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ABSTRACT

We study robust estimators for uncertain points, and sketching of lines, trajectories and

other shapes. For locationally uncertain points, each point in a data set has a discrete

probability distribution describing its location. The probabilistic nature of uncertain data

makes it challenging to compute such estimators, since the true value of the estimator is

now described by a distribution rather than a single point. We show how to construct and

estimate the distribution of the median and other robust estimators of an uncertain point

set. More generally, for robust estimators, we also give a result about the robustness of

composite estimators: under mild conditions on the individual estimators, the breakdown

point of the composite estimator is the product of the breakdown points of the individual

estimators. Another contribution of this work is a sketched representations based on a set

of landmarks for geometric objects. Using this representation, we develop a new class of

distances for objects including lines, hyperplanes, and trajectories. These distances easily

and interpretably map objects to a Euclidean space, are simple to compute, and perform

well in data analysis tasks. For trajectories, they match and in some cases significantly

out-perform all state-of-the-art other metrics, can effortlessly be used in k-means clustering,

and fast approximate nearest neighbor algorithms which greatly improves the efficiency of

trajectory similarity search. Under reasonable and often simple conditions, these distances

are metrics. We also show how to use sensitivity sampling to approximate such landmark-

based distances, bound the required size of the sketched vector, and give an algorithm to

recover a trajectory from its vectorized representation.
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CHAPTER 1

INTRODUCTION

With the development of the internet and the world wide web, massive data become

more and more commonplace. How to represent, summarize and sketch these data has

always been an important research topic in machine learning and data mining. This is

because sometimes a good representation of summarization itself can provide us with

lots of useful information. For example, combing the median of population’s income and

living cost, we can have a general understanding to living standard of people in a region.

Moreover, a good summarization and sketch can effectively reduce the size of data, which

means the data can be easily stored, transmitted and visualized. Most importantly, a good

representation or sketch of data can allow us to directly apply many standard machine

learning and data mining algorithms, and run these algorithms on small data sets efficiently.

This dissertation mainly studies two problems. One is how to analyze and summarize the

locationally uncertain data points, especially to model its probabilistic nature. The other is

how to effectively sketch lines, trajectories and other geometric shapes, and the property

and application of this sketched representation.

For a data set drawn iid (independent and identically distributed) from a single distribu-

tion, if we want to use one point to represent this set, then obviously the median is good

choice. Since the median is robust to outliers, it is better than the mean in the presence of

noise and outliers. However, in the age of big data, a number of indirect data collection

methods have led to the proliferation of uncertain data ( [1–3]), which can be easily found on

the web, in sensor networks, and within enterprises in structured or unstructured sources.

For a set of uncertain data, a single point usually cannot give a robust estimate for this set

(see the discussion in Section 2.2). To analyze and summarize uncertain data, in Chapter 2,

we initiate the study of robust estimators for uncertain data, by studying the median, as

well as extensions to the Tukey median and geometric median on locationally uncertain
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data points. We show how to efficiently create approximate distributions for the location of

these medians in Rd. We also develop a general approximation technique for distributions

of robust estimators with respect to ranges with bounded VC dimension (Section 2.4). This

includes the geometric median for high dimensions and the Siegel estimator for linear

regression.

While studying the robust estimation of uncertain data, we notice the median of the union

of all uncertain points is more robust than the median of medians of each uncertain point.

This inspires us to study the robustness of composite estimators. The estimator composition

usually appears in data analysis pipeline, and is very common in broad data analysis

literature. In Chapter 3, we formally define the breakdown point ( [32, 52]), introduce the

onto-breakdown point and use these conceptions to study the robustness of composite

estimators. Generally, the composition of two or more estimators is less robust than each

individual estimator.

Another problem we try to address is how to effectively sketch lines, trajectories and

general geometric shapes. We introduce sketched representation for geometric objects based

on a set of landmarks Q. Each object J is represented by a vector vQ(J), where each entry

vq(J) is defined as the distance between q and J. Using this vectorized representation, we

introduce a new family of landmark-based distances dQ. For example, the distance between

two objects can be simply defined as the (normalized) Euclidean distance between their

sketched representations.

In Chapter 4, we give the definition of dQ and its variants for lines, hyperplanes and

trajectories, and show their nice mathematical properties, e.g., being psuedo-metrics,

metrics, and bounded VC-dimension of metric balls. These nice properties allow us to

directly apply Algorithm 2.2 in Chapter 2 to robust estimators of linear regression, like

Siegel estimator, on uncertain data (Corollary 4.1), and this is also a motivation for us

to study dQ and sketched representation of geometric shapes. In Chapter 4, we mainly

study the application of dQ and its variants in trajectories analysis. We apply dQ using the

KNN classification algorithm to predict trajectory classes from real and synthetic data and

compare the result with several other distances to show its competitiveness. Moreover, the

vectorized representation also means we can directly apply many existing algorithms in

machine learning and data mining to process and analyze geometric objects. For example,
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give a set of trajectories we can directly use Lloyd’s algorithm to do k-means clustering

on it (Section 4.4.2), train SVM classifiers, or run efficient k-nearest neighbor searching

algorithms.

In Chapter 5, we study how to approximate dQ between two geometric objects when

Q is very large. The idea is to use sensitivity sampling ( [40, 44, 63, 86]) on Q. For general

geometric shapes, we show how to bound the total sensitivity under necessary assumptions.

For trajectories, we use the framework in [16] to construct a strong approximation of Q with

high probability, and we also give an algorithm to recover a trajectory from its vectorized

representation.

1.1 Main Results
Here, we list the main results in this dissertation.

• Given a set of n uncertain points P, where each point has k possible locations, and

ε ∈ (0, 1], we can construct an ε-approximate coreset T for Tukey median (or L1

median) on P that has a size |T| = O
(

kd

εd

)
, and approximately captures the probability

of its distribution of its uncertainty (Theorem 2.5, and Theorem 2.8).

• When estimators E1 and E2 have breakdown points β1 and β2 respectively, we show

the general conditions under which an E1-E2 estimator has a breakdown point of β1β2

(Theorem 3.2), and provide examples when this does not occur.

• In trajectory classification, we show dQ and its variants can match and in some

cases significantly out-perform all state-of-the-art other distances. We also show the

vectorized representation of trajectories can be directly used in k-means clustering,

and plugged into approximate nearest neighbor approaches which immediately

out-perform the best recent advances in trajectory similarity search by several orders

of magnitude (Section 4.4).

