+α+ β)2

<
R(d,qt)

n
ρmin

(n+α+ β)2

<
R(d,qt)1/ρmin
(n+α+ β)

=̇
R(d,qt)
E+α+ β

(3.23)

where we assume there exists the smallest examining probability ρmin for presented item

d. In the last step, we ignore the constant factor, i.e., 1/ρmin. We use the above upper

bound as an approximation of variance, which works well according to our empirical

results. Given Eq. (3.9), we can getMC(d,qt) by taking derivative of (−Var[R̂]) with respect

to E,

MC(d,qt) =
∂(−Var[R̂(d|qt)])

∂E

≈
R̂(d,qt)

(E+α+ β)2

(3.24)

where we use R̂ to substitute relevance R since R is unavailable.

26

Table 3.1: Datasets statistics. For each dataset, the table below shows the number of
queries, the average number of candidate docs for each query, the number of features,
the relevance annotation y’s range, and the feature id of the BM25 to be used in our
experiments.

Datasets # Queries #AverDocs # Features y BM25

MQ2007 1643 41 46 0− 2 25th

MSLR-10k 9835 122 133 0− 4 110th

MSLR-30k 30995 121 133 0− 4 110th

3.3 Experiments
In this section, we evaluate the effectiveness of the proposed method with semi-simulation

experiments on public LTR datasets. To facilitate reproducibility, we release our code 2

3.3.1 Experimental setup

3.3.1.1 Dataset

In the semi-simulation experiments, we will adopt three publicly available LTR datasets,

i.e., MQ2007, MSLR-10K, and MSLR-30K, with data statistics shown in Table 3.1. The

dataset queries are partitioned into three subsets, namely training, validation, and test

according to the 60%-20%-20% scheme. For each query-document pair of each dataset,

relevance judgment y is provided. The original feature sets of MSLR-10K/MSLR-30K have

three behavior features (i.e., feature 134, feature 135, feature 136) collected from user

behaviors. To reliably evaluate our method, we remove them in advance. MQ2007 only

contains non-behavior features. Thus, at the beginning of our experiments, all datasets

only contain non-behavioral features (i.e., xnb). It is worth mentioning that there are

other widely-used large-scale LTR datasets accessible to the public, such as Yahoo! Letor

Dataset [75] and Istella Dataset [83]. However, they cannot be used in this dissertation

because they contain behavior features but do not reveal their identity.

3.3.1.2 Simulation of Search Sessions, Click and Cold-start

Similar to prior research [18, 20, 27, 84], we create simulated user engagements to

evaluate different LTR algorithms. The advantage of the simulation is that it allows us to

do online experiments on a large scale while still being easy to reproduce by researchers

without access to live ranking systems [13]. Specifically, at each time step, we randomly

2https://github.com/Taosheng-ty/EBRank/

https://github.com/Taosheng-ty/EBRank/

27

select a query from either the training, validation or test subset and generate a ranked list

based on ranking algorithms. Following the methodology proposed by Chapelle et al.

[85], we convert the relevance judgement to relevance probability according to P (r =

1|d,q,π) = 0.1 + (1 − 0.1) 2y−1
2ymax−1 , where ymax is 2 or 4 depending on the dataset. Besides

relevance probability, the examination probability ρrank(π,d) are simulated with

ρrank(π,d) =
1

log2(rank(π,d) + 1)
(3.25)

The ρrank(π,d) is also the same examination probability used in Eq. 2.3 to compute DCG. For

simplicity, we follow [9, 13, 14] to assume that users’ examination ρrank(π,d) is known in our

experiment as many existing methods [74, 86, 87] have been proposed for it. With P (r =

1|d,q,π) and ρrank(π,d), according to Equation 2.13, clicks can sampled. We simulate clicks

on the top 5 items, i.e., ks = 5 in Equation 2.14. User clicks are simulated and collected for

all three partitions. And we only use the sessions sampled from training partitions to train

LTR models and sessions sampled from validation partitions to do validation. LTR models

are evaluated and compared only based on test partitions. We collect clicks on validation

and test queries in the simulation to construct the behavior features for their candidate

document, which is used for inference only. In real-world LTR systems, behavior features

are widely used in the inference of LTR models [42, 75].

The cold start scenario in ranking is an important part of our simulation experiments.

We found two factors are essential for cold start simulation. Firstly, in real-world ap-

plications, new documents/items frequently come to the retrieval collection during the

serving of LTR systems. To simulate new documents/items’ coming, at the beginning

of each experiment, we randomly sample only 5 to 10 documents for each query as the

initial candidate sets Dq and mask all other documents. Then, at each time step t, with

probability η (η = 1.0 by default), we randomly sample one masked document and add it

to the candidate set Dq. Depending on the averaged number of document candidates and

η, the number of sessions (time steps) we simulate for each dataset is

#Session=
#Queries × (#AverDocs − 5)

η
(3.26)

where #Queries and #AverDocs are indicated in Table 3.1. The second factor for cold

start simulation is that when a ranking algorithm usually is introduced in an LTR system,

some documents/items already have collected user feedback in history. To simulate this,

for each query, we simulated 20 sessions according to BM25 scores to collect initial user

28

behaviors for the initial candidate sets. The BM25 scores are already provided in the

original datasets’ features (see Table 3.1).

3.3.1.3 Baselines

To evaluate our proposed methods, we have the following ranking algorithms to com-

pare,

• BM25: The method to collect initial user behaviors.

• CFTopK: Train a ranking model with Counterfactual loss that is widely used in

existing works [14, 71, 78] and create ranked lists with items sorted by the model

scores during ranking service.

• CFRandomK: Train a ranking model the same way as CFTopK, but randomly create

ranked lists with items during ranking service.

• CFEpsilon: Train a ranking model the same way as CFTopK. Uniformly sample an

exploration from [0,1] and add to each item’s score from the model[14]. Create

ranked lists with items sorted by the score after addition during ranking service.

• DBGD[23]: A learning to rank method which samples one variation of a ranking

model and compares them using online evaluation during ranking service.

• MGD[24]: Similar to DBGD but sample multiple variations.

• PDGD[26]: A learning to rank method which decides gradient via pairwise compar-

ison during ranking service.

• PRIOR[48]: When xb = 0, the method will train a behavior feature prediction model

to give a pseudo behavior feature xb.

• UCBRank[14]: uses relevance estimation from xnb when an item is not presented

and uses relevance estimation from xb when an item has been presented. An upper

Confidence Bound (UCB) exploration strategy is used as an exploration strategy.

• EBRank: Our method shown in Algorithm 3.1.

For those baselines, DBGD, MGD, PDGD, CFTopK, CFRankdomK, CFEpsilon are un-

biased learning to rank algorithms that try to learn unbiased LTR models with biased

click signals. We will investigate, in this dissertation, whether they can overcome ex-

ploitation bias or not. We compare those methods with two feature settings. The first

setting is that we only use non-behavior features xnb, referred to as W/o-Behav. The

29

second feature setting is that we use both behavior signals and non-behavior features.

The feature setting is referred to as W/-Behav(Concate) when behavior-derived features

and non-behavior features are concatenated together. W/-Behav(Non-Concate) means

behavior signals and non-behavior features are combined using a non-concatenation way,

such as the EB modeling used by EBRank. Method BM25 only has W/o-Behav results

since it uses the non-behavior feature BM25 to rank items. CFTopK, CFRandomK, CFEp-

silon, DBGD, MGD, and PDGD have ranking performance with both W/o-Behav and

W/-Behav(Concate) feature settings, depending on whether behavior features are used

or not. We follow Yang et al. [14] to use relevance’s unbiased estimator

xb =
C
n

(3.27)

as the behavior feature, with the default value as 0 when n = 0. The default value for

xb has a significant influence on methods DBGD, MGD, PDGD, CFTopK, CFRankdomK,

and CFEpsilon since those methods will concatenate xb and xnb. However, how to set the

default xb for each method is not within the scope of this work, and we leave it for future

works. PRIOR only has ranking performance with W/-Behav(Concate) because PRIOR is

designed to relieve exploitation bias when behavior features and non-behavior features are

concatenated. For UCBRank and EBRank, they only have W/-Behav(Non-Concate) results

since they have their own designed non-concatenation way to combine behavior signals

and non-behavior features. However, our method EBRank is fundamentally different from

UCBRank. UCBRank treats behavior features as independent evidence for relevance and

linearly interpolates relevance estimation from xb and xnb. Besides, UCBRank adopts an

Upper Confidence Bound exploration strategy. However, EBRank interpolates relevance

estimation from xb and xnb from a Bayesian perspective and uses the marginal-certainty

exploration strategy derived in Eq. 3.9 to guide exploration.

3.3.1.4 Implementation

Linear models are used for all methods except BM25. We retrain and update ranking

model parameters periodically 20 times during the simulation. Compared to updating

model parameters online, updating ranking logs, including user behaviors, is relatively

easy and time-efficient, and we update them after each session. When we train the prior

model according to loss in Eq. 3.6, we only train α = fθ(x
nb) and fix β = 5 for simplicity,

30

which works well across all experiments.

3.3.1.5 Evaluation

We evaluate ranking baselines with two standard ranking metrics on the test set. The

first one is the Cumulative NDCG (referred to as Cum-NDCG) (Eq.2.7) with the dis-

counted factor γ = 0.995 (same γ used in [20, 21]) to evaluate the online performance of

presented ranklists. The second metric is the standard NDCG (Eq.2.5), where each query’s

ranked list is generated by sorting scores from the final ranking models (excluding the

exploration strategy part of each algorithm). The NDCG evaluates the offline performance

of the learned ranking model. NDCG is tested in two situations: with (i.e., Warm-NDCG)

or without (i.e., Cold-NDCG) behavior features collected from click history. In this way,

our experiment can effectively evaluate LTR systems in scenarios where we encounter new

queries with no user behavior history on any candidate documents (i.e., the Cold-NDCG)

and the scenarios where user behavior exists due to previous click logs (i.e., the Warm-

NDCG). For simplicity, we set the rank cutoff to 5 and compute iDCG in both Cum-NDCG

and NDCG with all documents in each dataset. Significant tests are conducted with the

Fisher randomization test [88] with p < 0.05. All evaluations are based on five independent

trials and reported on the test partition only.

31

More clicks

1.5 2.3 0.5 0.8 1.5 2.3 0.5 0.0
Item A New Item G

A
B

C

D

xnb xb xbxnb

High
behaviour
feature
value Show it!

LTR model LTR model

Missing
behaviour
feature
value Do not

Show it!

No clicks

Figure 3.1: Toy example to show the exploitation bias. Old item A and new item G have
the same non-behavior (xnb) features, while item G’s behavior features (xb) is 0 as it has
not been shown to users before. Item G will be discriminated against if the LTR model
over-exploits and heavily relies on xb.

32

Ta
b

le
3.

2:
T

he
ra

nk
in

g
p

er
fo

rm
an

ce
.

T
he

be
st

p
er

fo
rm

an
ce

s
w

it
hi

n
ea

ch
fe

at
u

re
se

tt
in

g
ar

e
bo

ld
.
∗

an
d
†

in
d

ic
at

e
st

at
is

ti
ca

l
si

gn
ifi

ca
nc

e
ov

er
ot

he
r

m
od

el
s

in
th

e
sa

m
e

or
al

lf
ea

tu
re

se
tt

in
gs

,r
es

p
ec

ti
ve

ly
.C

ol
d

-N
D

C
G

an
d

W
ar

m
-N

D
C

G
ar

e
th

e
sa

m
e

w
it

hi
n

th
e

W
/o

-B
eh

av
fe

at
u

re
se

tt
in

g
si

nc
e

be
ha

vi
or

si
gn

al
s

ar
e

no
t

u
se

d
in

bo
th

se
tt

in
gs

.
Fe

at
u

re
se

tt
in

gs
O

nl
in

e
A

lg
or

it
hm

s
M

Q
20

07
M

SL
R-

10
k

M
SL

R-
30

k
C

ol
d

-N
D

C
G

W
ar

m
-N

D
C

G
C

u
m

-N
D

C
G

C
ol

d
-N

D
C

G
W

ar
m

-N
D

C
G

C
u

m
-N

D
C

G
C

ol
d

-N
D

C
G

W
ar

m
-N

D
C

G
C

u
m

-N
D

C
G

W
/o

-
B

eh
av

B
M

25
0.

47
4

0.
47

4
94

.3
8

0.
44

9
0.

44
9

90
.3

9
0.

45
1

0.
45

1
89

.9
8

D
B

G
D

0.
55

7
0.

55
7

11
0.

6
0.

48
8

0.
48

8
98

.6
6

0.
49

8
0.

49
8

99
.4

0
M

G
D

0.
56

2
0.

56
2

11
0.

9
0.

47
3

0.
47

3
95

.7
2

0.
50

2
0.

50
2

10
1.

3
P

D
G

D
0.

59
9

0.
59

9
11

5.
0

0.
52

5
0.

52
5

10
5.

2
0.

52
5

0.
52

5
10

6.
0

C
FT

op
K

0.
59

1
0.

59
1

11
6.

7
0.

51
0

0.
51

0
10

2.
9

0.
50

6
0.

50
6

10
1.

6
C

FR
an

d
om

K
0.

58
9

0.
58

9
87

.6
9

0.
50

9
0.

50
9

79
.5

9
0.

51
4

0.
51

4
78

.6
3

C
FE

p
si

lo
n

0.
58

9
0.

58
9

94
.3

9
0.

51
0

0.
51

0
84

.7
5

0.
51

8
0.

51
8

83
.8

8

W
/-

B
eh

av
(C

on
ca

te
)

D
B

G
D

0.
51

4
0.

72
9

14
4.

7
0.

45
1

0.
57

1
11

4.
3

0.
46

2
0.

60
7

11
8.

8
M

G
D

0.
52

3
0.

72
5

14
2.

1
0.

46
1

0.
55

8
10

9.
0

0.
44

4
0.

59
5

12
2.

5
P

D
G

D
0.

57
4

0.
74

5
14

7.
6

0.
46

6
0.

59
1

11
7.

9
0.

48
0

0.
58

4
11

6.
4

C
FT

op
K

0.
38

5
0.

57
9

11
3.

5
0.

36
9

0.
48

9
97

.5
3

0.
36

6
0.

49
1

97
.6

5
C

FR
an

d
om

K
0.

37
7

0.
77

1
87

.1
1

0.
40

3
0.

59
6

79
.8

2
0.

40
4

0.
60

3
78

.9
1

C
FE

p
si

lo
n

0.
38

7
0.

78
9

14
3.

8
0.

35
5

0.
68

3
11

6.
8

0.
35

4
0.

68
6

11
6.

8
P

R
IO

R
0.

59
7

0.
79

1
15

8.
7

0.
50

7
0.

55
4

11
0.

3
0.

50
3

0.
55

7
11

1.
4

W
/-

B
eh

av
(n

on
-

C
on

ca
te

)

U
C

B
R

an
k

0.
59

3
0.

79
9

15
8.

9
0.

51
4

0.
70

3
14

0.
1

0.
50

9
0.

70
3

14
0.

5
E

B
R

an
k(

ou
rs

)
0.

59
6

0.
84

9∗
†

17
1.

3∗
†

0.
51

3
0.

76
2∗
†

15
1.

6∗
†

0.
51

3
0.

76
2∗
†

15
2.

0∗
†

33

0 20000 40000 55000
Time steps

80

120

150

170

Cu
m

-N
DC

G

DBGD
MGD
PDGD
CFRandomK
CFTopK
CFEpsilon
PRIOR
EBRank(Ours)
UCBRank
BM25

Figure 3.2: Ranking performance (MQ2007, W/-Behav setting).

3.3.2 Result

In this section, we will describe the results of our experiments.

3.3.2.1 How does our method compare with baselines?

In Table 3.2, EBRank significantly outperforms all other methods and feature setting

combinations on Warm-NDCG and Cum-NDCG, while its Cold-NDCG is among the best.