• When Q is large, we can use sensitivity sampling to find a set Q̃ ⊂ Q to approximate

dQ for pairs of general geometric objects (Theorem 5.6), and construct a strong

approximation of Q valid for all trajectories from a mildly restricted family. (Theorem

5.7).
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• We design an algorithm which can exactly recover a trajectory γ from a mildly

restricted family with k line segments, using only Q and its vectorized representation

vQ(γ), in O(|Q|+ k2) time (Theorem 5.8).



CHAPTER 2

APPROXIMATING THE DISTRIBUTION OF

THE MEDIAN AND OTHER ROBUST

ESTIMATORS ON UNCERTAIN DATA

2.1 Introduction
Most statistical or machine learning models of noisy data start with the assumption that

a data set is drawn iid (independent and identically distributed) from a single distribution.

Such distributions often represent some true phenomenon under some noisy observation.

Therefore, approaches that mitigate the influence of noise, involving robust statistics or

regularization, have become commonplace.

However, many modern data sets are clearly not generated iid, rather each data element

represents a separate object or a region of a more complex phenomenon. For instance, each

data element may represent a distinct person in a population or an hourly temperature

reading. Yet, this data can still be noisy; for instance, multiple GPS locational estimates of a

person, or multiple temperature sensors in a city. The set of data elements may be noisy

and there may be multiple inconsistent readings of each element. To model this noise, the

inconsistent readings can naturally be interpreted as a probability distribution.

Given such locationally noisy, non-iid data sets, there are many unresolved and important

analysis tasks ranging from classification to regression to summarization. In this chapter, we

initiate the study of robust estimators [33, 78] on locationally uncertain data. More precisely,

we consider an input data set of size n, where each data point’s location is described by a

discrete probability distribution. We will assume these discrete distributions have a support

of at most k points in Rd; and for concreteness and simplicity we will focus on cases where

each point has support described by exactly k points, each being equally likely.

Although algorithms for locationally uncertain points have been studied in quite a few



6

contexts over the last decade [2–5, 28, 55, 60, 67, 94], few have directly addressed the problem

of noise in the data. As the uncertainty is often the direct consequence of noise in the data

collection process, this is a pressing concern. As such we initiate this study focusing on

the most basic robust estimators: the median for data in R1, as well as its generalization

the geometric median and the Tukey median for data in Rd, defined in Section 2.1.1. Being

robust refers to the fact that the median and geometric medians have a breakdown points

of 0.5, that is, if less than 50% of the data points (the outliers) are moved from the true

distribution to some location infinitely far away, the estimator remains within the extent of

the true distribution [69]. The Tukey median has a breakdown point between 1
d+1 and 1

3 [7].

In this chapter, we generalize the median (and other robust estimators) to locationally

uncertain data, where the outliers can occur not just among the n data points, but also as

part of the discrete distributions representing their possible locations.

The main challenge is in modeling these robust estimators. As we do not have precise

locations of the data, there is not a single minimizer of cost(x, Q); rather there may be as

many as kn possible input point sets Q (the combination of all possible locations of the

data). And the expected value of such a minimizer is not robust in the same way that the

mean is not robust. As such we build a distribution over the possible locations of these

cost-minimizers. In R1 (by defining boundary cases carefully) this distribution is of size at

most O(nk), the size of the input, but already in R2 it may be as large as kn.

Our Results. We design algorithms to create an approximate support of these median

distributions. We create small sets T (called an ε-support) such that each possible median mQ

from a possible point set Q is within a distance ε · cost(mQ, Q) of some x ∈ T. In R we can

create a support set T of size O(k/ε) in O(nk log(nk)) time. We show that the bound O(k/ε)

is tight since there may be k large enough modes of these distributions, each requiring

Ω(1/ε) points to represent. In Rd our bound on |T| is O(kd/εd), for the Tukey median and

the geometric median. If we do not need to cover sets of medians mQ which occur with

probability less than ε, we can get a bound O(d/ε2) in Rd. In fact, this general approach in

Rd extends to other estimators, including the Siegel estimator [81] for linear regression. We

then need to map weights onto this support set T. We can do so exactly in O(n2k) time in

R1 or approximately in O(1/ε2) time in Rd.
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Another goal may be to then construct a single-point estimator of these distributions:

the median of these median distributions. In R1 we can show that this process is stable

up to cost(mQ, Q) where mQ is the resulting single-point estimate. However, we also show

that already in R1 such estimators are not stable with respect to the weights in the median

distribution, and hence not stable with respect to the probability of any possible location of

an uncertain point. That is, infinitesimal changes to such probabilities can greatly change

the location of the single-point estimator. As such, we argue the approximate median

distribution (which is stable with respect to these changes) is the best robust representation

of such data.

2.1.1 Formalization of Model and Notation

We consider a set of n locationally uncertain points P = {P1, . . . , Pn} so that each Pi has k

possible locations {pi,1, . . . , pi,k} ⊂ Rd. Here, Pi = {pi,1, . . . , pi,k} is a multiset, which means

a point in Pi may appear more than once. Let Pflat = ∪i{pi,1, . . . , pi,k} represent all positions

of all points in P, which implies Pflat is also a multiset. We consider each pi,j to be an equally

likely (with probability 1/k) location of Pi, and can extend our techniques to non-uniform

probabilities and uncertain points with fewer than k possible locations. For an uncertain

point set P we say Q b P is a traversal of P if Q = {q1, . . . qn} has each qi in the domain of

Pi (e.g., qi = pi,j for some j). We denote by PrQbP[γ(Q)] the probability of the event γ(Q),

given that Q is a randomly selected traversal from P, where the selection of each qi from Pi

is independent of qi′ from Pi′ .

We are particularly interested in the case where n is large and k is small. For technical

simplicity we assume an extended RAM model where kn (the number of possible traversals

of point sets) can be computed in O(1) time and fits in O(1) words of space.

We consider three definitions of medians. In one dimension, given a set Q = {q1, q2, . . . ,

qn} that w.l.o.g. satisfies q1 ≤ q2 ≤ . . . ≤ qn, we define the median mQ as q n+1
2

when n is odd

and q n
2

when n is even. There are several ways to generalize the median to higher dimen-

sions [7], herein we focus on the geometric median and Tukey median. Define cost(x, Q) =

1
n ∑n

i=1 ‖x− qi‖ where ‖ · ‖ is the Euclidian norm. Given a set Q = {q1, q2, . . . , qn} ⊂ Rd,

the geometric median is defined as mQ = arg minx∈Rd cost(x, Q). The Tukey depth [83] of

a point p with respect to a set Q ⊂ Rd is defined depthQ(p) := minH∈Hp |H ∩ Q| where



8

Hp := {H is a closed half space in Rd | p ∈ H}. Then a Tukey median of a set Q is a point p

that can maximize the Tukey depth.

2.1.2 Related Work on Uncertain Data

The algorithms and computational geometry communities have recently generated a

large amount of research in trying to understand how to efficiently process and represent

uncertain data [1–5, 28, 55, 60, 62, 67], not to mention some motivating systems and other

progress from the database community [6, 30, 31, 79, 94]. Some work in this area considers

other models, with either worst-case representations of the data uncertainty [84] which

do not naturally allow probabilistic models, or when the data may not exist with some

probability [5, 55, 62]. The second model can often be handled as a special case of the

locationally uncertain model we study. Among locationally uncertain data, most work

focuses on data structures for easy data access [3, 24, 30, 82] but not the direct analysis

of data. Among the work on analysis and summarization, such as for histograms [27],

convex hulls [5], or clustering [28] it usually focuses on quantities like the expected or most

likely value, which may not be stable with respect to noise. This includes estimation of the

expected median in a stream of uncertain data [58] or the expected geometric median as part

of k-median clustering of uncertain data [28]. We are not aware of any work on modeling

the probabilistic nature of locationally uncertain data to construct robust estimators of

that data, robust to outliers in both the set of uncertain points as well as the probability

distribution of each uncertain point.

2.2 Constructing a Single Point Estimate
We begin by exploring the construction of a single point estimator of set of n locationally

uncertain points P. We demonstrate that while the estimator is stable with respect to the

value of cost, the actual minimum of that function is not stable and provides an incomplete

picture for multimodal uncertainties.

It is easiest to explore this through a weighted point set X ⊂ R1. Given a probability

distribution defined by ω : X → [0, 1], we can compute its weighted median by scanning

from smallest to largest until the sum of weights reaches 0.5.

There are two situations whereby we obtain such a discrete weighted domain. The first
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domain is the set T of possible locations of medians under different instantiations of the

uncertain points with weights ŵ as the probability of those medians being realized; see

constructions in Section 2.3.2 and Section 2.3.6. Let the resulting weighted median of (T, ŵ)

be mT. The second domain is simply the set Pflat of all possible locations of P, and its weight

w where w(pi,j) is the fraction of Q b P which take pi,j as their median (possibly 0). Let the

weighted median of (Pflat, w) be mP.

Theorem 2.1. |mT −mP| ≤ εcost(mP) ≤ εcost(mQ, Q), Q b P is any traversal with mP as its

median.

Proof. We can divide R into |T| intervals, one associated with each x ∈ T, as follows. Each

z ∈ R is in an interval associated with x ∈ T if z is closer to x than any other point y ∈ T,

unless |z − y| ≤ εcost(z) but |z − x| > cost(z). Thus a point pi,j whose weight w(pi,j)

contributes to ŵ(x), is in the interval associated with x.

Thus, if pi,j = mP, then the sum of all weights of all points greater than pi,j is at most

0.5, and the sum of all weights of points less than pi,j is less than 0.5. Hence if mP is in an

interval associated with x ∈ T, then the sum of all weights of points pi,j in intervals greater

than that of x must be at most 0.5 and those less than that of x must be less than 0.5. Hence

mT = x, and |x− pi,j| ≤ εcost(mP) as desired.

Non-Robustness of single point estimates. The geometric median of the set {mQ is a

geometric median of Q | Q b P} is not stable under small perturbations in weights; it stays

within the convex hull of the set, but otherwise not much can be said, even in R1. Consider

the example with n = 3 and k = 2, where p1,1 = p1,2 = p2,1 = 0 and p2,2 = p3,1 = p3,2 = ∆

for some arbitrary ∆. The median will be at 0 or ∆, each with probability 1/2, depending on

the location of P2. We can also create a more intricate example where ˆcost(0) = ˆcost(∆) = 0.

As these examples have mQ at 0 or ∆ equally likely with probability 1/2, then canonically

in R1 we would have the median of this distribution at 0, but a slight change in probability

(say from sampling) could put it all the way at ∆. This indicates that a representation of the

distribution of medians as we study in the remainder is more appropriate for noisy data.
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2.3 Approximating the Median Distribution
The big challenge in constructing an ε-support T is finding the points x ∈ Pflat which

have small values of cost(x, Q) (recall cost(x, Q) = 1
n ∑n

i=1 ‖x− qi‖) for some Q b P. But

this requires determining the smallest cost Q b P that has x ∈ Q and x is the median of Q.

One may think (as the authors initially did) that one could simply use a proxy function

ˆcost(x) = 1
n ∑n

i=1 min1≤j≤k ‖x − pi,j‖, which is relatively simple to compute as the lower

envelope of cost functions for each Pi. Clearly ˆcost(x) ≤ cost(x, Q) for all Q b P, so a set T̂

satisfying a similar approximation for ˆcost will satisfy our goals for cost. However, there

exist (rather adversarial) data sets P where T̂ would require Ω(nk) points; see Appendix

A.1. On the other hand, we show this is not true for cost. The key difference between cost

and ˆcost is that ˆcost does not enforce the use of some Q b P of which x is a median. That is,

that (roughly) half the points are to the left and half to the right for this Q.

*Proxy functions L, R, and D. We handle this problem by first introducing two families

of functions, defined precisely shortly. We let Li(x) (resp. Ri(x)) represent the contribution

to cost at x from the closest possible location pi,j of an uncertain point Pi to the left (resp.

right) of x. This allows us to decompose the elements of this cost. However, it does not help

us to enforce this balance. Hence we introduce a third proxy function

Di(x) = Li(x)− Ri(x)

capturing the difference between Li and Ri. We will show that the choice of which points

are used on the left or right of x is completely determined by the Di values. In particular,

we maintain the Di values (for all i ∈ [n]) in sorted order, and use the i with larger Di values

on the right, and smaller Di values on the left for the min cost Q b P.

To define Li, Ri, and Di, we first assume that Pflat and Pi for all i ∈ [n] are sorted (this

would take O(nk log(nk)) time). Then to simplify definitions we add two dummy points to

each Pi, and introduce the notation P̃i = Pi ∪ {pi,0, pi,k+1} and P̃ = {P̃1, P̃2, · · · , P̃n}, where

pi,0 = min Pflat − n∆, pi,k+1 = max Pflat + n∆, and ∆ = max Pflat −min Pflat. Thus, every

point p ∈ Pflat can be viewed as the median of some traversal of P̃. Moreover, since we put

the pi,0 and pi,k+1 points far enough out, they will essentially act as points at infinity and

not affect the rest of our analysis.
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Figure 2.1: The plot of Li(p), Ri(p) and Di(p).

Next, for p ∈ Pflat we define cost(p) = min{cost(p, Q) | p is the median of Q and Q b P̃}.

Thus, if there exists Q b P such that p is the median of Q, then cost(p) ≤ cost(p, Q).