The discussion in the following sections will give more insights into EBRank’s supremacy.

3.3.2.2 Will historical user behavior help ranking algorithms achieve

better ranking quality?

As shown in Table 3.2, not all algorithms can benefit from incorporating behav-

ior signals. Particularly, in Table 3.2, we indeed see that both W/-Behav(Concate) and

W/-Behav(Non-Concate) feature settings help to boost most ranking algorithms to have

better Warm-NDCG and Cum-NDCG. However, such boosting on Warm-NDCG and Cum-

NDCG does not apply to all ranking algorithms, and there exist two exceptions. The first

one is a trivial exception regarding CFRandomK. CFRandomK always randomly ranks

items and shows them to users, so its online performance, i.e., Cum-NDCG, can not be

boosted. The second one is a non-trivial exception regarding CFTopK. Incorporating

user behaviors even makes CFTopK degenerate on Warm-NDCG and Cum-NDCG for

all three datasets. Besides CFTopK’s degeneration on Warm-NDCG and Cum-NDCG,

W/-Behav(Concate) feature setting even causes all ranking algorithms (except PRIOR) to

experience a significant drop in Cold-NDCG, when compared to the W/o-Behav feature

34

setting. Compared to other algorithms, UCBRank and our algorithm EBRank can benefit

from behavior signals to have better Warm-NDCG and Cum-NDCG while avoiding drop

in Cold-NDCG. In Table 3.2, PRIOR also avoids drop in Cold-NDCG but Prior is not as

effective as UCBRank and EBRank in boosting Warm-NDCG and Cum-NDCG with user

behavior. Besides the ranking performance in Table 3.2, we additionally show ranking per-

formance as time steps increase in Figure 3.2. As shown in Figure 3.2, EBRank consistently

outperforms baselines.

3.3.2.3 How do ranking algorithms suffer from exploitation bias?

In the above section, we found that there exists some exceptions, i.e., degeneration of

ranking quality when using the W/-Behav(Concate) feature setting. In this section, we dig

into the learned models to investigate the reason for the degeneration. To investigate the

learned models, we output behavior and non-behavior features’ exploitation ratio for each

algorithm in Table 3.3, where the jth feature’s exploitation ratio is defined as

Ratioj =
|wj |∑
i |wi |

(3.28)

wj is the learned jth weight of a learned linear model. In Table 3.3, the behavior fea-

ture’s exploitation ratio is significantly greater than the non-behavior features’ ratio for

all ranking algorithms, which makes behavior features overwhelm other non-behavior

features, dominate the output, and discriminate cold-start items. The overwhelming effect

will cause exploitation bias. Although the analysis is based on linear models, we believe

non-linear models will make exploitation bias even more severe since non-linear models

are even better at over-fitting the behavior features.

The exploitation bias is the reason for the ranking quality degeneration mentioned in

the last Section (see Sec. 3.3.2.2). Specifically, CFTopK’s degeneration in Warm-NDCG

and Cum-NDCG is because it fully trusts the exploitation biased ranking model without

any exploration, which can discriminate against new items of high quality, making them

hard to be discovered. Besides, the drop of Cold-NDCG under the W/-Behav(Concate)

feature setting is because the exploitation-biased ranking model can not give an effective

ranklist when behavior features are not available in the cold evaluation setting. Although

behavior features also dominate in PRIOR, missing behavior feature is filled out by a

behavior feature prediction model, which is the reason why its Cold-NDCG does not

35

Table 3.3: Features’ exploitation ratio (Eq. 3.28) in the learnt linear model on dataset
MQ2007. xb Ratio is the behavior features’ exploitation ratio. Max xnb Ratio is the
maximum exploitation ratio of non-behavior features. Exploitation ratios for UCBRank,
EBRank and BM25 are not included since they do not contain xb in their linear model.

Algorithms xb Ratio Max xnb Ratio

CFEpsilon 0.604(0.098) 0.071(0.038)
CFRandomK0.498(0.067) 0.103(0.026)
CFTopK 0.591(0.087) 0.098(0.033)
DBGD 0.109(0.021) 0.063(0.019)
MGD 0.110(0.026) 0.062(0.018)
PDGD 0.623(0.037) 0.036(0.004)
PRIOR 0.572(0.105) 0.089(0.043)

drop. Compared to those algorithms, EBRank is more robust to exploitation bias since

it has comparable ranking performance on Cold-NDCG as algorithms using W/o-Behav

and has superior performance on Warm-NDCG and Cum-NDCG. In other words, EBRank

can take advantage of historical user behavior signals but is also robust to user behavior

missing. Besides, EBRank also significantly outperforms UCBRank in Cum-NDCG and

Warm-NDCG.

3.3.2.4 EBRank’s robustness to entering probability

To investigate the item entering speed (η) ’s influence on the ranking performance,

we show the experimental results with different η in Figure 3.3. As shown in Figure 3.3,

EBRank consistently significantly outperforms all other algorithms under different item

entering speeds.

3.3.2.5 Ablation Study

In this section, we do an ablation study to see whether each part of our EBRank is

needed. Due to limited space, we only provide analysis on MQ2007 dataset. As shown in

Figure 3.4, EBRank significantly outperforms the version only using the Behavior part or

the prior model part to rank. Also, from the ablation study, we observe Bayesian modeling

can help a ranking model reach good ranking quality and be robust to exploitation bias.

The marginal-certainty-aware exploration additionally helps to discover relevant items,

which helps to boost ranking performance in the long term.

36

3.4 Conclusion
In this work, we propose an empirical Bayes-based uncertainty-aware ranking algo-

rithm EBRank with the aim of overcoming the exploitation bias in LTR. With empirical

Bayes modeling and a novel exploration strategy, EBRank aims to effectively overcome the

exploitation bias and improve ranking quality. Extensive experiments on public datasets

demonstrate that EBRank can achieve significantly better ranking performance than state-

of-the-art LTR ranking algorithms. In the future, we plan to extend current work further

to consider other types of user behaviors beyond user clicks.

37

0.1 0.4 0.7 1.0
New item entering probability η .

80

120

160

180

Cu
m

-N
DC

G
DBGD
MGD
PDGD
CFTopK
CFRandomK
CFEpsilon
PRIOR
EBRank(Ours)
UCBRank
BM25

Figure 3.3: Ranking performance with different entering probability η in simulation (see
Eq. 3.26) on MQ2007. We only consider using user behavior situations here (except BM25).

0 20000 40000 55000
Time steps

0.40
0.60

0.80

0.85

W
ar

m
-N

DC
G

EBRank(Ours)
W/o-Explo.
Only-Prior
Only-Behav.

Figure 3.4: Ablation Study of EBRank on dataset MQ2007. W/o-Explo. means excluding
MC(d) in Eq. 3.5 when generating ranklists. Only-Prior means only using the prior model
part α

α+β of R̂ (in Eq. 3.16) to rank items. Only-Behav. means only using the behavior part
C
n of R̂ (in Eq. 3.16) to rank items.

CHAPTER 4

MARGINAL-CERTAINTY-AWARE FAIR

RANKING ALGORITHM

Ranking systems are ubiquitous in modern Internet services, including online market-

places, social media, and search engines. Traditionally, ranking systems only focus on how

to get better relevance estimation. When relevance estimation is available, they usually

adopt a user-centric optimization strategy where ranked lists are generated by sorting

items according to their estimated relevance. However, such user-centric optimization

ignores the fact that item providers also draw utility from ranking systems. It has been

shown in existing research that such user-centric optimization will cause much unfairness

to item providers, followed by unfair opportunities and unfair economic gains for item

providers.

To address ranking fairness, many fair ranking methods have been proposed. However,

as we show in this dissertation, these methods could be suboptimal as they directly rely

on the relevance estimation without being aware of the uncertainty (i.e., variance of the

estimated relevance). To address this uncertainty, we propose a novel Marginal-Certainty-

aware Fair algorithm named MCFair. MCFair jointly optimizes fairness and user utility,

while relevance estimation is constantly updated in an online manner. In MCFair, we

first develop a ranking objective that includes uncertainty, fairness, and user utility. Then

we directly use the gradient of the ranking objective as the ranking score. We theoretically

prove that MCFair based on gradients is optimal for the aforementioned ranking objective.

Empirically, we find that on semi-synthesized datasets, MCFair is effective and practical

and can deliver superior performance compared to state-of-the-art fair ranking methods.

To facilitate reproducibility, we release our code. 1

1https://github.com/Taosheng-ty/WSDM23-MCFair

39

4.1 Introduction
Advanced ranking techniques have led to improvements in AI-powered information

services that significantly changed people’s lives. For example, search engines that rank

documents according to their utilities to user’s queries have helped billions of people

better finish their daily work; recommendation systems that rank products/movies/news

according to the user’s interests have completely changed the way people obtain informa-

tion every day. Therefore, how to construct and optimize ranking systems is one of the

crucial research problems in Information Retrieval (IR) [72].

When considering the quality of result rankings in a ranking system, there are two im-

portant criteria: Ranking Effectiveness and Ranking Fairness [6, 8, 71]. Ranking Effectiveness

refers to the ability of a ranking system to effectively put relevant results at the top ranks;

by maximizing ranking effectiveness, we can help save users’ efforts as they only need to

examine the top ranks to satisfy their information needs [16, 86]. However, myopically

optimizing ranking effectiveness according to relevance can lead to unfair ranking results.

For example, in a hiring website, if a ranking system only considers ranking effectiveness

and ranks candidates solely according to relevance, then a small number of top candidates

will always be exposed to employers and dominate employers’ attention as employers usu-

ally only examine the top ranks [16]. In this case, other candidates will be unfairly treated

and rarely have the chance to be hired even when they are also highly qualified for the

job. Therefore, it is critical to jointly consider ranking fairness and ranking effectiveness.

Formally, ranking fairness measures the ranking system’s ability to present fairly [6]. In

this work, we focus on the important problem of Exposure Fairness, as exposure directly

influences opinion (e.g., ideological orientation of presented news articles) or economic

gain (e.g., revenue from product sales or streaming) for providers of items [71].

Relevance estimation serves as the foundation of the optimization of effectiveness and

fairness. Specifically, optimizing effectiveness means putting more relevant items on top

ranks, while optimizing fairness means letting items of similar relevance receive similar

exposure. To jointly optimize ranking effectiveness and fairness, many fair ranking meth-

ods [4, 6, 8] adopt a post-processing setting that assumes that relevance is well estimated

prior to the effectiveness-fairness joint optimization. However, such a post-processing

setting seldom exists. In a real-world scenario, relevance estimation and ranking opti-

40

mization are usually dynamically entangled with each other in an online way. Relevance

estimation influences how the ranked lists are optimized, and the ranked lists will be

later presented to users to collect their feedback, which will, in return, influence rele-

vance estimation. Statistically, relevance estimation usually comes with uncertainty, i.e.,

variance, and relevance estimations for different items are not equally trustworthy since

their uncertainty is usually not the same. Optimizing ranking effectiveness and fairness

without considering such differences in uncertainty makes existing post-processing fair

methods suboptimal in the online setting. It has come to our notice that although some

methods [9, 71] have been proposed to address the online setting, these methods overlook

the uncertainty difference in relevance estimation. In this dissertation, we show these

uncertainty-oblivious ranking methods are suboptimal in the online setting.

In this dissertation, we propose a Marginal-Certainty-aware Fair ranking algorithm,

or MCFair to jointly optimize effectiveness and fairness in an online setting. This al-

gorithm addresses the dynamic nature of online setting where ranking optimization is

carried out while the relevance is still being learned. The core of our algorithm is to first

formulate a ranking objective that includes effectiveness, fairness, and uncertainty, then

take derivatives of the ranking objective with respect to exposure and directly use the

gradients as ranking scores. The ranking scores from the gradients automatically include

a marginal-certainty-aware exploration strategy to deal with the uncertainty in relevance

estimation. We theoretically prove that the ranking scores, i.e., gradients, are optimal for

the ranking objective. In addition to the theoretical justification, we provide empirical

results with two real-world datasets under both the post-processing setting and the online

setting. We find that MCFair outperforms existing state-of-the-art methods significantly.

Furthermore, MCFair is efficient, robust, and easy to implement.

4.2 Proposed Method
The challenge of optimizing fairness and effectiveness lies in the fact that the ranking

optimization is being carried out based on relevance estimation while relevance estimation

is still being learned. Statistically, an estimation such as relevance estimation mostly

contains uncertainty, i.e., variance, and possibly some bias, which can make the optimiza-

tion of fairness and effectiveness suboptimal. For example, an item with under-estimated

41

relevance and high uncertainty might never get presented to users since both optimizing

fairness and optimizing effectiveness will rank irrelevant items to the lower positions of

the ranked lists. No presentation will make this item hard to collect feedback to effectively

update its relevance estimation. However, this item might be actually relevant and we

will know its relevance if more user feedback is collected to reduce the uncertainty in its

relevance estimation. Although many existing methods can give an unbiased estimation

of relevance [13, 14], the uncertainty (i.e., variance) in this estimation might still make the

relevance estimation unreliable, which will make them deliver suboptimal ranking results.

To address uncertainty, we propose a Marginal-Certainty-aware Fair ranking algorithm

called MCFair, which jointly optimizes effectiveness and fairness.

4.2.1 Gradient-based Optimization Framework

In this section, we introduce a gradient-based ranking optimization framework. As

shown in Figure 2.1, at time step t, one user issues a query q and the objective of the

framework is to find the optimum ranked list πt that jointly maximizes effectiveness and

fairness:

max
πt

Obj(q, t) = eff(q, t) +αfair(q, t) (4.1)

where α is the coefficient to balance the two utility. According to Eq. 2.5 and Eq. 2.7, we

can reorganize the effectiveness as:

eff(q, t) = cNDCG@ks =
1

DCG@ks(π∗)

t∑
τ=1

γ t−τDCG@ks(πτ) (4.2)

In this dissertation, we will adopt ks (defined in Eq. 2.14) as the cutoff for ranking effec-

tiveness optimization unless explicitly specified. Besides the cutoff, we will set γ = 1 in

Eq. 4.2 for simplicity, and we will relax it to all γ within [0,1] in later discussion. By

ignoring the constant DCG@ks(π∗), we can get the eff as:

42

eff(q, t) = cNDCG@ks

=
t∑

τ=1

DCG@ks(πτ)

=
t∑

i=1

k∑
j=1

pjR(πi [j])

=
∑

d∈D(q)

(t∑
i=1

k∑
j=1

pjR(d)1πi [j]==d

)
=

∑
d∈D(q)

R(d)
(t∑
i=1

k∑
j=1

pj1πi [j]==d

)
=

∑
d∈D(q)

R(d)E(d)

(4.3)

where pj is the examination probability of jth rank and πi [j] indicates the jth item in user

i’s ranked list πi . E(d) is the cumulative exposure defined Eq. 2.10. To maximize eff(q, t),

we should allocate more exposure E(d) to items with greater relevance R(d).

At time step t, the objective defined in Eq. 4.1 is equivalent to finding πt to maximize

the marginal objective, denoted as ∆Obj(q, t):
max
πt

Obj(q, t) ≡max
πt

Obj(q, t)−Obj(q, t − 1)

= max
πt

∆Obj(q, t)

= max
πt

∆eff(q, t) +α∆fair(q, t)

(4.4)

where ∆Obj(q, t) is the increment of objective at time step t. ≡ means equivalence. The

equivalence is due to the fact that the ranked list πt happens time step t and does not

change Obj(t − 1). To optimize ∆Obj(q, t), we take the first order approximation of the

above marginal objective ∆Obj(q, t) by considering marginal exposure ∆E’s influence:

∆Obj(q, t) ≈
∑

d∈D(q)

∂eff
∂E(d)

∆E(d) +α
∑

d∈D(q)

∂fair
∂E(d)

∆E(d)

=
∑

d∈D(q)

R(d)∆E(d)

+α
∑

d∈D(q)

4
n(n− 1)

(
R(d)

∑
l

E(l)R(l)−E(d)
∑
h

R2(h)

)
︸ ︷︷ ︸

B(d)

∆E(d)

=
∑

d∈D(q)

(R(d) +αB(d))︸ ︷︷ ︸
g(d)

∆E(d)

= ⟨−→g , ∆
−→
E ⟩

(4.5)

43

where −→g is [g(d) ∀d ∈ D(q)], the vector form of gradients, ⟨,⟩ denotes dot product. The

marginal objective at time step t can be approximated by the dot product of gradient
−→g and marginal exposure ∆

−→
E at time step t, i.e. ⟨−→g , ∆

−→
E ⟩. Actually, the gradient of

effectiveness is R(d), regardless of whether γ = 1 or 0 ≤ γ ≤ 1, since γ only affect how

we weight the historical DCGs (see Eq. 4.2) in effectiveness and historical DCGs will

not affect the current DCG at time step t, i.e., the marginal effectiveness. So, the above

derivation still holds when 0 ≤ γ ≤ 1. The marginal exposure ∆
−→
E is the exposure each

item will get at time step t, i.e., pj in Eq. 4.3. Since pj ∈ (0,1) is relatively small, the

objective’s first-order approximation should approximate ∆Obj(q, t) well. Furthermore,

we can reformulate ∆Obj(q, t) as:

∆Obj(q, t) ≈
∑

d∈D(q)

g(d)∆E(d) =

|D(q)|∑
k=1

g(πt [k])pk (4.6)

where πt [k] is the kth item in the ranklist πt. To maximize the above ∆Obj(q, t), we first

introduce the Rearrangement Inequality (refer to Section 10.2, Theorem 368 in [89]).

Lemma 1. Given 0 ≤ x1 ≤ x2 ≤ ... ≤ xn and y1 ≤ y2 ≤ ... ≤ yn, we have:
n∑
i=1

xσ (i)yi ≤
n∑
i=1

xiyi (4.7)

where σ can be any possible permutation.

According to the above rearrangement inequality, we should let items with greater

gradient g(d) get greater examination probability pk in order to maximize ∆Obj(q, t). By

assuming that pk drops as rank k increases, we can maximize ∆Obj(q, t) by generating a

ranked list πt that arranges items according to their gradients g in descending order:

πt = argtopk

(
g(d)|∀d ∈D(q)

)
(4.8)

where k is the length of ranked list πt.

Aside from optimization, in this dissertation, we also reveal an interesting relation

between effectiveness and fairness. When fairness constraint is strictly satisfied and un-

fairness is reduced to zero, cNDCG@ks is actually fixed. Then, according to Eq. 2.11, we

can reduce the unfairness to zero when items get exposure as:

Ē(d) =
R(d)∑
h∈D R(h)

Esum ∀d ∈D(q) (4.9)

where the total exposure Esum =
∑
d∈D E(d). By setting E(d) to Ē(d) in Eq. 4.3, we can get

the cNDCG@ks as:

44

cNDCG@ks =
∑

d∈D(q)

R(d)E(d)

=

∑
d∈D(q)R

2(d)∑
h∈D R(h)

Esum

(4.10)

where we still assume γ = 1 and ignore the normalization. From the above derivation, we

could know that cNDCG@ks is fixed as long as the fairness constraint is strictly satisfied,

no matter which algorithm we use to reach fairness. Although cNDCG@ks is fixed, it still

leaves us much freedom to improve the top ranks’ effectiveness cNDCG@kc (kc < ks) as well

as to improve effectiveness when some tolerance of fairness is allowed.

4.2.2 Uncertainty-aware Ranking Optimization

In this section, we will extend the above gradient-based ranking optimization frame-

work to be uncertainty-aware. In the above ranking optimization, we optimize ranking in a

post-processing setting where relevance R is already well-estimated prior to ranking opti-

mization, and we can calculate g in Eq. 4.5 as the ranking score based on the pre-estimated

relevance. Such an assumption means we optimize ranking in a post-processing manner.

However, in real-world applications, relevance estimation and ranking optimization are

often entangled in an online setting, where ranking optimization takes place while rele-

vance estimation is still being learned. The online setting brings us a problem relevance

estimation is often not perfect and contains uncertainty (variance). In this section, we

focus on the scenario where relevance is estimated online with uncertainty.

To analyze uncertainty, we first accumulate the uncertainty of all candidate items:

ˆuncert(q, t) =
∑

d∈D(q)

Variance(R̂(d)) (4.11)

where R̂(d) is item d’s relevance estimation2 and Variance(R̂(d)) is the variance of R̂(d);

we leave co-variance to future work. As for how to estimate relevance, we will discuss it

in S4.2.3. Being uncertainty-aware, we formulate the ranking objective as:

max
πt

Obj(q, t) = êff(q, t) +α ˆfair(q, t)− β ˆuncert(q, t) (4.12)

where êff and ˆfair are the estimated effectiveness and fairness, calculated by substituting R

with R̂ in Eq. 4.3 and Eq. 2.11.

Although our goal is to jointly maximize effectiveness and fairness, we still include the

2Notation with aˆis used to denote something is an estimation.

45

negative ˆuncert as a third goal to decrease the uncertainty when optimizing πt. We follow

the assumption that decreasing uncertainty to get a more certain relevance estimation for

candidate items can help better optimize effectiveness and fairness, which is later verified

by our experimental results. To optimize the above ranking objective, we follow Eq. 4.4

and Eq. 4.5 to take the first order approximation of the marginal objective by considering

marginal exposure ∆E(d),

∆Obj(q, t) ≈
∑

d∈D(q)

(
∂êff
∂E(d)

+α
∂ ˆfair
∂E(d)

+ β
−∂ ˆuncert
∂E(d)

)
∆E(d)

=
∑

d∈D(q)

(
R̂(d) +αB̂(d) + βM̂C(d)

)
︸ ︷︷ ︸

ûg(d)

∆E(d)

= ⟨−−→̂ug , ∆
−→
E ⟩

(4.13)

where M̂C denotes Marginal Certainty. Recall that in Eq. 4.8, directly using ûg(d) as rank-

ing scores to generate the ranklist πt can help optimize the ranking objective. By optimiz-

ing such ranking objective, we automatically get a marginal-certainty-aware exploration

strategy. With this strategy, items bringing greater marginal certainty M̂C will be boosted

in ûg to increase their exposure. We refer to the marginal certainty based fairness opti-

mization method as MCFair. We also notice a recent related work UCBRank [14], which

directly boosts items’ ranking scores with uncertainty for exploration. Our marginal-

certainty-aware exploration strategy is different from UCBRank, as we consider marginal

(un)certainty instead of the uncertainty itself. And we believe that marginal (un)certainty

is more effective in terms of exploration. For example, if there exit some items of high

uncertainty and such uncertainty cannot be reduced with more user interaction, i.e., low

marginal certainty, we shouldn’t boost their scores because boosting them cannot reduce

the uncertainty of the relevance estimation. Therefore we adopt marginal (un)certainty

because we think it could better guide the exploration than the uncertainty itself.

4.2.3 Unbiased Relevance Estimator

The aforementioned gradient-based ranking optimization framework does not depend

on the specific choice of relevance estimator. Here we introduce unbiased relevance es-

timator we adopt in this work. As user feedback could be biased relevance indicator, we

follow previous works [13, 14] and use an unbiased estimator of the relevance:

46

R̂(d) =
cumC(d)
E(d)

(4.14)

where cumC(d) is the cumulative clicks computed by:

cumC(d) =
t∑

i=1

k∑
j=1

ci,j1πi [j]==d (4.15)

The proof of unbiasedness can be found in [13, 14]. And we can also compute R̂(d)’s

variance by:

Variance[R̂(d)] =

∑t
i=1

∑k
j=1 Var[ci,j]1πi [j]==d

E(d)2 (4.16a)

=

∑t
i=1

∑k
j=1(Ec[c

2
i,j]−E2

c [ci,j])1πi [j]==d

E(d)2 (4.16b)

=

∑t
i=1

∑k
j=1(p(ci,j = 1)− p(ci,j = 1)2)1πi [j]==d

E(d)2 (4.16c)

=

∑t
i=1

∑k
j=1(pjR− p

2
j R

2)1πi [j]==d

E(d)2 (4.16d)

<

∑t
i=1

∑k
j=1pjR1πi [j]==d

E(d)2 (4.16e)

=
RE(d)

E(d)2 (4.16f)

<
1

E(d)
(4.16g)

For simplicity, we use above upper bound as the variance. In Eq. 4.16a, we treat R̂(d) as a

linear combination of ci,j to get the variance. In Eq. 4.16c, ci,j = c2
i,j and Ec[ci,j] = p(ci,j =

1) since ci,j is binary random variable. With above variance, we could get the M̂C(d) as:

M̂C(d) =
1

E(d)2 (4.17)

By substituting M̂C(d) to Eq. 4.13, we will get ranking score ûg(d). The ranked list

is generated by πt = argtopk
(
ûg(d)|∀d ∈ D(q)

)
. In this dissertation, we only use non-

parameterized relevance estimator in Eq. 4.14. We leave the analysis of parameterized

relevance estimators and its marginal uncertainty to future work.

4.3 Experiments
4.3.1 Experimental Setup

To evaluate our methods, we will conduct semi-synthetic experiments. We cover the

experimental settings in this section.

47

4.3.1.1 Datasets

In the experiment, we use two publicly available datasets, i.e., MQ2008 [90] and Istella-

S [91]. MQ2008 has three-level relevance judgments (from 0 to 2), and Istella-S has five-

level relevance judgments (from 0 to 4). MQ2008 has about 800 queries and about 20

candidate documents for each query. Istella-S has about 33018 queries and about 103

candidate documents for each query. Queries in both datasets are divided into training,

validation, and test partitions.

4.3.1.2 Baselines

To evaluate the proposed method, we compare the following baselines,

• TopK. Sort items according to relevance R̂(d), i.e., the first part of ûg(d) in Eq. 4.13.

• FairK. Sort items according to the gradient of fairness B̂(d), i.e., the second part of

ûg(d) in Eq. 4.13.

• ExploreK. Sort items according to marginal certainty M̂C(d), i.e., the third part of

ûg(d) in Eq. 4.13.

• FairCo [71]. Fair ranking algorithm based on a proportional controller. α ∈ [0.0,1000.0]

• ILP [8]. Fair ranking algorithm based on Integer Linear Programming (ILP).α ∈

[0.0,1.0]

• LP [6]. Fair ranking algorithm based on Linear Programming (LP).α ∈ [0.0,1000.0]

• MMF [9]. Similar to FairCo but focus on top ranks fairness. α ∈ [0.0,1.0]

• PLFair [11]. Fair ranking algorithm based on Placket-Luce optimization. α ∈ [0.0,1.0]

• MCFair. Our method. Sort items according to the gradient of fairness ûg(d) in

Eq. 4.13. α ∈ [0.0,1000.0]

Among the above ranking algorithm, TopK and ExploreK are unfair algorithms, while

the others are fair algorithms. Among the fair algorithms, FairK directly uses fairness’s

gradient to rank items and can be viewed as a reduced and degenerated version of MCFair

when MCFair’s α is set to a large number. Please note that FairK is also our proposed

method which is derived with the gradient-based optimization framework proposed in

Sec 4.2.1. Except FairK, all other fair ranking algorithms have trade-off parameters to

balance effectiveness and fairness, referred to as α. Given a greater tradeoff parameter α,

the fair algorithms including FairCo, ILP, LP and MCFair care more about fairness, i.e.,

48

less tolerance for unfairness, which usually sacrificing effectiveness. For example, MCFair

can increase α in Eq. 4.12 to give a higher weight to fairness during optimization. For

different fair algorithms, α may lie in different range. For FairCo, LP, and MCFair, α are

within [0.0,+∞], and we adopt α ∈ [0.0,1000.0] in our experiment. For ILP, α ∈ [0.0,1.0].

In this dissertation, we do not tune and select one α for each baseline when comparing

each baseline. The reason is that different ranking applications can have different fairness

requirements, and one α for each baseline is not enough for covering different fairness

requirements. To make a comprehensive comparison, we compare baselines for all α

within each baseline’s respective ranges instead of one particular tuned α within its range.

Detailed comparison method can be found at Sec 4.3.2.2. Besides, we limit our discussion

within the scope of ranking fairness. UCBRank [14] is not chosen as a baseline since it

does not address the ranking fairness problem.

During implementation, we notice that methods LP and ILP are highly time-consuming

as their decision variable quadratically increases with the number of candidates. Consid-

ering the time cost ((see Table. 4.1)), we filtered out queries with more than 20 documents

for MQ2008 and we didn’t evaluate ILP and LP on the larger dataset, i.e., the Istella-S

dataset.

4.3.1.3 Ranking Service Simulation

Following the workflow in Figure 2.1, at each time step, a simulated user will issue a

query by randomly sampling a query from the training, validation, or test partition. Then

a ranking algorithm will construct a ranklist π of candidate items and present it to the

simulated user. To simulate user’s click on the ranklist π, we need to simulate the rele-

vance and examination (details in S2.3). Following [74], the relevance probability of each

document-query pair (d,q) is simulated according to its relevance judgements y as P (r =

1|d,q,π) = ϵ+ (1− ϵ) 2y−1
2ymax−1 where ymax is the maximum value of relevance judgement y.

ymax can be 2 or 4 depending on the datasets. Aside from relevance, following [13, 71], we

also simulate user’s examination probability on π as, P (e = 1|d,π) = 1
log2(rank(d|π)+1) . We

only simulate users’ examination behavior on top ranks, and we set ks to 5 throughout the

experiments. For simplicity, we follow existing works [9, 13, 14, 71] to assume that users’

examination P (e = 1|d,π) is known in experiment as many existing works [74, 86, 87, 92]

49

have been proposed for it. With simulated relevance and examination behavior, we sample

and collect clicks with Eq. 2.13.

Aside from the simulated users’ behavior, we notice that LP and ILP methods were

originally proposed with the assumption that relevance was already well-estimated prior

to ranking optimization. However, in most real-world systems, ranking optimization and

relevance learning is carried out at the same time. To give a comprehensive comparison of

different methods, we will compare two settings. The first setting is the post-processing

setting where true relevance R is already given. The second one is the online setting,

where ranking optimization happens while relevance estimation is still being learned. In

the post-processing setting, all the ranking methods in Section 4.3.1.2 are based on true

relevance R, and we assume true relevance R is known in advance. Our method MCFair

will set β as 0. In the online setting, all baselines are based on the relevance estimation

R̂ in Eq. 4.14 to perform ranking optimization, and we assume true relevance R is not

known at all. Our method MCFair will set β to 100 unless otherwise explicitly specified,

as 100 works well across all of our experiments. For MQ2008, we simulate 104 and 105

steps for post-processing and online settings, respectively. The online setting requires

more iterations to learn relevance. For Istella-S, we simulate 106 and 107 steps for post-

processing and online settings, respectively.

4.3.1.4 Evaluation

We use the cumulative NDCG (cNDCG) in Eq. 2.7 with γ = 0.995 to evaluate the

effectiveness at different cutoffs, 1 ≤ kc ≤ 5. Aside from effectiveness, unfairness defined

in Eq. 2.11 is used for unfairness measurement. We run each experiment five times and

report the average evaluation performance on the test partition of each dataset. Note that

the test partition was used only for evaluation and not for optimization or validation.

As we mentioned in Sec 4.3.1.2, we do not tune and select parameters (e.g., α) in this

dissertation . Significant tests are conducted with the Fisher randomization test [88] with

p < 0.05.

4.3.2 Results in the Post-processing Setting.

In this section, we show the results in the post-processing setting.