Now to compute cost and expedite our analysis, for p ∈ [min Pflat − n∆, max Pflat + n∆],

we define Li(p) = min{|pi − p| | pi ∈ P̃i ∩ (−∞, p]} and Ri(p) = min{|pi − p| | pi ∈

P̃i ∩ [p, ∞)}. and recall Di(p) = Li(p)− Ri(p). Obviously, if p ∈ P̃i, then Di(p) = Li(p) =

Ri(p) = 0. For example, if P̃i = {pi,0, pi,1, pi,2, pi,3, pi,4} and pi,0 < pi,1 < pi,2 < pi,3 < pi,4,

then the plot of Li(p), Ri(p) and Di(p), is shown in Figure 2.1.

For the sake of brevity, we now assume n is odd; adjusting a few arguments by +1 will

adjust for the n is even case.

Consider next the following property of the Di functions with respect to computing

cost(p) for a point p ∈ Pi0 . Let {i1, i2, · · · , in−1} = [n]\{i0} be a permutation of uncertain

points, except for i0, so that Di1(p) ≤ Di2(p) ≤ · · · ≤ Din−1(p). Then to minimize cost(p, Q),

we count the uncertain points Pil using Lil if in the permutation il ≤ (n− 1)/2 and otherwise

count it on the right with Ril . This holds since for any other permutation {j1, j2, · · · , jn−1} =

[n]\{i0} we have ∑n−1
l= n+1

2
Dil (p) ≥ ∑n−1

l= n+1
2

Djl (p) and thus

n−1
2

∑
l=1

Lil (p) +
n−1

∑
l= n+1

2

Ril (p) =
n−1

∑
l=1

Lil (p)−
n−1

∑
l= n+1

2

Dil (p)

≤
n−1

∑
l=1

Ljl (p)−
n−1

∑
l= n+1

2

Djl (p) =
n−1

2

∑
l=1

Ljl (p) +
n−1

∑
l= n+1

2

Rjl (p).

For p ∈ Pi0 , cost(p) = 1
n

(
∑

n−1
2

l=1 Lil (p) + ∑n−1
l= n+1

2
Ril (p)

)
under this Di-sorted permutation.
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2.3.1 Computing cost

Now to compute cost for all points p ∈ Pflat, we simply need to maintain the Di in sorted

order, and then sum the appropriate terms from Li and Ri. Let us first examine a few facts

about the complexity of these functions.

The function Li (resp. Ri) is piecewise-linear, where the slope is always 1 (resp. −1). The

breakpoints only occur at x = pi,j for each pi,j ∈ Pi. Hence, they each have complexity Θ(k)

for all i ∈ [n]. The structure of Li and Ri implies that Di is also piecewise-linear, where the

slope is always 2 and has breakpoints for each pi,j ∈ Pi. Each linear component attains a

value Di(x) = 0 when x is the midpoint between two pi,j, pi,j′ ∈ Pi which are consecutive in

the sorted order of Pi.

The fact that all Di have slope 2 at all non-discontinuous points, and these discontinuous

points only occur at Pi, implies that the sorted order of the Di functions does not change

in between points of Pflat. Moreover, at one of these points of discontinuity x ∈ Pflat, the

ordering between Dis only changes for uncertain points Di′ such that there exists a possible

location pi′,j ∈ Pi′ such that x = pi′,j. This implies that to maintain the sorted order of Di for

any x, as we increase the value of x, we only need to update this order at the nk points in

Pflat with respect to Di′ for which there exists pi′,j ∈ Pi′ with pi′,j = x. This takes O(log(nk))

time per update using a balanced BST, and thus O(nk log(nk)) time to define cost(x) for

all values x ∈ R1. To compute cost(x), we also require the values of Li (or Ri); these can

be constructed independently for each i ∈ [n] in O(k) time after sorting, and in O(nk log k)

time overall.1 Ultimately, we arrive at the following theorem.

Theorem 2.2. Consider a set of n uncertain points P with k possible locations each. We can compute

cost(x) for all x ∈ R such that x = pi,j for some pi,j ∈ Pflat in O(nk log(nk)) time.

2.3.2 Building the ε-Support T and Bounding its Size

We next show that there always exists an ε-support T and it has a size |T| = O( k
ε ).

1When multiple distinct pi,j coincide at a point x, then more care may be required to compute cost(x)
(depending on the specifics of how the median is defined in these boundary cases). Specifically, we may not
want to set Li(x) = 0, instead it may be better to use the value Ri(x) even if Ri(x) = α > 0. This is the case
when α < Ri′ (x)− Li′ (x) for some other uncertain point Pi′ (then we say Pi is on the right, and Pi is on the
left). This can be resolved by either tweaking the definition of median for these cases, or sorting all Di(x) for
uncertain points Pi with some pi,j = x, and some bookkeeping.
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Theorem 2.3. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ R, and ε ∈ (0, 1] we can construct an ε-support T that has a size |T| = O( k
ε ).

Proof. We first sort Pflat in ascending order, scan Pflat = {p1, · · · , pnk} from left to right

and choose one point from Pflat every b n
3 c points, and then put the chosen point into T.

Now, suppose p is the median of some traversal Q b P and cost(p) = cost(p, Q). If

p /∈ T, then there are two consecutive points t, t′ in T such that t < p < t′. On either

side of p there are at least b n
2 c points in Q, so without loss of generality, we assume

|p− t′| ≥ 1
2 |t− t′|. Since |[p, ∞) ∩ Q| ≥ n

2 and there are at most b n
3 c points in [p, t′], we

have |(t′, ∞) ∩Q| ≥ n
2 − b

n
3 c ≥

n
6 , which implies

cost(p) =cost(p, Q) ≥ 1
n ∑

q∈(t′,∞)∩Q
|q− p| ≥ 1

n ∑
q∈(t′,∞)∩Q

|t′ − p|

≥ 1
n

n
6
|t′ − p| = 1

6
|t′ − p| ≥ 1

12
|t− t′|.

(2.1)

For any fixed ε ∈ (0, 1], and two consecutive points t, t′ (t < t′) in T, we put x1, · · · , xd 12
ε e−1

into T where xi = t + |t−t′|i
d 12

ε e
for 1 ≤ i ≤ d 12

ε e − 1. So, for the median p ∈ (t, t′), there exists

xi ∈ T s.t. |p− xi| ≤ ε
12 |t− t′|, and from (2.1), we know |p− xi| ≤ εcost(p). In total we put

O( k
ε ) points into T; thus the proof is completed.