50

Table 4.1: Unfairness and average time for generating 1k ranklists during simulation in
the post-processing setting, where α, if available, are set to the maximum value. The
standard deviation is in the parentheses. By setting α to the maximum value, we compare
algorithms’ fairness capacity to mitigate unfairness. Time costs for ILP and LP on Istella-S
are estimated by only running 1k steps instead of the total simulation steps indicated in
Sec. 4.3.1.3. Due to the time cost, unfairness performances of ILP and LP on the larger
Istella-S dataset are NA in Table.

Methods Datasets
MQ2008 Istella-S MQ2008 Istella-S

Unfair algorithm unfairness Time (sec)
TopK 214.4(3.884) 19.45(0.047) 0.543(0.159) 0.572(0.131)

ExploreK 261.3(7.128) 3.452(0.040) 0.577(0.192) 0.700(0.053)
Fair algorithm

FairCo [71] 23.69(0.740) 0.038(0.005) 0.691(0.176) 0.607(0.015)
LP [8] 25.44(0.747) NA 4.036(0.157) ≥10 days
ILP [6] 47.55(1.718) NA 17.24(0.479) 1508.9(80.83)

MMF [9] 53.36(1.334) 0.154(0.007) 2.133(0.205) 6.876(0.475)
PLFair [11] 256.4(5.988) 3.700(0.062) 4.283(0.309) 4.366(0.080)
FairK(Ours) 23.16(0.742) 0.030(0.005) 0.627(0.201) 0.770(0.099)

MCFair(Ours) 22.68(0.735) 0.029(0.005) 0.631(0.195) 0.645(0.011)

1 2 3 4 5
Cutoff

100

150

200

cN
D

C
G

TopK

ExploreK

MMF

PLFair

FairCo

FairK(Ours)

MCFair(Ours)

ILP

LP

(a) MQ2008 dataset

1 2 3 4 5
Cutoff

50

100

150
200

cN
D

C
G

TopK

ExploreK

MMF

PLFair

FairCo

FairK(Ours)

MCFair(Ours)

(b) Istella-S dataset
Figure 4.1: cNDCG@cutof f in the post-processing setting. FairK and MCFair overlap.
PLFair and ExploreK overlap.

4.3.2.1 Can MCFair reach fairness in the post-processing setting?

In Table 4.1, we compare different methods’ capacity to reach fairness, where we pri-

oritize fairness by setting α, if available, as the its maximum value. As shown in Table 4.1,

51

20 100 300
Unfairness tolerance

100

150

200

cN
D

C
G

@
5

(a) MQ2008 (post-processing).

0 20 30
Unfairness tolerance

50

100

150

200

cN
D

C
G

@
5

(b) Istella-S (post-processing).

100 200 300
Unfairness tolerance

100
120
140

160

180

200

cN
D

C
G

@
5

TopK

ExploreK

MMF

PLFair

FairCo

FairK(Ours)

MCFair(Ours)

ILP

LP

3000 20000 50000
Unfairness tolerance

100

150

200

cN
D

C
G

@
5

(c) MQ2008 (online).

50 1000 5000
Unfairness tolerance

50

100

150

cN
D

C
G

@
5

(d) Istella-S (online).

100 200 300
Unfairness tolerance

100
120
140

160

180

200

cN
D

C
G

@
5

TopK

ExploreK

MMF

PLFair

FairCo

FairK(Ours)

MCFair(Ours)

ILP

LP

Figure 4.2: Effectiveness vs. unfairness tolerance in the post-processing setting (a,b) and
the online setting (c,d). Given the same unfairness, the higher curves or points lie, the
better their performances are.

fair ranking algorithms FairCo, LP, MCFair and FairK can significantly outperform unfair

ranking algorithms in term of unfairness mitigation. The success of MCFair and FairK

validates our assumption that fairness’s gradient can be directly used as ranking scores to

optimize fairness. Besides, ILP and MMF show a slightly inferior fairness capacity and

PLFair can not mitigate unfairness. More detail discussion and possible reason for their

poor performance is in the next section.

Aside from unfairness, we also show the cNDCG performance of different prefixes in

Figure 4.1 where α is set to the maximum for each method. In Table 4.1, unfair ranking

method TopK can get the highest cNDCG performance as TopK only cares about effec-

tiveness and sacrifices fairness. ExploreK only explores items and thus does not optimize

fairness or effectiveness. All the fair algorithms except MMF and PLFair have very similar

cNDCG@5 on both datasets which empirically shows that cNDCG@ks (here ks = 5) is

fixed as we derived in Eq. 4.10. Although we use γ = 1 for derivation in Eq. 4.10

while using γ = 0.995 to calculate cNDCG@ks, similar cNDCG@ks still holds. Despite

52

similar cNDCG@5 and fairness, MCFair and FairK still significantly outperform other fair

algorithms at the top ranks’ effectiveness. And we believe higher performance at top ranks’

is more important as users usually pay more attention (i.e., higher examining probability)

to them.

Besides fairness capacity and effectiveness, we also empirically compare the time effi-

ciency. In Table 4.1, ILP and LP are really time-consuming, while PLFair and MMF also

need more time than other algorithms. While the other algorithms have similar time costs.

4.3.2.2 Can MCFair reach a better balance between fairness and

effectiveness?

In the previous sections, we compare algorithms when they only care about fairness.

However, such a comparison is not sufficient since different ranking systems may have

different fairness and effectiveness requirements. To give a comprehensive comparison of

different ranking methods, we compare ranking methods’ effectiveness-fairness balance

given different fairness requirements.

In Figure 4.2a and Figure 4.2b, we show the balance between fairness and effective-

ness in the post-processing setting. To generate the balance curves, we incrementally

sample α from the minimum value to the maximum value within α’s ranges indicated

in Section 4.3.1.2. After sampling, we carry out five independent experiments for each α

to get the effectiveness and fairness pair based on the average performance of the five

independent experiments. Then we connect different α’s effectiveness-fairness pair to

form a curve in Figure 4.2. The curves start from the right to the left as α increases,

and we care more about fairness. Since TopK, ExploreK and FairK don’t have trade-off

parameters, each one of them only have one single pair of effectiveness and fairness and

their performances are shown as single points in Figure 4.2. Besides, the left bottom part

of curves means caring fairness only, which corresponds to the results in Table 4.1 and

Figure 4.1. All curves show a tradeoff between effectiveness and fairness, which means that

mitigating more unfairness usually sacrifices effectiveness. The reason behind this trade-

off is that achieving fairness will bring constraints on optimizing effectiveness. Among

all fair methods, our method MCFair significantly outperforms all other fair methods

where MCFair reaches the best cNDCG given the same unfairness, i.e., MCFair’s curve

53

3000 20000 40000
Unfairness tolerance

185

190

195

200

cN
D

C
G

@
5

MCFair(Ours)

FairCo

FairCo w/ Explor.

Figure 4.3: FairCo boosted by exploration with marginal certainty based exploration.
(MQ2008)

Figure 4.4: Ablation study of MCFair with different combinations of the three parts in Eq.
4.12 on MQ2008. Only considering one part is shown as a scatter point. When considering
more than one part, we will get a curve that is generated by increasing the weight of the last
part. For example, for Eff.+Uncert.+Fair. and Eff.+Fair., we increase the weights of Fair.
i.e., the fairness part when optimizing a ranked list. For Eff.+Uncert. and Fair.+Uncert.,
we increase the weights of uncertainty. Arrows show how curves develop when increasing
the weight of the last part.

lies higher. ILP, MMF, and PLFair can also show the tradeoff between effectiveness and

fairness, although they have poor fairness capacities (discussed in Sec 4.3.2.1). As for the

possible reason, the integer linear programming method used by ILP may not be effective

in optimizing fairness. MMF actually follows a slightly different definition of fairness

which require fairness at any cutoff should be fair. As for PLFair, PLFair tries to learn

the ranking score that optimizes fairness based on the feature representation (the original

setting in [11]). However, the feature representation is originally designed for relevance

which makes PLFair suboptimal.

4.3.3 Results in the Online Setting.

In this section, we analyze the results in the online setting.

54

4.3.3.1 Can MCFair work in the online setting?

To study this problem, we show the balance between the effectiveness and fairness

of the online setting in Fig. 4.2c and Fig. 4.2d. Similar to the post-processing setting,

our method MCFair still outperforms all other baselines in the online setting. Since most

of the results are similar to the post-processing setting in S4.3.2.2, we only discuss the

difference. In Fig. 4.2c and Fig. 4.2d, TopK cannot reach the highest effectiveness and

FairK also can not reach the lowest unfairness in the online setting, which is different from

the post-processing setting. We think the reason for the difference is that they naively trust

the uncertain relevance estimation, which makes effectiveness optimization and fairness

optimization fail (more discussion in S4.3.3.3).

4.3.3.2 Can marginal certainty help boost existing fair methods’

performance?

In this section, we investigate whether the marginal certainty-based exploration can

boost existing fair methods. We mainly focus on how to boost FairCo and leave how

to boost other fair methods for future study. Specifically, we directly add M̂C(d) (see

Eq. 4.17), the marginal certainty, to FairCo’s ranking score, referred to as FairCo w/ Explor.

As shown in Figure 4.3, FairCo w/ Explor. outperforms FairCo as it reaches better cNDCG

given the same unfairness. FairCo w/ Explor.’s better performance shows marginal cer-

tainty can effectively boost FairCo. Our method MCFair still significantly outperforms

FairCo w/ Explor.

4.3.3.3 Ablation study.

In this section, we conduct an ablation study to evaluate the significance of each part

of MCFair. Since the ranking score of MCFair ûg(d) in Eq. 4.13 has three parts, corre-

sponding to effectiveness, fairness, and uncertainty respectively, there are a total of seven

((3
1) + (3

2) + (3
3) = 7) combinations that need to be evaluated. The ablation results of each

combination are shown in Figure 4.4. For the ablation results, considering more than

two parts are shown as balance curves while considering only one part is shown as single

points. In Figure 4.4, there is a very interesting cycle formed by the curves. In the cycle,

considering all three parts, i.e., Eff.+Fair.+Uncer., outperform all other combinations since

Eff.+Fair.+Uncer. can reach better effectiveness given the same unfairness.

55

4.4 Conclusions
In this work, we study the critical problem of relevance-fairness balance in online rank-

ing settings. We propose a novel Marginal-Certainty-aware Fair Ranking algorithm named

MCFair. MCFair jointly optimizes fairness and user utility while relevance estimation is

constantly updated in an online manner. With extensive experiments on semi-synthesized

datasets, MCFair shows its superior performance compared to other fair ranking algo-

rithms.

CHAPTER 5

FARA: FUTURE-AWARE RANKING

ALGORITHM FOR FAIRNESS OPTIMIZATION

Ranking systems are the key components of modern Information Retrieval (IR) appli-

cations, such as search engines and recommender systems. Besides the ranking relevance

to users, the exposure fairness to item providers has also been considered an important

factor in ranking optimization. Many fair ranking algorithms have been proposed to

jointly optimize both ranking relevance and fairness. However, we find that most existing

fair ranking methods adopt greedy algorithms that only optimize rankings for the next

immediate session or request. As shown in this dissertation, such a myopic paradigm

could limit the upper bound of ranking optimization and lead to suboptimal performance

in the long term.

To this end, we propose FARA, a novel Future-Aware Ranking Algorithm for ranking

relevance and fairness optimization. Instead of greedily optimizing rankings for the next

immediate session, FARA plans ahead by jointly optimizing multiple ranklists together

and saving them for future sessions. Specifically, FARA first uses the Taylor expansion

of the fairness objective to investigate how future ranklists will influence the overall fair-

ness of the system. Then, based on the analysis of the Taylor expansion, FARA adopts a

two-phase optimization algorithm where we first solve an optimal future exposure plan-

ning problem and then construct the optimal ranklists according to the optimal future

exposure planning. Theoretically, we show that FARA is optimal for ranking relevance

and fairness joint optimization. Empirically, our extensive experiments on three semi-

synthesized datasets show that FARA is efficient, effective, and can deliver significantly

better ranking performance compared to state-of-the-art fair ranking methods. We make

our implementation public at https://github.com/Taosheng-ty/QP_fairness/.

https://github.com/Taosheng-ty/QP_fairness/

57

5.1 Introduction
Ranking systems are one of the important cornerstones of information retrieval (IR).

Existing ranking systems are usually constructed to optimize ranking relevance with the

Probability Ranking Principle (PRP) [93] where items of greater likely relevance should

be ranked higher. The PRP is a user-centered ranking strategy that helps save users

energy and time since users could satisfy their needs with the top-ranked items [16]. How-

ever, recent research has shown that, besides users, item providers also draw utility from

ranking systems, and the PRP could result in severe unfairness for item providers [6, 8].

Particularly, the PRP always assigns a few top items with high-rank positions. Those top

items usually get the majority of exposure while other items rarely get exposure, although

other items might still be relevant [1, 94, 95, 96]. The unbalanced exposure leads to

unfair opportunities and unfair economic gains for item providers. Such unfairness will

eventually force unfairly treated providers to leave the system, and fewer options will be

left for users [4]. Therefore, IR researchers have argued that ranking relevance and fairness

are both important for modern ranking systems [6, 10]. Many fair ranking algorithms have

been proposed to optimize both of them jointly [94, 97].

However, existing fair algorithms are mostly greedy algorithms and could only deliver

suboptimal ranking performance in the long run. In particular, existing fair ranking

algorithms [6, 8, 11, 71, 98] usually behave greedily to sequentially produce the locally

optimal ranklist for the next immediate session without being aware of the influence of

future sessions1 The unawareness could lead to unmitigated ranking conflict between

relevance and fairness optimization. For example, imagine a case that there are in total

3 items in consideration, item A, item B, and item C, where item A is the most relevant

one and item C is the least relevant one. Ranklist [A,B,C] is the ranklist to maximize

ranking relevance. We now consider a scenario where item C is severely unfairly treated

in history. To optimize exposure fairness, we need to allocate item C more exposure by

boosting item C to a higher position. However, If we try to greedily boost item C within

the next immediate session, it is highly likely that item C will be boosted to the first rank

to get the maximum exposure and the resulting ranklist is [C,A,B]. However, Ranklist

1In this dissertation, we define a session as a query issued by a user.

58

[C,A,B] is of poor ranking relevance due to the ranking conflict that the least relevant

item (item C) is put on the most important rank (the first rank).

Intuitively, the ranking conflict can be smoothed if we plan ahead and jointly opti-

mize multiple future sessions’ ranklists together instead of greedily optimizing the next

immediate session. For example, the multiple ranklists after joint optimization can be

[[A,C,B], [A,C,B], ...], where item C is smoothly boosted in multiple ranklists and the

most relevant item, i.e., item A, is still ranked the highest. Based on the above idea,

we propose FARA, a novel Future-Aware Ranking Algorithm for relevance and fairness

optimization. Briefly, FARA precomputes and jointly optimizes multiple ranklists together

and saves them for future use. Particularly, to be able to plan for the future, FARA first

uses the Taylor expansion of the fairness objective to investigate how future ranklists will

influence fairness. Then, based on the influence, FARA uses a two-phase optimization

to jointly optimizes multiple ranklists together for future use. In phase 1, we solve an

exposure planning problem and get the optimal future planning for item exposure. In

phase 2, we construct the optimal ranklists according to the optimal future planning for

item exposure. We prove FARA’s optimum in terms of ranking relevance and fairness

joint optimization in S 5.3. Extensive experiments on three semi-synthesized datasets

also demonstrate FARA’s effectiveness and efficiency compared to existing fair ranking

algorithms (S 5.4).

5.2 Proposed Method
Most existing fair algorithms are greedy algorithms, i.e., they sequentially construct

the locally optimal ranklist for the next immediate session. Therefore they usually fail

to optimize the construction procedure if we expect multiple sessions will come for the

same query in the future. To mitigate this gap and reach a global optimal for a query,

we propose to (i) plan ahead and precompute multiple ranklists for future use (S 5.2.1)

and (ii) jointly optimize those ranklists together to maximize both fairness and ranking

relevance (S 5.2.2 & S 5.2.3). We hypothesize that jointly optimizing multiple ranklists

can construct better ranklists compared to sequentially greedily optimizing one single

ranklist at each time step. Such hypothesis is verified by both the theoretical analysis in

S 5.3 and the empirical results in S 5.4.2.

59

5.2.1 Future-aware Ranking Objective

We first propose a ranking fairness objective to plan and optimize the future ∆T ranklists

for a query q. Specifically, when we are at time step t+1, the objective is to pre-compute the

optimal ranklistsB∗ = [πt+1, ...,πt+∆T] that can maximize the marginal fairness ∆ ˆfair(q, t, t+

∆T),

B∗ = argmax
B=[πt+1,...,πt+∆T]

∆ ˆfair(q, t, t+∆T) (5.1)

∆ ˆfair(q, t, t + ∆T) = ˆfair(q, t + ∆T) − ˆfair(q, t), and ˆfair is the estimated fairness. ˆfair is

calculated with Eq. 2.11 by substituting true relevance R with the estimated relevance,

denoted as R̂, since true relevance is mostly not available during optimization. Here max-

imizing the marginal fairness ∆ ˆfair(q, t, t+∆T) is equivalent to maximizing final fairness

ˆfair(q, t + ∆T) at time step t + ∆T . The reason for the equivalence is that ranklists B =

[πt+1, ...,πt+∆T] can only influence the marginal fairness from timestep t + 1 to timestep

t + ∆T rather than fairness before timestep t. Here, fairness evaluation in Eq. 2.11 is a

direct objective in our method.

To the best of our knowledge, there is no trivial algorithm to get the optimal ranklists

B∗ due to the discontinuity of ranking problem [72]. One example of discontinuity is

that increasing an item’s ranking score may not change the output ranklist, and fairness

stays the same unless the increased score can surpass another item’s score, and fairness

will experience a sudden change. To alleviate the discontinuity of B∗← argmaxB∆ ˆfair, we

propose a novel two-phase solution path by introducing a continuous variable, ∆E,

B∗ Vertical Allocation←−−−−−−−−−−−−−−−−
phase2

∆E∗(d)∀d ∈D(q)
argmax∆E←−−−−−−−−
phase1

∆ ˆfair (5.2)

where ∆E(d), also referred to as the planning exposure, is the marginal (or incremental)

exposure we plan to assign to item d within the next ∆T timesteps. ∆E∗(d) is the optimal

marginal exposure. We found that introducing ∆E helps to effectively maximize ∆ ˆfair in

phase 1 of our solution. In phase 2, we construct the optimal ranklists B∗ by allocating the

optimal exposure ∆E∗ to each item with a vertical allocation method (more details are in

S5.2.3).

To get ∆E∗, we carry out a Taylor series expansion to investigate how future exposure

will influence the fairness objective,

60

∆ ˆfair(q, t, t+∆T) =
∑

d∈D(q)

∂ ˆfair
∂E(d)

∆E(d)

+
1
2

∑
dx∈D(q)

∑
dy∈D(q)

∂2 ˆfair
∂E(dx)∂E(dy)

∆E(dx)∆E(dy)

=
∑

d∈D(q)

Ĝ(d)∆E(d)

− 1
2

∑
dx∈D(q)

∑
dy∈D(q)

Ĥ(dx,dy)∆E(dx)∆E(dy)

=
−→̂
G ·∆−→E − 1

2
∆
−→
E T · Ĥ ·∆−→E

(5.3)

where ∆E(d) = Et+∆T (d) −Et(d), the exposure increments. Ĝ and Ĥ are the first and the

second order derivative, i.e., the gradient vector and the Hessian matrix, respectively,

Ĝ(d) =
4

n(n− 1)

(
R̂(d)

∑
l

Et(l)R̂(l)−Et(d)
∑
h

R̂2(h)

)
Ĥ(dx,dy) =

4
n(n− 1)

(
(

∑
d∈D(q)

R̂2(d))1x=y − R̂(dx)R̂(dy)
) (5.4)

By observing Eq. 2.11, we could derive two facts about the above second-order expansion

in Eq. 5.3. (i) The above second-order expansion is not an approximation, but equality

since (un)fairness in Eq. 2.11 is defined as a polynomial of E with a degree of two, and its

derivative of order higher than two is zero. (ii) Since (un)fairness in Eq. 2.11 is defined as

a sum of squares, the second order derivative Ĥ is semi-definite. Being equality, Eq. 5.3

allows us to correctly estimate future fairness given marginal exposure ∆E even when

we consider a long-term future (large ∆T and ∆E). Based on the correct future fairness

estimation, it is possible to find the optimal marginal exposure planning, denoted as ∆E∗,

that can maximize future fairness. Since Ĥ is semi-definite, Quadratic Programming-

based (QP) optimization is valid to find ∆E∗. We give the specific QP problem formulation

to find ∆E∗ in S 5.2.2 and leave constructing optimal ranklists B∗ from ∆E∗ in S 5.2.3.

5.2.2 Phase 1: Future Exposure Planning

When giving the QP problem formulation, we noticed that existing ranking fairness

optimization usually considers two settings: (i) the post-processing setting [6, 8, 10]

where relevance is assumed to be known or well estimated in advance; and (ii) the online

setting [9, 71] where fairness is optimized while relevance is still being learned. To con-

sider both settings, we first illustrate the QP problem formulation in the post-processing

61

setting in S 5.2.2.1 and then extend it to work in the online setting in S 5.2.2.2.

5.2.2.1 The post-processing setting

To get the optimal exposure planning ∆E∗, we propose the following QP formulation

with ∆E(d)∀d ∈D(q) as decision variables,

max
∆E

∆ ˆfair(q, t, t+∆T) (5.5a)

s.t.
∑

d∈D(q)

∆E(d) =
∆T∑
i=1

ks∑
j=1

Pj (5.5b)

∑
d∈D(q)

∆E(d)R̂(d) ≥ (1−α)
∆T∑
i=1

ks∑
j=1

PjR̂(dorderj) (5.5c)

∆E(d) ≥ 0,∀d ∈D(q) (5.5d)

∆E(d) ≤
∆T∑
i=1

P1,∀d ∈D(q) (5.5e)

where ks is the length of ranklists, Pj is the examining probability at rank j. Eq.5.5b indi-

cates that the sum of items’ marginal exposure should equal the sum of the ∆T ranklists’

exposure. In Eq.5.5c, we introduce the NDCG constraint, where R̂(dorderj) means the jth

largest estimated relevance. According to Eq.(2.3&2.5),
∑
d∈D(q)∆E(d)R̂(d) indicates the

DCG and
∑∆T
i=1

∑ks
j=1 PjR̂(dorderj) indicates IDCG. Then, it is straightforward that (1 − α)

indicates the minimum NDCG requirement we want to guarantee. In the post-processing

setting, relevance is assumed to be given or already well-estimated prior to ranking opti-

mization. Eq.5.5d indicates that an item’s marginal exposure ∆E(d) should be no less than

0. In Eq.5.5e, ∆E(d) should be more than the accumulation of the first rank’s exposure in

the ∆T ranklists because an item should be unique in a ranklist and there are ∆T ranklists

under consideration. Here we assume that the first rank’s exposure is the largest and

exposure drops from the top to the lower ranks.

5.2.2.2 The online setting.

In the online setting, ranklists are optimized while relevance is still being learned.

How to actively explore items and get more accurate relevance for ranking optimization is

critical. Yang et al. [14] show that a more accurate relevance estimation for an item can be

achieved by exposing an item more because more exposure leads to more interaction with

users. Based on this, we do explorations by setting a minimum exposure requirement for

62

items and propose the following QP formulation,

max
∆E

∆ ˆfair(q, t, t+∆T)− β
∑

d∈D(q)

s(d) (5.6a)

s.t. Eq. (5.5b,5.5c,5.5d,5.5e) (5.6b)

s(d) ≥ 0,∀d ∈D(q) (5.6c)

s(d) +∆E(d) +Et(d) ≥ Emin,∀d ∈D(q) (5.6d)

where β indicates the importance of exploration, s(d) ∀d ∈ D(q) are slack variables to

encourage exploration. In other words, both s(d) and ∆E(d) ∀d ∈ D(q) are decision vari-

ables in the setting. In Eq. 5.6d, Emin is the minimum exposure requirement, Et(d) is item

d’s exposure accumulated till time step t, and ∆E(d) is the marginal exposure we plan

to allocate to item d within the next ∆T steps. s(d) can be interpreted as the additional

exposure still needed to satisfy the minimum exposure requirement after the next ∆T

steps. When Et(d) ≥ Emin for item d, i.e., minimum exposure requirement is already

satisfied for item d, it is straightforward that s(d) will be 0 and will not contribute to the

ranking objective in Eq. 5.6a. When Et(d) < Emin, i.e. item d does not meet the minimum

exposure requirement, the objective in Eq. 5.6a will try to minimize s(d). In other words,

∆E(d) will be boosted in order to satisfy the constraint in Eq. 5.6d. With more exposure,

item d will be explored more. In this dissertation, we refer to the introduction of s as

Exploration. And we treat β in Eq. 5.6a and Emin as hyper-parameters to control the degree

of exploration.

As quadratic programming has been well studied, there are many available existing

solvers. In this dissertation, we use quadratic programming library qpsolvers2 within

python to solve Equation 5.5 and Equation 5.6 to get the optimal exposure planning ∆E∗.

5.2.3 Phase 2: Ranklists Construction

Following the solution path in Eq. 5.2, the next step is to construct the optimal ranklists

B∗ according to ∆E∗ as ∆E∗ has been solved in Phase 1. Here, we should allocate each item

exactly its optimal exposure ∆E∗ within B∗. However, we find that the allocation solution

of B is not unique, and they share the same aver-NDCG@ks (see Theorem 4). Therefore,

we additionally aim to find the optimal B∗ that can optimize all top ranks’ effectiveness,

2https://pypi.org/project/qpsolvers/

https://pypi.org/project/qpsolvers/

63

Algorithm 5.1: Vertical Allocation

1 Input: The optimal exposure planning ∆E∗, the number of planning sessions to
consider ∆T , the ranked list length ks, relevance estimation R̂.;

2 Initialize: ranking lists B∗(i)← [∅] for i ∈ range(∆T), set Ẽ(d)← 0 ∀d ∈D ;
3 for rnk ∈ [1,2, ...,ks] do
4 for sess ∈ [1,2, ...,∆T] do
5 Set1← {d|∆E∗(d)− Ẽ(d) ≥ Prnk};
6 Set2← {d|d < B∗(sess))};
7 if Set1∩ Set2 = ∅ then
8 Candidates← Set2
9 else

10 Candidates← Set1∩ Set2
11 d∗← argmax

d∈Candidates
R̂(d);

12 B∗(sess).append(d∗);
13 Ẽ(d∗)← Ẽ(d∗) + Prnk ;

14 Output: B∗;

i.e., aver-NDCG@kc, ∀kc ≤ ks. Optimizing top ranks’ effectiveness is important since users

usually pay more attention to top ranks.

Inspired by [4], we propose a vertical exposure allocation method in Algorithm 5.1 to

construct the optimal B∗ based on ∆E∗. The difference between a vertical allocation and a

horizontal allocation is the ranklist construction order. As shown in Fig. 5.1, a horizontal

allocation prioritizes earlier ranklists and first fills out all ranks of the ith ranklist πi before

filling out πi+1. However, a vertical allocation prioritizes top ranks and fills out the ith

ranked items of all ranklists before filling out any (i + 1)th ranked item. Since top ranks

are usually more important, our proposed Algorithm 5.1 adopts a vertical allocation to fill

out B∗. In our proposed Algorithm 5.1, B∗ is the generated ∆T ranklists and B∗(sess,rnk)

denote the rnkth rank of the sessth ranklist. To fill out B∗(sess,rnk), we first construct

two item sets, items that have not been selected for this session (d < B(sess)), i.e., Set1,

and items that still have planned exposure left (∆E(d) − Ẽ(d) ≥ Prnk), i.e., Set2. Here,

examination probability Prnk serves as the margin, and Ẽ(d) stores the actual exposure

item d receives. If Set1∩ Set2 = ∅, it means that planned exposure has been fulfilled and

we only need to avoid repeated items in the same session. So we construct item candidates

from Set2 only. If Set1 ∩ Set2 , ∅, we construct item candidates from their intersect,

i.e., items that have not been selected for this session but still have planned exposure

64

Algorithm 5.2: FARA: Future-aware Ranking Algorithm

1 Input: The number of planning sessions to consider ∆T , fairness-effectiveness
tradeoff parameter α. And in the online setting, we need to additionally give the
exploration parameters β and Emin (see Eq. 5.6) ;

2 Initialize time step t← 0, initialize an empty dictionary B← {} to store ranked
lists, items’ exposure E← 0 and cumulative click cumC← 0;

3 while True do
4 t← t+ 1;
5 A user issues a query qt;
6 if qt <B then
7 B[qt] = [], i.e., add an empty list

8 if B[qt] is empty then
9 Get ∆E∗ by solving Eq. 5.5 (post-processing) or Eq. 5.6 (online);

10 Get B∗ with Algorithm 5.1;
11 Randomly shuffle B∗;
12 B[qt]←B∗;
13 Pop out a ranking list from B[qt] and present it;
14 Update cumulative click cumC and items’ exposure E;
15 Update the relevance estimation via Eq. 5.7;

left. Within Candidates, our algorithm selects the most relevant item from the candidate

set to fill out B∗(sess,rnk). Algorithm 5.1 is theoretically justified to accurately allocate

exposure ∆E∗ (see Theorem 2) and can construct optimal B∗ for aver-NDCG@kc ∀kc ≤ ks

(see Theorem in Sec.5.3).

Although inspired by the vertical method in [4], the proposed vertical allocation is

different from it. Yang et al. [4] focus on a certain share of exposure to be guaranteed

and have a complicated 3-step procedure, i.e., allocation, appending, and resorting, which

cannot be used to allocate ∆E∗ for our problem. The proposed allocation algorithm in this

dissertation uses up all ∆E∗, and the allocation procedure is less complicated and more

straightforward than those introduced by Yang et al. [4].

5.2.4 FARA: Future-Aware Ranking Algorithm

Combining Phase 1 and Phase 2, we propose a future-aware ranking algorithm for

fairness optimization, FARA, detailed in Algorithm 5.2. FARA serves users in an online

manner where we pre-compute B∗, the next ∆T ranklists, and randomly pop out one

ranklist from B∗ when needed. When B∗ is used up and empty, We will re-compute B∗ for

future ∆T timesteps. B[q] is used to store B∗ for query q. Besides, FARA does not depend

65

on any specific relevance estimation model, therefore, can be seamlessly integrated into

most existing ranking applications. In this dissertation, we follow works by [14] to use the

following unbiased estimator of relevance,

R̂(d) =
cumCt(d)
Et(d)

(5.7)

where

cumCt(d) =
t∑

i=1

ks∑
j=1

Ci,j1πi [j]==d (5.8)

is the cumulative clicks3. Moreover, it is worth noting that the relevance estimator can be

replaced with other relevance estimators as well.

5.3 Theoretical Analysis
Theorem 2. Algorithm 5.1 can theoretically guarantee ∆E(d) − Ẽ(d) ≤ Pks for at least |D | − ks

items.

Proof. Here we discuss the exposure allocation error bounds in Phase 2 of FARA, i.e.,

|Ẽ(d)−∆E(d)|, in Algorithm 5.1. We noticed that there are two possible scenarios of lines

6-12 in Algorithm 5.1:

Scenario 1: There exists a (rnk∗,sess∗) pair where Set1 ∩ Set2 = ∅. If this happens,

(ks,sess∗) will also have Set1 ∩ Set2 = ∅ since the size of Set1 and Set2 monotonically

decrease for lower rank of the same session. As Set2 is the set of unselected items for

a session, we know that there are at least |D | − ks items in Set2, i.e., |Set2| ≥ |D | − ks. If

Set1 ∩ Set2 = ∅, those |D | − ks items are not in Set1. In other words, there are at least

|D | − ks items that satisfy ∆E(d) − Ẽ(d) < Pks . Since ∆E(d) >> Pks and |D | >> ks when using

FARA, we still claim that Algorithm 5.1 correctly allocates exposure in this scenario.