Remark 2.1. The above construction results in an ε-support T of size O(k/ε), but does not restrict

that T ⊂ Pflat. We can enforce this restriction by for each x placed in T to choose the single nearest

point p ∈ Pflat to replace it in T. This results in an (2ε)-support, which can be made an ε-support

by instead adding d 24
ε e − 1 points between each pair (t, t′), without affecting the asymptotic time

bound.

Remark 2.2. We can construct a sequence of uncertain data {P(n, k)} such that, for each uncertain

data P(n, k), the optimal ε-support T has a size Ω( k
ε ). For example, for ε = 1

3 , 1
5 , 1

7 , · · · , we

define n = 1
ε , and pi,j = (j− 1)n + i for i ∈ [n] and j ∈ [k]. Then, for any median p ∈ Pflat,

we have εcost(p) = 2
n2 ∑

n−1
2

i=1 i = n2−1
4n2 < 1

4 , hence covering no other points, which implies

|T| = Ω(nk) = Ω( k
ε ).

We can construct the minimal size ε-support T in O(nk log(nk)) time by sorting, and

greedily adding the smallest point not yet covered each step. This yields the slightly

stronger corollary of Theorem 2.3.
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Corollary 2.1. Consider a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ R, and ε ∈ (0, 1]. We can construct an ε-support T in O(nk log(nk)) time which has the minimal

size for any ε-support, and |T| = O( k
ε ).

There are multiple ways to generalize the notion of a median to higher dimensions [7].

We focus on two variants: the Tukey median and the geometric median. We start with

generalizing the notion of an ε-support to a Tukey median since it more directly follows

from the techniques in Theorem 2.3, and then address the geometric median.

2.3.3 An ε-Support for the Tukey Median

A closely related concept to the Tukey median is a centerpoint, which is a point p such

that depthQ(p) ≥ 1
d+1 |Q|. Since for any finite set Q ∈ Rd its centerpoint always exists, a

Tukey median must be a centerpoint. This means if p is the Tukey median of Q, then for any

closed half space containing p, it contains at least 1
d+1 |Q| points of Q. Using this property,

we can prove the following theorem.

Theorem 2.4. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ R2, and ε ∈ (0, 1], we can construct an ε-support T for the Tukey median on P that has a size

|T| = O( k2

ε2 ).

Proof. Suppose the projections of Pflat on x-axis and y-axis are X and Y respectively. We

sort all points in X and choose one point from X every b n
4 c points, and then put the chosen

points into a set XT. For each point x ∈ XT we draw a line through (x, 0) parallel to y-axis.

Similarly, we sort all points in Y and choose one point every b n
4 c points, and put the chosen

points into YT. For each point y ∈ YT we draw a line through (0, y) parallel to x-axis.

Now, suppose p with coordinates (xp, yp) is the Tukey median of some traversal Q b P

and cost(p, Q) = 1
n ∑q∈Q ‖q− p‖. If xp /∈ XT and yp /∈ YT, then there are x, x′ ∈ XT and

y, y′ ∈ YT such that x < xp < x′ and y < yp < y′, as shown in Figure 2.2(Left).

Without loss of generality, we assume |xp − x| ≥ 1
2 |x′ − x| and |yp − y| ≥ 1

2 |y− y′|. Since

p is the Tukey median of Q, we have |Q ∩ (−∞, ∞) × (−∞, yp]| ≥ n
3 where (−∞, ∞) ×

(−∞, yp] = {(x, y) ∈ R2| y ≤ yp}. Recall there are at most b n
4 c points of Pflat in (−∞, ∞)×

[yp, y], which implies |Q ∩ (−∞, ∞)× (−∞, y)| ≥ n
3 − b

n
4 c ≥

n
12 . So, we have
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cost(p, Q) ≥ 1
n ∑q∈Q∩(−∞,∞)×(−∞,y) ‖q− p‖ ≥ 1

n
n
12
|y− yp| ≥

1
24
|y− y′|.

Using a symmetric argument, we can obtain cost(p, Q) ≥ 1
24 |x− x′|.

For any fixed ε ∈ (0, 1], and any two consecutive points x, x′ in XT we put x1, · · · , xd 48
ε e−1

into XT where xi = x + |x−x′|i
d 48

ε e
. Also, for any two consecutive point y, y′ in YT, we put

y1, · · · , yd 48
ε e−1 into YT where yi = y + |y−y′|i

d 48
ε e

. So, for the Tukey median p ∈ (x, x′)× (y, y′),

there exist xi ∈ XT and yj ∈ YT such that |xp − xi| ≤ ε
48 |x− x′| and |yp − yj| ≤ ε

48 |y− y′|.

Since we have shown that 1
24 |x − x′| and 1

24 |y − y′| are lower bounds for cost(p, Q), we

obtain

‖(xp, yp)− (xi, yj)‖ ≤|xp − xi|+ |yp − yj| ≤
ε

48
(|x− x′|+ |y− y′|)

≤ ε

48
(24cost(p, Q) + 24cost(p, Q)) = εcost(p, Q).

Finally, we define T as T := XT × YT. Then for any Q b P, if p is the Tukey median of Q,

there exists t ∈ T such that ‖t− p‖ ≤ εcost(p, Q). Thus, T is an ε-support for the Tukey

median on P. Moreover, since |XT| = O( k
ε ) and |YT| = O( k

ε ), we have |T| = O( k2

ε2 ).

In a straight-forward extension, we can generalize the result of Theorem 2.4 to d dimen-

sions.

Theorem 2.5. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ Rd, and ε ∈ (0, 1], we can construct an ε-support T for the Tukey median on P that has a size

|T| = O((2d(d + 1)(d + 2)2 k
ε )

d).

p

x x
′xp

y

y
′

yp p

x x
′xp

y

y
′

yp

θ

Figure 2.2: Left: Tukey median p is in a grid cell formed by x, x′ and y, y′. Center: The
plane is decomposed into 8 regions with the same shape. Right: Geometric median p is in
an oblique grid cell formed by x, x′ and y, y′.
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2.3.4 An ε-Support for the Geometric Median

Unlike the Tukey median, there does not exist a constant C > 0 such that: for any

geometric median p of point set Q ⊂ Rd, any closed half space containing p contains at least
1
C |Q| points of Q. For example, suppose in R2 there are 2n + 1 points on x-axis with the

median point at the origin; this point is also the geometric median. If we move this point

upward along the y direction, then the geometric median also moves upwards. However,

for the line through the new geometric median and parallel to the x-axis, all 2n other points

are under this line.

Hence, we need a new idea to adapt the method in Theorem 2.5 for the geometric median

in Rd. We first consider the geometric median in R2. We show we can find some line through

it, such that on both sides of this line there are at least n
8 points.

Lemma 2.1. Suppose p is the geometric median of Q ⊂ R2 with size |Q| = n. There is a line `

through p so both closed half planes with ` as boundary contain at least n
8 points of Q.