Scenario 2: Set1 ∩ Set2 , ∅ ∀(rnk,sess) pair. Due to the margin Prnk in line 5 of

Algorithm 5.1, ∆E(d) ≥ Ẽ(d)∀d ∈D should always hold if Set1∩Set2 = ∅ never happens.

By considering ∆E(d) ≥ Ẽ(d) ∀d ∈ D and the identity
∑
d∈D(q)∆E(d) ≡

∑
d∈D(q) Ẽ(d), we

would know that ∆E(d) = Ẽ(d) ∀d ∈ D, which means exposures are perfectly allocated

according to ∆E(d).

Combing the two scenarios, the vertical allocation in Algorithm 5.1 can theoretically

guarantee ∆E(d)− Ẽ(d) ≤ Pks for at least |D | − ks items.

3We skip the proof of unbiasedness for the above estimator and refer interested readers to [14]

66

Theorem 3. FARA can reach the optimal NDCG with the given exposure planning.

Proof. Here we provide theoretical proof that vertical allocation, i.e., phase 2, can optimize

effectiveness (aver-NDCG) when exposure planning ∆E is given. Specifically, maximizing

aver-NDCG@kc in Eq. 2.8 is equivalent to

max
∑

d∈D(q)

R(d)E@kc(d) (5.9a)

s.t.
∑

d∈D(q)

E@kc(d) = Const. (5.9b)

0 ≤ E@kc(d) ≤ ∆E(d) ∀d ∈D (5.9c)

where normalization is ignored in Eq. 5.9a, the sum of top ranks exposure should be

a constant in Eq. 5.9b, and the top ranks exposure should be less than the total expo-

sure planning in Eq. 5.9c. According to Rearrangement Inequality [89], it is straight-

forward to know that aver-NDCG@kc, i.e., Eq. 5.9a, can be optimized by letting item of

greater relevance R get more exposure at top ranks, i.e., greater E@kc. In other words, we

should prioritize letting items of greater relevance R fulfill their exposure planning ∆E at

top kc ranks since E@kc is bounded in [0,∆E]. By assuming that aver-NDCG at higher

ranks is more important [93], we should maximize aver-NDCG@kc before maximizing

aver-NDCG@(kc + 1), ∀ 1 ≤ kc < ks. As we maximize aver-NDCG from top to lower ranks,

it is straightforward that the optimal way is to follow a greedy selection strategy to let an

item of greater relevance R fulfill its exposure planning ∆E at its highest possible ranks. In

Algorithm 5.1, the proposed vertical allocation exactly follows the above greedy selection

strategy to let item of greater relevance R (line 11 in Algorithm 5.1) fulfill its exposure

planning ∆E at the highest possible ranks (setting rank loops as the outer loop in 3 and

line 4 of Algorithm 5.1). So it can reach optimal effectiveness at the top ranks.

Theorem 4. Effectiveness and fairness are fixed when ∆E is fixed.

Proof. Given the same exposure planning ∆E, effectiveness (aver-NDCG@ks) and fairness

are fixed since we can substitute exposure planning ∆E(d) for Et@kc(d) in Eq. 2.9 and

substituting ∆E for E in Eq. 2.11, respectively. In other words, for any ranklist B∗, as long

as exposure planning ∆E can be accurately allocated in B∗, the effectiveness and fairness

67

Table 5.1: Datasets statistics. For each dataset, the table below shows the number of
queries, the average number of docs for each query, and the relevance annotation y’s range.

Datasets #Queries #Aver. Docs per Query y’s range

MQ2008 800 20 0− 2
MSLR-10k 10k 122 0− 4

Istella-S 33k 103 0− 4

are fixed.

5.4 Experiments
5.4.1 Experimental setup

5.4.1.1 Datasets

In this work, we use three public Learning-to-Rank (LTR) datasets: MQ2008 [90],

MSLR10k4 and Istella-S [91]. Datasets’ statistics are shown in Table 5.1. MQ2008 has

a three-level relevance judgment (from 0 to 2). MSLR10k and Istella-S have a five-level

relevance judgment (from 0 to 4). Queries in each dataset are already divided into training,

validation, and test partitions according to a 60%-20%-20% scheme. In this work, we

mainly focus on comparison within the LTR tasks. However, the proposed method can be

adapted to recommendation tasks, which we leave for future studies.

5.4.1.2 Baselines

In this dissertation, we compare the following methods:

• TopK: Sort items according to R̂(d)

• RandomK: Randomly rank items.

• FairCo [71]: Fair ranking algorithm based on a proportional controller. α ∈ [0.0,1000.0]

• MCFair [2]: Fair ranking algorithm directly uses gradient as the ranking score. α ∈

[0.0,1000.0]

• ILP [8]: Fair ranking algorithm based on Integer Linear Programming (ILP).α ∈

[0.0,1.0]

• LP [6]: Fair ranking algorithm based on Linear Programming (LP).α ∈ [0.0,1000.0]

• MMF [9]. Similar to FairCo but focus on top ranks fairness. α ∈ [0.0,1.0]

4https://www.microsoft.com/en-us/research/project/mslr/

https://www.microsoft.com/en-us/research/project/mslr/

68

• PLFair [11]. A fair ranking algorithm based on Placket-Luce optimization. α ∈

[0.0,1.0]

• FARA-Horiz. (ours): A variant of FARA. Compared to FARA, we switch line 3 and

line 4 in Algorithm 5.1 to first iterate the sessions and then iterate the ranks. We

refer to the iterations as the horizontal allocation paradigm. α ∈ [0.0,1.0]

• FARA (ours). The proposed fair ranking algorithm. α ∈ [0.0,1.0].

Among the above ranking algorithm, TopK and RandomK are unfair algorithms, while the

others are fair algorithms. While all the fair ranking algorithms aim to maximize effective-

ness and fairness, FARA and FARA-Horiz. differ from others by taking a joint optimization

across multiple ranklists rather than a traditional greedy optimization approach. For fair

ranking algorithms, there exists a tradeoff parameter α, similar to α in Eq. 5.5, to balance

effectiveness and fairness. For fair algorithms, the greater α is, the more we care about

fairness while potentially sacrificing more effectiveness. For example, when increasing α

in Eq. 5.5c, FARA can maximize fairness with less effectiveness constraint. For different

fair algorithms, α lies in different ranges. For FairCo, MCFair, LP, α are originally within

[0.0,+∞], and we adopt α ∈ [0.0,1000.0] which is enough according to our experiments.

For ILP, MMF, PLFair, FARA-Horiz. and FARA, α ∈ [0.0,1.0]. Although the vertical

allocation in Algorithm 5.1 was inspired by [4], [4] cannot be used as a baseline because [4]

works with offline ranking services where all user queries are known in advance. However,

in this dissertation, we consider the online services depicted in Algorithm 5.2.

5.4.1.3 Ranking Service Simulation

Following the workflow in Algorithm 5.2, at each time step, a simulated user will issue

a query q, which is randomly sampled from the training, validation, or test partition.

Corresponding to the query q, a ranking algorithm will construct a ranklist π of candidate

items and present it to the simulated user. To collect users’ feedback for the ranked list

π, we need to simulate relevance and examination (see Eq.2.13). Same as [74], the rele-

vance probabilities of each document-query pair (d,q) are simulated with their relevance

judgement y as

P (r = 1|d,q) = ϵ+ (1− ϵ) 2y − 1
2ymax − 1

69

where ymax is the maximum value of relevance judgement y, i.e., 2 or 4 depending on the

datasets. Besides relevance, following [13, 71], we simulate users’ examination probability

as,

P (e = 1|d,π) =

 1
log2(rank(d|π)+1) , if rank(d|π) ≤ ks
0, otherwise

For simplicity, we only simulate users’ examination behavior on top ranks, and we set ks to

5 throughout the experiments (refer to Eq. 2.14 for more details of ks). With P (r = 1|d,q,π)

and P (e = 1|d,π), we sample clicks with Equation 2.13. The advantage of the simulation

is that it allows us to do online experiments on a large scale while still being easy to

reproduce by researchers without access to live ranking systems [13]. For simplicity, same

as existing works [9, 13, 14, 71], we assume that users’ examination P (e = 1|d,π) is known

in experiment since many existing works [74, 86, 87, 92] have been proposed to estimate it.

Due to different data sizes, we simulate 200k steps for MQ2008 and 4M steps for MSLR10k

and Istella-S.

5.4.1.4 Experiment Settings

We noticed that LP and ILP methods are proposed in the post-processing setting,

where relevance is already known or well estimated in advance. However, in most real-

world settings, ranking optimization and relevance learning are carried out at the same

time, which we refer to as the online setting. To give a comprehensive comparison, we

evaluate ranking methods in both settings. In the post-processing setting, all the ranking

methods in Section 5.4.1.2 are based on true relevance R, and FARA will set β as 0. In

the online setting, all the ranking methods in Section 5.4.1.2 are based on the relevance

estimation R̂ in Eq. 5.7 to perform ranking optimization. FARA set β to 1 and Emin = 10

unless otherwise explicitly specified, as they work well across all our experiments.

5.4.1.5 Evaluation

We use the cum-NDCG (cNDCG) in Eq. 2.7 with γ = 0.995 (same γ adopted in [20, 21])

to evaluate the effectiveness at different cutoffs, 1 ≤ kc ≤ 5. Aside from effectiveness, un-

fairness defined in Eq. 2.11 is used for unfairness measurement. We run each experiment

five times and report the average evaluation performance on the test partition. We use the

Fisher randomization test [88] with p < 0.05 to do significant tests. Due to the time cost

70

(see Table 5.2), we do not run ILP and LP on the larger datasets, MSLR10k and Istella-S,

and the performances are not available (NA).

5.4.2 Results and Analysis

In this section, we first compare the ranking relevance performance given different de-

grees of fairness requirements. Then we dive deep into our method to offer more insights

into FARA’s supremacy.

5.4.2.1 Can FARA reach a better balance between effectiveness and

fairness?

In Figure 5.2, we compare ranking methods’ effectiveness-fairness balance given dif-

ferent fairness requirements. To generate the balance curves in Figure 5.2, we incre-

mentally sample α from the minimum value to the maximum value within α’s ranges

indicated in Section 5.4.1.2. For each method, twenty α are sampled with the step size as

(αmax −αmin)/20. After sampling, we perform ranking simulation experiments for each α

to get a (cNDCG, unfairness) pair. Then we connect different α’s (cNDCG), unfairness) pair

to form a curve for each method respectively in Figure 5.2. All the curves start from the top

right to the bottom left as α increases, which means there exists a tradeoff between fairness

and effectiveness (cNDCG). The reason behind this tradeoff is that requiring more fairness

will bring more constraints on optimizing effectiveness. Since TopK and RandomK do not

have trade-off parameters, both of them only have one single pair of (cNDCG, unfairness),

and their performances are shown as single points in Figure 5.2.

In Figure 5.2, our methods FARA and FARA-Horiz. outperform all other fair methods

since our methods reach the best cNDCG given the same unfairness tolerance. And FARA’s

supremacy is consistent in both post-processing and online settings. All fair ranking

algorithms are effective fair ranking algorithms since they all show the tradeoff, i.e., higher

cNDCG when increasing the unfairness tolerance. For unfair algorithms, TopK performs

differently in post-processing and online settings. In the post-processing setting, TopK

reaches the highest cNDCG since relevance is known, and ranking relevance is the only

consideration. However, in the online setting, TopK can not reach the highest cNDCG.

We think the drop in cNDCG is that TopK naively trusts the relevance estimation without

any exploration when optimizing ranking relevance. However, fair algorithms are shown

71

to be robust to the online setting since they mostly can reach better cNDCG than Topk

when increasing unfairness tolerance. We think the reason for the robustness is that

fair algorithms usually rerank items for different sessions to optimize fairness, and such

reranking brings explorations.

72

Figure 5.1: The ranklist construction order of the horizontal allocation and vertical allo-
cation.

0 1000 5000
Unfairness tolerance

100

150

200

cN
DC

G@
3

(a) MSLR10k, post-processing

0 100 1000
Unfairness tolerance

50

100

150

200

cN
DC

G@
3

(b) Istella-S, post-processing

10000 20000 100000
Unfairness tolerance

100

180

200
cN

DC
G@

3

(c) MQ2008, post-processing

100 1000 5000
Unfairness tolerance

70

130

180

cN
DC

G@
3

(d) MSLR10k, online

10 100 1000
Unfairness tolerance

50

100

200

cN
DC

G@
3

(e) Istella-S, online

10000 20000 300000
Unfairness tolerance

150

190

200

cN
DC

G@
3

(f) MQ2008, online

50000100000150000
Unfairness tolerance

0100

200300

cN
DC

G@
5

FARA(Ours) FARA-Horiz.(Ours) MMF PLFair MCFair FairCo ILP LP TopK RandomK

Figure 5.2: c-NDCG vs. unfairness tolerance in the post-processing setting and the
online setting. Given the same unfairness, the higher curves or points lie, the better their
performances are. Our methods FARA and FARA-Horiz. lie higher than all fair baselines
in all figures. ILP and LP are unavailable for MSLR10k and Istella-S due to time costs
(refer to Table 5.3).

73

Ta
b

le
5.

2:
C

om
p

ar
is

on
of

cN
D

C
G

@
(1

,3
,5

)
an

d
u

nf
ai

rn
es

s
to

le
ra

nc
e

in
th

e
p

os
t-

p
ro

ce
ss

in
g

se
tt

in
g.

Si
gn

ifi
ca

nt
im

p
ro

ve
m

en
ts

or
d

eg
ra

d
at

io
ns

w
it

h
re

sp
ec

tt
o

Fa
ir

C
o

ar
e

in
d

ic
at

ed
w

it
h

+
/-

.W
it

hi
n

fa
ir

al
go

ri
th

m
s,

th
e

be
st

p
er

fo
rm

an
ce

w
it

h
st

at
is

ti
ca

ls
ig

ni
fi

ca
nc

e
is

bo
ld

ed
an

d
u

nd
er

li
ne

d
.H

er
e,
α

is
se

t
to

th
e

m
ax

im
u

m
va

lu
e

(s
ee

Se
c.

4.
3.

1.
3

fo
r
α

’s
ra

ng
e)

fo
r

ea
ch

fa
ir

al
go

ri
th

m
re

sp
ec

ti
ve

ly
,w

hi
ch

m
ea

ns
th

at
al

l
al

go
ri

th
m

s
ar

e
tr

yi
ng

th
ei

r
be

st
to

op
ti

m
iz

e
ra

nk
in

g
fa

ir
ne

ss
an

d
th

e
nu

m
be

rs
in

th
e

ta
bl

e
re

p
re

se
nt

s
th

ei
r

u
nf

ai
rn

es
s

lo
w

er
bo

u
nd

.R
es

u
lt

s
ar

e
ro

u
nd

ed
to

on
e

d
ec

im
al

p
la

ce
.

M
et

ho
d

s
M

SL
R-

10
k

Is
te

ll
a-

S
M

Q
20

08
cN

D
C

G
@

1
cN

D
C

G
@

3
cN

D
C

G
@

5
u

nf
ai

r.
cN

@
1

cN
@

3
cN

@
5

u
nf

ai
r.

cN
@

1
cN

@
3

cN
@

5
u

nf
ai

r.
To

p
K

20
0.

0+
20

0.
0+

20
0.

0+
41

65
.0
−

20
0.

0+
20

0.
0+

20
0.

0+
31

0.
1−

20
0.

0+
20

0.
0+

20
0.

0+
86

00
1.

1
−

R
an

d
om

k
68

.0
−

74
.7
−

79
.7
−

11
9.

0
−

30
.2
−

35
.7
−

41
.1
−

56
.7
−

74
.0
−

95
.7
−

11
4.

6−
10

46
32

.2
−

P
L

Fa
ir

68
.2
−

74
.8
−

79
.9
−

11
9.

6
−

31
.8
−

36
.2
−

41
.5
−

54
.6
−

79
.2
−

99
.3
−

11
7.

2
−

10
12

45
.1
−

M
M

F
84

.4
92

.8
99

.9
8.

0−
62

.2
68

.8
80

.1
6.

6−
13

2.
8−

16
2.

3−
17

2.
5−

20
68

8.
7−

IL
P

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

18
5.

6+
18

3.
8

18
6.

7
19

91
6.

3
−

L
P

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

18
8.

4+
18

7.
4+

18
7.

9
94

25
.7

M
C

Fa
ir

11
4.

8+
10

2.
7+

10
1.

0
0.

0
11

3.
7

+
85

.2
5

+
81

.3
0.

4
19

3.
5+

18
6.

0+
18

6.
6

91
13

.7
Fa

ir
C

o
85

.5
93

.7
10

0.
8

0.
0

63
.3

69
.9

80
.4

0.
5

17
9.

0
18

2.
0

18
7.

4
93

82
.0

FA
R

A
-H

or
iz

.(
O

u
rs

)
90

.7
+

96
.1

+
10

0.
4

0.
0

78
.5

+
79

.8
+

82
.6

0.
9

18
7.

3+
18

6.
1+

18
7.

0
91

25
.9

FA
R

A
(O

u
rs

)
12

9.
0+

10
7.

0+
99

.7
0.

0
13

5.
5+

89
.1

+
82

.6
0.

9
19

6.
3+

19
0.

9+
18

6.
8

91
29

.9

74

5.4.2.2 What is the fairness upper bound that FARA can reach?

In Table 5.2, lower unfairness means higher fairness capacity and fairness upper bound,

i.e., the maximum possible fairness one algorithm can reach. Fair effective ranking al-

gorithms, including FairCo, LP, FARA-Horiz. and FARA, have similar fairness capac-

ity and outperform unfair ranking algorithms in terms of unfairness. The success of

FARA-Horiz. and FARA validates the proposed quadratic programming formulation can

optimize fairness. Similar cNDCG@5 and unfairness for those effective algorithms are

expected according to Theorem 4. For other fair ranking algorithms, ILP and MMF, and

PLFair show inferior fairness capacity. As for the possible reason, ILP uses the integer

linear programming method, which may not be effective in optimizing fairness. MMF

actually follows a slightly different definition of fairness which requires fairness at any

cutoff should be fair, which is more strict than the definition we use in this dissertation.

As for PLFair, PLFair tries to learn the ranking score that optimizes fairness based on the

feature representation (the exact setting in original paper [11]). However, the feature rep-

resentation is initially designed for relevance which makes PLFair suboptimal for fairness

optimization. In Table 5.2, ILP and LP are NA for MSLR10k and Istella-S due to time costs

(refer to Table 5.3). Besides, we show the ranking performance of the online setting in

Fig. (5.2).

5.4.2.3 How is FARA’s effectiveness at different cutoffs?

In Table 5.2, we show cNDCG at different cutoffs. Although FairCo, LP, FARA-Horiz.

and FARA have similar fairness capacities, FARA significantly outperforms those fair al-

gorithms for cNDCG@1 and cNDCG@3 on all three datasets. Compared to FARA-Horiz.,

shown in Table 5.2, FARA still significantly outperforms FARA-Horiz. at top ranks, which

shows the necessity of vertical allocation.

5.4.2.4 How is FARA’s time efficiency?

Besides fairness and effectiveness optimization, we also empirically compare the time

efficiency. In Table 5.3, ILP and LP are really time-consuming, especially on large datasets,

MSLR10k and Istella-S. Compared to ILP and LP, FARA is more than 1000× time efficient

on MSLR10k and Istella-S, although all three of them are programming-based methods.

There are two reasons behind FARA’s time efficiency. The first one is that FARA has a much

75

Table 5.3: The average time (seconds per 1k ranklists) cost with standard deviations in
parentheses. Since ILP and LP are time-consuming on large datasets, the time costs
on MSLR-10k and Istella-S are estimated by only running 1k steps instead of the total
simulation steps indicated in Sec. 4.3.1.3.

Algorithms
Datasets

MSLR10k Istella MQ2008
TopK 0.65(0.14) 0.50(0.00) 0.55(0.10)

Randomk 0.63(0.12) 0.57(0.04) 0.59(0.14)
PLFair 2.24(0.04) 3.11(0.07) 1.77(0.04)
MMF 8.01(0.39) 6.57(0.23) 1.82(0.28)
ILP 1208.90(85.80) 1102.30(75.20) 19.70(1.29)
LP ≥10 days ≥10 days 2.09(0.48)

MCFair 0.724(0.016) 0.660(0.025) 0.567(0.035)
FairCo 0.73(0.04) 0.71(0.03) 0.70(0.12)

FARA-Horiz.(Ours) 1.00(0.17) 0.86(0.07) 0.97(0.22)
FARA(Ours) 0.91(0.07) 0.91(0.00) 0.97(0.30)

fewer number of decision variables since FARA only hasO(n) decision variables, while ILP

and LP have O(n2) decision variables. The second one is that FARA does not need to solve

quadratic programming for every time step. By solving quadratic programming once,

we can get ∆T ranklists used for future ∆T sessions. FARA can reach comparable time

efficiency with non-programming-based algorithms like TopK, RandomK, and FairCo.

Compared with those non-programming-based algorithms, the slightly additional time

cost of FARA is acceptable given FARA’ superior ranking performance in Tab. 5.2 and in

Fig. 5.2.

5.4.2.5 How does ∆T influence FARA?

In Figure 5.3, we show the results of cNDCG and unfairness by varying the value of

∆T . With greater ∆T , we see a clear boost of cNDCG for FARA, while such a boost does

not happen for FARA-Horiz. We know that the proposed vertical allocation is the key

reason to have better-ranking relevance when we get the optimal exposure planning ∆E∗,

and we theoretically analyze the reason in S 3. Besides, as we increase ∆T , unfairness

does not vary much, and its value stays close to the minimum unfairness we can achieve

in Table 5.2. We think the reason for the steady value of unfairness is that FARA already

reaches the upper limit of fairness when ∆T is small, and it is hard to improve when we

increase ∆T .

76

1 10 100
The number of planning sessions, ΔT .

186

188

190

192
cN

DC
G@

3

FARA
FARA-Horiz

1 10 100
The number of planning sessions, ΔT .

9000

9050

9100

9150

9200

9250

Un
fa

irn
es

s

FARA
FARA-Horiz

Figure 5.3: The numbers of planning session ∆T ’s influence on FARA in the post-
processing setting on MQ2008. α is set as 1.

100 1000 5000
Unfairness tolerance

130

170

190

cN
DC

G@
3

FARA
FARA-w/o-Exp.

(a) MSLR10k.

10 30 150
Unfairness tolerance

110

140

190
cN

DC
G@

3

FARA
FARA-w/o-Exp.

(b) Istella-S
Figure 5.4: Ablation study of exploration in the online setting. The higher curves lie, the
better their performances are.

5.4.2.6 How does exploration influence FARA?

To study how the exploration part (the slack variables s in Eq. 5.6) influences FARA, we

did an ablation study for FARA with or without exploration. For simplicity, we only show

the ablation results on the larger dataset, i.e., MSLR10k and Istella-S, in Figure 5.4. The

advantage of exploration is two-folded based on Figure 5.4. Firstly, FARA lies higher than

FARA-w/o-Exp. in the figure, which suggests exploration leads to a better effectiveness-

fairness balance. Secondly, FARA has a smaller lower bound of unfairness tolerance, which

implies exploration enables FARA to have a higher fairness capacity and can meet a more

strict fairness requirement.

77

5.5 Conclusions
In this work, we found that existing fair ranking algorithms are usually greedy algo-

rithms that sequentially produce a locally optimal ranklist for each session. To reach a

global optimum, we propose FARA, a future-aware ranking algorithm for fairness, which

optimizes multiple future sessions’ ranklists together. With extensive experiments, FARA

achieves better performance compared to existing fair ranking algorithms.

CHAPTER 6

SUMMARY AND FUTURE WORK

To summarize, in the first part of this dissertation, we proposed an uncertainty-aware

empirical Bayes based ranking algorithm., which can overcome exploitation bias brought

by behavior features in ranking models. We then developed a marginal-certainty-aware

Fair ranking algorithm, that can jointly optimize effectiveness and fairness in an online

setting. Finally, we proposed a novel future-aware ranking algorithm that can plan ahead

by jointly optimizing multiple ranklists together and saving them for future sessions,

instead of greedily optimizing rankings for the next immediate session.

There are several directions we can continue to explore.

Initially, in the realm of user behavior features, there is an opportunity to broaden

the scope of our research by considering additional types of user behavior features beyond

just user clicks. In contemporary Information Retrieval (IR), an array of user behaviors has

become prominent, including user dwell time, purchase history, items added to the cart,

user ratings, and more. These diverse forms of user behavior hold significant importance

in accurately predicting ranking relevance. The central challenge in modern IR revolves

around the effective utilization of these various user behavior signals while simultaneously

safeguarding against the potential pitfalls of exploitation bias. This issue represents a

crucial and complex problem that demands comprehensive exploration and resolution.

Second, In the previous works, I followed the well-defined amortized fairness princi-

ple [6, 8]. This principle requires items’ cumulative exposure to be proportional to their

relevance. It is simple but also ignores a very important fact that different items come to

a ranking system at different times, i.e., starting to get exposure at different times. For

example, two items, A and B, of the same relevance, but A came to the system before B.

It is unfair to require A and B to have the same amount of exposure since A has a longer

time to be exposed than B. Considering this, in this project, I plan to propose a time-aware

79

fairness metric and design optimization algorithms to optimize it based on my previous

works.

REFERENCES

[1] T. Yang, C. Han, C. Luo, P. Gupta, J. M. Phillips, and Q. Ai, “Mitigating exploitation
bias in learning to rank with an uncertainty-aware empirical bayes approach,” arXiv
preprint arXiv:2305.16606, 2023.

[2] T. Yang, Z. Xu, Z. Wang, A. Tran, and Q. Ai, “Marginal-certainty-aware fair ranking
algorithm,” in Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining, 2023, pp. 24–32.

[3] T. Yang, Z. Xu, Z. Wang, and Q. Ai, “Fara: Future-aware ranking algorithm for
fairness optimization,” in Proceedings of the 32nd ACM International Conference on
Information & Knowledge Management (CIKM ’23), 2023.

[4] T. Yang, Z. Xu, and Q. Ai, “Vertical allocation-based fair exposure amortizing in
ranking,” Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval in the Asia Pacific Region (SIGIR-AP ’23), 2023.

[5] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir techniques,”
ACM Transactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

[6] A. Singh and T. Joachims, “Fairness of exposure in rankings,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2018, pp. 2219–2228.

[7] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke, “Lerot: An online learning to
rank framework,” in Proceedings of the 2013 workshop on Living labs for information
retrieval evaluation, 2013, pp. 23–26.

[8] A. J. Biega, K. P. Gummadi, and G. Weikum, “Equity of attention: Amortizing indi-
vidual fairness in rankings,” in The 41st international acm sigir conference on research
& development in information retrieval, 2018, pp. 405–414.

[9] T. Yang and Q. Ai, “Maximizing marginal fairness for dynamic learning to rank,” in
Proceedings of the Web Conference 2021, 2021, pp. 137–145.

[10] A. Singh and T. Joachims, “Policy learning for fairness in ranking,” in Advances in
Neural Information Processing Systems, 2019, pp. 5426–5436.

[11] H. Oosterhuis, “Computationally efficient optimization of plackett-luce ranking
models for relevance and fairness,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2021, pp. 1023–1032.

[12] A. Chuklin, I. Markov, and M. d. Rijke, “Click models for web search,” Synthesis
lectures on information concepts, retrieval, and services, vol. 7, no. 3, pp. 1–115, 2015.

81

[13] H. Oosterhuis and M. de Rijke, “Unifying online and counterfactual learning to rank:
A novel counterfactual estimator that effectively utilizes online interventions,” in
Proceedings of the 14th ACM International Conference on Web Search and Data Mining,
2021, pp. 463–471.

[14] T. Yang, C. Luo, H. Lu, P. Gupta, B. Yin, and Q. Ai, “Can clicks be both labels and
features? unbiased behavior feature collection and uncertainty-aware learning to
rank,” in Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2022, pp. 6–17.

[15] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An experimental comparison of
click position-bias models,” in Proceedings of the 2008 international conference on web
search and data mining, 2008, pp. 87–94.

[16] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, “Accurately interpreting
clickthrough data as implicit feedback,” in ACM SIGIR Forum, vol. 51, no. 1. Acm
New York, NY, USA, 2017, pp. 4–11.

[17] H. Oosterhuis and M. de Rijke, “Policy-aware unbiased learning to rank for top-k
rankings,” in Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020, pp. 489–498.

[18] Q. Ai, T. Yang, H. Wang, and J. Mao, “Unbiased learning to rank: Online or offline?”
ACM Transactions on Information Systems (TOIS), vol. 39, no. 2, pp. 1–29, 2021.

[19] K. Hofmann, S. Whiteson, and M. de Rijke, “Balancing exploration and exploitation
in listwise and pairwise online learning to rank for information retrieval,” Informa-
tion Retrieval, vol. 16, no. 1, pp. 63–90, 2013.

[20] H. Wang, S. Kim, E. McCord-Snook, Q. Wu, and H. Wang, “Variance reduction in gra-
dient exploration for online learning to rank,” in Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval, 2019,
pp. 835–844.

[21] H. Wang, R. Langley, S. Kim, E. McCord-Snook, and H. Wang, “Efficient exploration
of gradient space for online learning to rank,” in The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018, pp. 145–154.

[22] H. Wang, Y. Jia, and H. Wang, “Interactive information retrieval with bandit feed-
back,” in Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2021, pp. 2658–2661.

[23] Y. Yue and T. Joachims, “Interactively optimizing information retrieval systems as a
dueling bandits problem,” in Proceedings of the 26th Annual International Conference
on Machine Learning, 2009, pp. 1201–1208.

[24] A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke, “Multileave gradient de-
scent for fast online learning to rank,” in Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, 2016, pp. 457–466.

[25] A. Schuth, R.-J. Bruintjes, F. Buüttner, J. van Doorn, C. Groenland, H. Oosterhuis,

82

C.-N. Tran, B. Veeling, J. van der Velde, R. Wechsler et al., “Probabilistic multileave
for online retrieval evaluation,” in Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2015, pp. 955–958.

[26] H. Oosterhuis and M. de Rijke, “Differentiable unbiased online learning to rank,”
in Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, 2018, pp. 1293–1302.

[27] T. Joachims, A. Swaminathan, and T. Schnabel, “Unbiased learning-to-rank with
biased feedback,” in Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, 2017, pp. 781–789.

[28] Q. Ai, K. Bi, J. Guo, and W. B. Croft, “Learning a deep listwise context model for
ranking refinement,” in The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, 2018, pp. 135–144.

[29] T. Yang, S. Fang, S. Li, Y. Wang, and Q. Ai, “Analysis of multivariate scoring functions
for automatic unbiased learning to rank,” in Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, 2020, pp. 2277–2280.

[30] A. Agarwal, K. Takatsu, I. Zaitsev, and T. Joachims, “A general framework for
counterfactual learning-to-rank,” in Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2019, pp. 5–14.

[31] D. Draper, “Assessment and propagation of model uncertainty,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 57, no. 1, pp. 45–70, 1995.