Proof. We first build a rectangular coordinate system at the point p, which means p is the

origin with coordinates (xp, yp) = (0, 0). Then we use the x-axis, y-axis and lines x = y,

x = −y to decompose the plane into eight regions, as shown in Figure 2.2(Center). Since

all these eight regions have the same shape, without loss of generality, we can assume

Ω = {(x, y) ∈ R2| x ≥ y ≥ 0} contains the most points of Q. Then |Ω ∩Q| ≥ n
8 , otherwise

n = |Q| = |R2 ∩Q| ≤ 8|Ω ∩Q| < n, which is a contradiction.

If |Q ∩ {p}| ≥ n
8 , i.e., the multiset Q contains p at least n

8 times, then obviously this

proposition is correct. So, we only need to consider the case |Q ∩ {p}| < n
8 . We introduce

notations Ω̃ = Ω \ {p} and Ωo = Ω \ ∂Ω, and denote the coordinates of any q ∈ Q as

q = (xq, yq). From a property of the geometric median (proven in Appendix A.1) we know

∑q∈Q\{p}
xq−xp
‖q−p‖ ≤ |Q ∩ {p}|. Since |Q ∩ {p}| < n

8 this implies

∑q∈Q∩Ω̃

xq

‖q‖ + ∑q∈Q\Ω
xq

‖q‖ <
n
8

,

since p is the origin and Q \ {p} = (Q ∩ Ω̃) ∪ (Q \Ω). From xq
‖q‖ =

xq√
x2

q+y2
q
≥ 1√

2
, ∀q ∈ Ω̃

we obtain

|Q ∩ Ω̃| 1√
2
≤∑q∈Q∩Ω̃

xq

‖q‖ <
n
8
−∑q∈Q\Ω

xq

‖q‖ ≤
n
8
+ |Q \Ω| ≤ n

8
+ (n− |Q ∩ Ω̃|)
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which implies there are not too many points in Ω̃,

|Q ∩ Ω̃| <
√

2n
(1 +

√
2)
· 9

8
< 0.66n.

Now, we define the two pairs of half spaces which share a boundary with Ω̃: H+
1 =

{(x, y) ∈ R2| y ≥ 0}, H−1 = {(x, y) ∈ R2| y ≤ 0} and H+
2 = {(x, y) ∈ R2| x − y ≥ 0},

H−2 = {(x, y) ∈ R2| x − y ≤ 0}. We assert either |H+
1 ∩ Q| ≥ n

8 and |H−1 ∩ Q| ≥ n
8 , or

|H+
2 ∩ Q| ≥ n

8 and |H−2 ∩ Q| ≥ n
8 . Otherwise, since |Q ∩Ω| ≥ n

8 and Ω ⊂ H+
1 ∩ H+

2 , we

have |H−1 ∩Q| < n
8 and |H−2 ∩Q| < n

8 . From H−1 ∪ H−2 ∪Ωo = R2 we have

n =|Q| = |R2 ∩Q| = |(H−1 ∪ H−2 ∪Ωo) ∩Q| ≤ |H−1 ∩Q|+ |H−2 ∩Q|+ |Ωo ∩Q|

≤|H−1 ∩Q|+ |H−2 ∩Q|+ |Ω̃ ∩Q| ≤ n
8
+

n
8
+ 0.66n < n,

which is a contradiction. Therefore, among lines `1 : y = 0 and `2 : x− y = 0, which both

go through p, one of them has at least n/8 points from Q on both sides.

Theorem 2.6. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ R2, and ε ∈ (0, 1], we can construct an ε-support T for the geometric median on P that has a size

|T| = O( k2

ε2 ).

Proof. The idea to prove this theorem is to use several oblique coordinate systems. We

consider an oblique coordinate system, the angle between x-axis and y-axis is θ ∈ (0, π
2 ],

and use the technique in Theorem 2.4 to generate a grid. More precisely, we project Pflat

onto the x-axis along the y-axis of the oblique coordinate system to obtain a set X, sort all

points in X, and choose one point from X every b n
9 c points to form a set XT. Then we use

the same method to generate Y and YT projecting along the x-axis in the oblique coordinate

system. For each point x ∈ XT we draw a line through (x, 0) parallel to the (oblique) y-axis,

and for each point y ∈ YT we draw a line through (0, y) parallel to the (oblique) x-axis.

Let p with coordinates (xp, yp) be the geometric median of some traversal Q b P and

cost(p, Q) = 1
n ∑q∈Q ‖q − p‖. If xp /∈ XT and yp /∈ YT, then there are x, x′ ∈ XT and

y, y′ ∈ YT such that xp ∈ (x, x′) and yp ∈ (y, y′), as shown in Figure 2.2(Right).

If we have the condition:

|Q ∩ (−∞, ∞)× (−∞, yp]| ≥
n
8

, |Q ∩ (−∞, ∞)× [yp, ∞)| ≥ n
8

,

|Q ∩ (−∞, xp]× (−∞, ∞)| ≥ n
8

, |Q ∩ [xp, ∞)× (−∞, ∞)| ≥ n
8

,
(2.2)

then we can make the following computation.
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Without loss of generality, we assume |xp − x| ≥ 1
2 |x′ − x| and |yp − y| ≥ 1

2 |y − y′|.

There are at most b n
9 c points of Pflat in (−∞, ∞)× [yp, y], which implies |Q ∩ (−∞, ∞)×

(−∞, y)| ≥ n
8 − b

n
9 c ≥

n
72 . So, we have

cost(p, Q) ≥ 1
n ∑q∈Q∩(−∞,∞)×(−∞,y) ‖q− p‖ ≥ 1

n
n
72
|y− yp| ≥

sin(θ)
144

|y− y′|.

Similarly, we can prove cost(p, Q) ≥ sin(θ)
144 |x− x′|.

For any fixed ε ∈ (0, 1], and any two consecutive points x, x′ in XT we put x1, · · · ,

xd 288
ε sin(θ) e−1 into XT where xi = x + |x−x′|i

d 288
ε sin(θ) e

. Also, for any two consecutive point y, y′ in

YT, we put y1, · · · , yd 288
ε sin(θ) e−1 into YT where yi = y + |y−y′|i

d 288
ε sin(θ) e

. So, for the L1 median p ∈

(x, x′) × (y, y′), there exist xi ∈ XT and yj ∈ YT such that |xp − xi| ≤ ε sin(θ)
288 |x − x′| and

|yp − yj| ≤ ε sin(θ)
288 |y− y′|. Since we have shown that both sin(θ)

144 |x− x′| and sin(θ)
144 |y− y′| are

lower bounds for cost(p, Q), using the distance formula in an oblique coordinate system,

we have

‖(xp, yp)− (xi, yj)‖ ≤((xp − xi)
2 + (yp − yj)

2 + 2(xp − xi)(yi − yp) cos(θ))
1
2

≤((xp − xi)
2 + (yp − yj)

2 + 2|xp − xi||yi − yp|)
1
2 = |xp − xi|+ |yp − yj|

≤ ε sin(θ)
288

(|x− x′|+ |y− y′|)

≤ ε sin(θ)
288

(
144

sin(θ)
cost(p, Q) +

144
sin(θ)

cost(p, Q)

)
= εcost(p, Q).

Therefore, if all kn geometric medians of traversals satisfy (2.2) and θ ∈ (0, π
2 ] is a constant

then T = XT ×YT is an ε-support of size O
(

k2

(sin(θ)ε)2

)
for the geometric median on P.

Although we cannot find an oblique coordinate system to make (2.2) hold for all kn

medians, we can use several oblique coordinate systems. Using the result of Lemma 2.1, for

any geometric median of n points Q, we know there exists a line ` through p and parallel

to a line in {`1 : y = 0, `2 : x− y = 0, `3 : x = 0, `4 : x + y = 0}, such that in both sides

of this line, there are at least n
8 points of Q. Since we did not make any assumption on the

distribution of points in Q, if we rotate `1, `2, `3, `4 anticlockwise by π
8 around the origin,

we can obtain four lines `′1, `′2, `′3, `′4, and there exists a line `′ through p and parallel to a

line in {`′1, `′2, `′3, `′4}, such that on both sides of this line, there are at least n
8 points of Q. The

angle between ` and `′ is at least π
8 .

Therefore, given L = {`1, `2, `3, `4} and L′ = {`′1, `′2, `′3, `′4}, for each pair (`, `′) ∈ L×L′,

we take ` and `′ as x-axis and y-axis respectively to build an oblique coordinate system,
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and then use the above method to compute a set T(`, `′). Since for any geometric median p

there must be an oblique coordinate system based on some (`, `′) ∈ L×L′ to make (2.2)

hold for p, we can take T = ∪`∈L,`′∈L′T(`, `′) as an ε-support for geometric median on P,

and the size of T is |T| = O
(

16 k2

(sin( π
8 )ε)

2

)
= O

(
k2

ε2

)
.

2.3.5 Size bound of T in Rd

Using the method in the proof of Theorem 2.6, we can generalize the result of this theorem

to R3 and higher dimensional space.

Theorem 2.7. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ R3, and ε ∈ (0, 1], we can construct an ε-support T for L1 median on P that has a size

|T| = O
(

k3

ε3

)
.

Proof. The first step is to obtain a result similar to Lemma 2.1: if p is the L1 median of a set

of n points Q ⊂ R3, then we can find a plane h through p, such that any closed half space

with h as its boundary contains at least n
24 points of Q.

To prove this, we build a rectangular coordinate system at the point p, and use nine

planes H3 = {x1 = 0, x2 = 0, x3 = 0, x1 ± x2 = 0, x2 ± x3 = 0, x3 ± x1 = 0} to partition R3

into 24 regions: {Ωi,s| i ∈ {1, 2, 3}, s ∈ {1,−1}3}, where Ωi,s = Ωi,(s1,s2,s3) := {(x1, x2, x3) ∈

R3| sixi ≥ sjxj ≥ 0, for j = 1, 2, 3}. All of these regions have the same shape with Ω1,(1,1,1) =

{(x1, x2, x3) ∈ R3|x1 ≥ x2 ≥ 0, x1 ≥ x3 ≥ 0}, which means they can coincide with each

other through rotation, shift and reflection. So, we define Ω = Ω1,(1,1,1) and without loss of

generality assume |Q ∩Ω| = maxi∈[3],s∈{1,−1}3 |Q ∩Ωi,s|. Obviously, we have |Q ∩Ω| ≥ n
24 .

We only need to consider the case |Q ∩ {p}| < n
24 . Introducing notations Ω̃ = Ω \ {p},

Ωo = Ω \ ∂Ω, from the property of L1 median we know ∑q∈Q\{p}
xq,1−xp,1

‖q−p‖ ≤ |Q ∩ {p}| < n
24 .

Since p is the origin, we have∑q∈Q∩Ω̃
xq,1

‖q‖ + ∑q∈Q\Ω
xq,1

‖q‖ <
n
24 , which implies |Q ∩ Ω̃| 1√

3
<

n
24 + |Q \Ω| ≤ n

24 + (n− |Q ∩ Ω̃|) since xq,1

‖q‖ ≤
1√
3
, for all q ∈ Ω̃. Thus, we obtain

|Q ∩ Ω̃| <
√

3n
1 +
√

3
· 25

24
< 0.67n. (2.3)

Now, for x = (x1, x2, x3) ∈ R3 we define h1(x) = x1 − x2, h2(x) = x1 − x3, h3(x) = x2,

h4(x) = x3, and H+
i = {x ∈ R3| hi(x) ≥ 0}, H−i − = {x ∈ R3| hi(x) ≤ 0}, and assert there

exists i ∈ [4] such that |H+
i ∩ Q| ≥ n

24 and |H−i ∩ Q| ≥ n
24 . Otherwise, since |Q ∩Ω| ≥ n

24
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and Ω ⊂ ∩4
i=1H+

i , we have |H−i ∩Q| < n
24 for all i ∈ [4]. From ∪4

i=1H−i ∪Ωo = R3 and (2.3)

we have

n =|Q| = |R3 ∩Q| = |(∪4
i=1H−i ∪Ωo) ∩Q| ≤

4

∑
i=1
|H−1 ∩Q|+ |Ωo ∩Q|

≤
4

∑
i=1
|H−1 ∩Q|+ |Ω̃ ∩Q| ≤ 4n

24
+ 0.67n < n,

(2.4)

which is a contradiction. Therefore, in {x1− x2 = 0, x1− x3 = 0, x2 = 0, x3 = 0} there exists

at lease one plane such that any closed half space with this line as the boundary contains at

least n
24 points of Q.

The second step is to obtain three sets of planes which have the same structure with

H3, and this can be done through orthogonal transformation. Since a plane through

the origin can be uniquely determined by its normal vector, we can use normal vectors

V3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,±1, 0), (0, 1,±1), (±1, 0, 1)} to represent planes in H3.