[32] M. Clyde and E. I. George, “Model uncertainty,” Statistical science, vol. 19, no. 1, pp.
81–94, 2004.

[33] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in international conference on machine learning.
PMLR, 2016, pp. 1050–1059.

[34] J. Zhu, J. Wang, M. Taylor, and I. J. Cox, “Risk-aware information retrieval,” in
European Conference on Information Retrieval. Springer, 2009, pp. 17–28.

[35] H. Roitman, S. Erera, and B. Weiner, “Robust standard deviation estimation for query
performance prediction,” in Proceedings of the ACM SIGIR International Conference on
Theory of Information Retrieval, 2017, pp. 245–248.

[36] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits, “Predicting query
performance by query-drift estimation,” ACM Transactions on Information Systems
(TOIS), vol. 30, no. 2, pp. 1–35, 2012.

[37] Y.-C. Lien, D. Cohen, and W. B. Croft, “An assumption-free approach to the dynamic
truncation of ranked lists,” in Proceedings of the 2019 ACM SIGIR International Con-
ference on Theory of Information Retrieval, 2019, pp. 79–82.

[38] J. S. Culpepper, C. L. Clarke, and J. Lin, “Dynamic cutoff prediction in multi-stage
retrieval systems,” in Proceedings of the 21st Australasian Document Computing Sym-

83

posium, 2016, pp. 17–24.

[39] D. Cohen, B. Mitra, O. Lesota, N. Rekabsaz, and C. Eickhoff, “Not all relevance scores
are equal: Efficient uncertainty and calibration modeling for deep retrieval models,”
arXiv preprint arXiv:2105.04651, 2021.

[40] G. Penha and C. Hauff, “On the calibration and uncertainty of neural learning to
rank models for conversational search,” in Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, 2021,
pp. 160–170.

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[42] T. Qin, T.-Y. Liu, J. Xu, and H. Li, “Letor: A benchmark collection for research on
learning to rank for information retrieval,” Information Retrieval, vol. 13, no. 4, pp.
346–374, 2010.

[43] E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking by incorporat-
ing user behavior information,” in Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, 2006, pp. 19–26.

[44] C. Macdonald, R. L. Santos, and I. Ounis, “On the usefulness of query features for
learning to rank,” in Proceedings of the 21st ACM international conference on Informa-
tion and knowledge management, 2012, pp. 2559–2562.

[45] H. Oosterhuis and M. d. de Rijke, “Robust generalization and safe query-
specializationin counterfactual learning to rank,” in Proceedings of the Web Conference
2021, 2021, pp. 158–170.

[46] C. Li, B. Kveton, T. Lattimore, I. Markov, M. de Rijke, C. Szepesvári, and M. Zoghi,
“Bubblerank: Safe online learning to re-rank via implicit click feedback,” in Uncer-
tainty in Artificial Intelligence. PMLR, 2020, pp. 196–206.

[47] B. Kveton, O. Meshi, M. Zoghi, and Z. Qin, “On the value of prior in online learning
to rank,” in International Conference on Artificial Intelligence and Statistics. PMLR,
2022, pp. 6880–6892.

[48] P. Gupta, T. Dreossi, J. Bakus, Y.-H. Lin, and V. Salaka, “Treating cold start in product
search by priors,” in Companion Proceedings of the Web Conference 2020, 2020, pp.
77–78.

[49] C. Han, P. Castells, P. Gupta, X. Xu, and V. Salaka, “Addressing cold start in product
search via empirical bayes,” in Proceedings of the 31st ACM International Conference
on Information and Knowledge Management, ser. CIKM ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 3141–3151. [Online]. Available:
https://doi.org/10.1145/3511808.3557066

[50] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”
in Advances in neural information processing systems, 2016, pp. 3315–3323.

https://doi.org/10.1145/3511808.3557066

84

[51] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian,
“Certifying and removing disparate impact,” in proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015, pp. 259–268.

[52] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-aware classifier with
prejudice remover regularizer,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2012, pp. 35–50.

[53] W. Zhang and E. Ntoutsi, “Faht: an adaptive fairness-aware decision tree classifier,”
arXiv preprint arXiv:1907.07237, 2019.

[54] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness,” in International Conference on Machine
Learning, 2018, pp. 2564–2572.

[55] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness testing,”
in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 98–108.

[56] A. Lambrecht and C. Tucker, “Algorithmic bias? an empirical study of apparent
gender-based discrimination in the display of stem career ads,” Management Science,
vol. 65, no. 7, pp. 2966–2981, 2019.

[57] B. Edelman, M. Luca, and D. Svirsky, “Racial discrimination in the sharing economy:
Evidence from a field experiment,” American Economic Journal: Applied Economics,
vol. 9, no. 2, pp. 1–22, 2017.

[58] D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, and P. Tsaparas, “Fairness in package-to-
group recommendations,” in Proceedings of the 26th International Conference on World
Wide Web, 2017, pp. 371–379.

[59] Z. Zhu, X. Hu, and J. Caverlee, “Fairness-aware tensor-based recommendation,” in
Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, 2018, pp. 1153–1162.

[60] A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao, L. Hong, E. H.
Chi et al., “Fairness in recommendation ranking through pairwise comparisons,” in
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2019, pp. 2212–2220.

[61] H. Abdollahpouri, R. Burke, and B. Mobasher, “Controlling popularity bias in
learning-to-rank recommendation,” in Proceedings of the Eleventh ACM Conference on
Recommender Systems, 2017, pp. 42–46.

[62] R. Borges and K. Stefanidis, “On mitigating popularity bias in recommendations
via variational autoencoders,” in Proceedings of the 36th Annual ACM Symposium on
Applied Computing, 2021, pp. 1383–1389.

[63] H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima,
J. Krasnodebski, and L. Pizzato, “Multistakeholder recommendation: Survey and
research directions,” User Modeling and User-Adapted Interaction, vol. 30, no. 1, pp.

85

127–158, 2020.

[64] E. Pitoura, K. Stefanidis, and G. Koutrika, “Fairness in rankings and recommenda-
tions: An overview,” arXiv preprint arXiv:2104.05994, 2021.

[65] K. Yang and J. Stoyanovich, “Measuring fairness in ranked outputs,” in Proceedings
of the 29th International Conference on Scientific and Statistical Database Management,
2017, pp. 1–6.

[66] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates, “Fa*
ir: A fair top-k ranking algorithm,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, 2017, pp. 1569–1578.

[67] L. E. Celis, D. Straszak, and N. K. Vishnoi, “Ranking with fairness constraints,” arXiv
preprint arXiv:1704.06840, 2017.

[68] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty, “Fairrec:
Two-sided fairness for personalized recommendations in two-sided platforms,” in
Proceedings of The Web Conference 2020, 2020, pp. 1194–1204.

[69] F. Guo, C. Liu, and Y. M. Wang, “Efficient multiple-click models in web search,” in
Proceedings of the second acm international conference on web search and data mining,
2009, pp. 124–131.

[70] G. E. Dupret and B. Piwowarski, “A user browsing model to predict search engine
click data from past observations.” in Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, 2008, pp. 331–
338.

[71] M. Morik, A. Singh, J. Hong, and T. Joachims, “Controlling fairness and bias
in dynamic learning-to-rank,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser. SIGIR ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 429–438. [Online].
Available: https://doi.org/10.1145/3397271.3401100

[72] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foundations and Trends®
in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[73] X. Wang, M. Bendersky, D. Metzler, and M. Najork, “Learning to rank with selection
bias in personal search,” in Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, 2016, pp. 115–124.

[74] Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft, “Unbiased learning to rank with unbiased
propensity estimation,” in The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval, 2018, pp. 385–394.

[75] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview,” in Proceed-
ings of the learning to rank challenge. PMLR, 2011, pp. 1–24.

[76] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie, “Smoothing clickthrough data for web
search ranking,” in Proceedings of the 32nd international ACM SIGIR conference on

https://doi.org/10.1145/3397271.3401100

86

Research and development in information retrieval, 2009, pp. 355–362.

[77] T. Yang, Z. Xu, Z. Wang, A. Tran, and Q. Ai, “Marginal-certainty-aware fair ranking
algorithm,” in Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining, 2023, pp. 24–32.

[78] Y. Saito, S. Yaginuma, Y. Nishino, H. Sakata, and K. Nakata, “Unbiased recommender
learning from missing-not-at-random implicit feedback,” in Proceedings of the 13th
International Conference on Web Search and Data Mining, 2020, pp. 501–509.

[79] J. Bekker, P. Robberechts, and J. Davis, “Beyond the selected completely at random
assumption for learning from positive and unlabeled data,” in Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases. Springer, 2020, pp.
71–85.

[80] H. Raiffa, R. Schlaifer et al., “Applied statistical decision theory,” 1961.

[81] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 39, no. 1, pp. 1–22, 1977.

[82] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables. US Government printing office, 1964, vol. 55.

[83] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and
R. Venturini, “Fast ranking with additive ensembles of oblivious and non-oblivious
regression trees,” ACM Transactions on Information Systems (TOIS), vol. 35, no. 2, pp.
1–31, 2016.

[84] A. Vardasbi, H. Oosterhuis, and M. de Rijke, “When inverse propensity scoring does
not work: Affine corrections for unbiased learning to rank,” in Proceedings of the
29th ACM International Conference on Information & Knowledge Management, 2020,
pp. 1475–1484.

[85] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, “Expected reciprocal rank for
graded relevance,” in Proceedings of the 18th ACM conference on Information and
knowledge management, 2009, pp. 621–630.

[86] X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork, “Position bias
estimation for unbiased learning to rank in personal search,” in Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, 2018, pp.
610–618.

[87] A. Agarwal, I. Zaitsev, X. Wang, C. Li, M. Najork, and T. Joachims, “Estimating
position bias without intrusive interventions,” in Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, 2019, pp. 474–482.

[88] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statistical significance
tests for information retrieval evaluation,” in Proceedings of the sixteenth ACM confer-
ence on Conference on information and knowledge management, 2007, pp. 623–632.

87

[89] G. H. Hardy, J. E. Littlewood, G. Pólya, G. Pólya et al., Inequalities. Cambridge
university press, 1952.

[90] T. Qin and T.-Y. Liu, “Introducing letor 4.0 datasets,” arXiv preprint arXiv:1306.2597,
2013.

[91] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani, “Post-
learning optimization of tree ensembles for efficient ranking,” in Proceedings of the
39th International ACM SIGIR conference on Research and Development in Information
Retrieval, 2016, pp. 949–952.

[92] F. Radlinski and T. Joachims, “Minimally invasive randomization for collecting unbi-
ased preferences from clickthrough logs,” in Proceedings of the national conference on
artificial intelligence, vol. 21, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2006, p. 1406.

[93] S. E. Robertson, “The probability ranking principle in ir,” Journal of documentation,
1977.

[94] G. K. Patro, L. Porcaro, L. Mitchell, Q. Zhang, M. Zehlike, and N. Garg, “Fair ranking:
a critical review, challenges, and future directions,” arXiv preprint arXiv:2201.12662,
2022.

[95] J. Kotary, F. Fioretto, P. Van Hentenryck, and Z. Zhu, “End-to-end learning for fair
ranking systems,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 3520–
3530.

[96] A. Tran, T. Yang, and Q. Ai, “Ultra: An unbiased learning to rank algorithm toolbox,”
in Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 4613–4622.

[97] M. Zehlike, K. Yang, and J. Stoyanovich, “Fairness in ranking: A survey,” arXiv
preprint arXiv:2103.14000, 2021.

[98] Y. Wu, J. Cao, G. Xu, and Y. Tan, “Tfrom: A two-sided fairness-aware recommenda-
tion model for both customers and providers,” in Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval, 2021,
pp. 1013–1022.

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	1.1 Challenges in Ranking optimization
	1.2 Contributions
	1.3 Dissertation Organization

	2. Background
	2.1 The Workflow of Ranking Service
	2.2 Ranking Utility Measurement
	2.2.1 The User-side Utility (Effectiveness)
	2.2.2 The Provider-side Utility (Fairness)

	2.3 Partial and Biased Feedback
	2.4 Related Work
	2.4.1 Unbiased and Online LTR
	2.4.2 Uncertainty in Ranking
	2.4.3 Ranking exploitation with behavior features
	2.4.4 Ranking Fairness
	2.4.5 Amortized Fairness

	3. Mitigating Exploitation Bias in Learning to Rank with an Uncertainty-aware Empirical Bayes Approach
	3.1 Introduction
	3.2 Proposed Method
	3.2.1 Prior Knowledge
	3.2.2 The proposed algorithm: EBRank
	3.2.2.1 Relevance estimation.
	3.2.2.2 Ranking exploration & construction.
	3.2.2.3 Prior model optimization.

	3.2.3 Uncertainty-Aware ranking optimization
	3.2.3.1 The uncertainty-aware ranking objective.
	3.2.3.2 Ranking optimization.

	3.2.4 Empirical Bayesian relevance model
	3.2.4.1 The observation modelling
	3.2.4.2 The prior & posterior distribution.
	3.2.4.3 Update prior distribution with observations

	3.2.5 Estimation of Marginal Certainty.

	3.3 Experiments
	3.3.1 Experimental setup
	3.3.1.1 Dataset
	3.3.1.2 Simulation of Search Sessions, Click and Cold-start
	3.3.1.3 Baselines
	3.3.1.4 Implementation
	3.3.1.5 Evaluation

	3.3.2 Result
	3.3.2.1 How does our method compare with baselines?
	3.3.2.2 Will historical user behavior help ranking algorithms achieve better ranking quality?
	3.3.2.3 How do ranking algorithms suffer from exploitation bias?
	3.3.2.4 EBRank's robustness to entering probability
	3.3.2.5 Ablation Study

	3.4 Conclusion

	4. Marginal-Certainty-aware Fair Ranking Algorithm
	4.1 Introduction
	4.2 Proposed Method
	4.2.1 Gradient-based Optimization Framework
	4.2.2 Uncertainty-aware Ranking Optimization
	4.2.3 Unbiased Relevance Estimator

	4.3 Experiments
	4.3.1 Experimental Setup
	4.3.1.1 Datasets
	4.3.1.2 Baselines
	4.3.1.3 Ranking Service Simulation
	4.3.1.4 Evaluation

	4.3.2 Results in the Post-processing Setting.
	4.3.2.1 Can MCFair reach fairness in the post-processing setting?
	4.3.2.2 Can MCFair reach a better balance between fairness and effectiveness?

	4.3.3 Results in the Online Setting.
	4.3.3.1 Can MCFair work in the online setting?
	4.3.3.2 Can marginal certainty help boost existing fair methods' performance?
	4.3.3.3 Ablation study.

	4.4 Conclusions

	5. FARA: Future-aware Ranking Algorithm for Fairness Optimization
	5.1 Introduction
	5.2 Proposed Method
	5.2.1 Future-aware Ranking Objective
	5.2.2 Phase 1: Future Exposure Planning
	5.2.2.1 The post-processing setting
	5.2.2.2 The online setting.

	5.2.3 Phase 2: Ranklists Construction
	5.2.4 FARA: Future-Aware Ranking Algorithm

	5.3 Theoretical Analysis
	5.4 Experiments
	5.4.1 Experimental setup
	5.4.1.1 Datasets
	5.4.1.2 Baselines
	5.4.1.3 Ranking Service Simulation
	5.4.1.4 Experiment Settings
	5.4.1.5 Evaluation

	5.4.2 Results and Analysis
	5.4.2.1 Can FARA reach a better balance between effectiveness and fairness?
	5.4.2.2 What is the fairness upper bound that FARA can reach?
	5.4.2.3 How is FARA's effectiveness at different cutoffs?
	5.4.2.4 How is FARA's time efficiency?
	5.4.2.5 How does T influence FARA?
	5.4.2.6 How does exploration influence FARA?

	5.5 Conclusions

	6. Summary and Future Work
	REFERENCES