Then, we choose three orthogonal matrices M1, M2, M3 and define V3(Mi) = {vMi| v ∈ V3}

for i = 1, 2, 3. One set of feasible orthogonal matrices is {Mi| Mi = I3 − 2u3,iuT
3,i, for i =

1, 2, 3}, where I3 is a 3× 3 identity matrix, and u3,i = (1i, 2i, 3i)T is a column vector. It

can be verified that minvi∈V3(Mi),∀ i∈[3] |Det([v1; v2; v3])| ≥ 4.8468× 10−4, where [v1; v2; v3]

is a 3× 3 matrix and vi is its ith row. This means if we arbitrarily choose three vectors

v1, v2, v3 from V3(M1), V3(M2) and V3(M3) respectively, then these three vectors are lin-

early independent, so the three planes determined by these vectors can form an oblique

coordinates system. We can use the method in the proof of Theorem 2.6, to generate a set

T(v1, v2, v3) with size O(C[v1;v2;v3]
k3

ε3 ) in this oblique coordinate system, where C[v1;v2;v3] is

a constant determined by |Det([v1; v2; v3])|. For the three orthogonal matrices we chose

above, |Det([v1; v2; v3])| has a lower bound, so the constant C[v1;v2;v3] has an upper bound,

which implies O
(

C[v1;v2;v3]
k3

ε3

)
= O

(
k3

ε3

)
.

For any L1 median p of n points Q and any V3(Mi) there must be a plane through p and

orthogonal to a vector in V3(Mi) such that in both sides of this plane there are at least n
24

points of Q. So, there exist (v1, v2, v3) ∈ V3(M1)×V3(M2)×V3(M3) and x ∈ T(v1, v2, v3)

such that ‖x− p‖ ≤ εcost(p, Q). Therefore, we can take T = ∪vi∈V3(Mi),∀ i∈[3]T(v1, v3, v3) as

an ε-support for L1 median on P with size O( k3

ε3 ).

In the proof of Theorem 2.7, we choose three orthogonal matrices M1, M2, M3. These
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three matrices are independent from the input data P, so we can store these orthogonal

matrices and use them to compute the ε-support of L1 median for any P in R3.

To generalize the result of Theorem 2.7 to Rd, we can use d + 2(n
2) hyperplanes Hd =

{xi = 0 | i ∈ [d]} ∪ {xi ± xj = 0 | 1 ≤ i < j ≤ d} to partition Rd into d2d regions:

{Ωi,s | i ∈ [d], s ∈ {1,−1}d}, where Ωi,s = Ωi,(s1,··· ,sd) := {(x1, · · · , xd) ∈ Rd | sixi ≥ sjxj ≥

0, ∀ j ∈ [d]}. All of these regions have the same shape with Ω1,(1,··· ,1) = {(x1, · · · , xd) ∈

Rd | x1 ≥ xj ≥ 0, for j = 2, · · · , d}. Using the method in the proof of Theorem 2.7 we can

show, if p is the L1 median of n points Q and is the origin, then there is a hyperplane h in

Hd such that any half space with h as the boundary contains at least n
d2d points of Q. (In

Rd, (2.4) will become n ≤ 2(d−1)n
d2d +

√
dn

1+
√

d
d2d+1

d2d , and it is easy to show the right side of this

inequality is always less than n for all d ≥ 3, so the method in the proof of Theorem 2.7 still

works.)

Suppose Vd is the collection of normal vectors of all hyperplanes in Hd. We randomly

choose a set of d-dimensional orthogonal matrices M = {M1, · · · , Md}, and define Vd(Mi) =

{vMi | v ∈ Vd} for i = 1, · · · , d. If minvi∈Vd(Mi),∀ i∈[d] | Det([v1; · · · ; vd])| ≥ cM > 0, where

cM is a positive constant dependent on M and [v1; · · · ; vd] is a d× d matrix with vi as its

ith row, then we can store these matrices, for each (v1, · · · , vd) ∈ Vd(M1)× · · · ×Vd(Md)

build an oblique coordinate system, and use the method in Theorem 2.6, to generate a

set T(v1, · · · , vd) with size O(C[v1;··· ;vd]
kd

εd ) = O(CM
kd

εd ), where CM is a positive constant

dependent on M. Finally, we return T = ∪vi∈Vd(Mi),∀ i∈[d]T(v1, · · · , vd) as an ε-support for

L1 median on P, and the size of T is |T| = O(CM
kd

εd ) = O( kd

εd ), since M is fixed for all

uncertain data in Rd.

Since a d-dimensional orthogonal matrix has d(d− 1)/2 independent variables, we can

always find orthogonal matrices M1, · · · , Md and a constant cM, such that

min
vi∈Vd(Mi),∀ i∈[d]

|Det([v1; · · · ; vd])| ≥ cM > 0,

and for fixed d, M1, · · · , Md can be stored to deal with any input data P in Rd. For example,

for d = 4 we can define Mi = I4 − 2u4,iuT
4,i, for i = 1, · · · , 4, where I4 is an identity matrix

and u4,i = (1i, 2i, 3i, 4i)T, and it can be verified that minvi∈V4(Mi),∀ i∈[4] |Det([v1; · · · ; v4])| ≥

3.7649× 10−6.

For d = 5, we can define Mi = I5 − 2u5,iuT
5,i, for i = 1, · · · , 5, where I5 is an identity
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matrix and u5,i = (1i, 2i, 3i, 4i, 5i)T, and we have minvi∈V5(Mi),∀ i∈[5] |Det([v1; · · · ; v5])| ≥

2.3635× 10−11. In summary, we have the following theorem.

Theorem 2.8. Given a set of n uncertain points P = {P1, · · · , Pn}, where Pi = {pi,1, · · · , pi,k}

⊂ Rd, and ε ∈ (0, 1], for any fixed d we can construct an ε-support T for L1 median on P that has a

size |T| = O
(

kd

εd

)
.

2.3.6 Assigning a Weight to T in R1

Here we provide an algorithm to assign a weight to T in R1, which approximates the

probability distribution of median. For T in Rd, we provide a randomized algorithm in

Section 2.4.1.

Define the weight of pi,j ∈ Pflat as w(pi,j) = 1
kn |{Q b P | pi,j is the median of Q}|, the

probability it is the median. Suppose T is constructed by our greedy algorithm for R1. For

pi,j ∈ Pflat, we introduce a map fT : Pflat → T,

fT(pi,j) = arg min{|x− pi,j| | x ∈ T, |x− pi,j| ≤ εcost(pi,j)},

where cost(pi,j) = min{cost(pi,j, Q) | pi,j is the median of Q and Q b P}.

Intuitively, this maps each pi,j ∈ Pflat onto the closest point x ∈ T, unless it violates the

ε-approximation property which another further point satisfies.

Now for each x ∈ T, define weight of x as ŵ(x) = ∑{pi,j∈Pflat| fT(pi,j)=x} w(pi,j). So we

first compute the weight of each point in Pflat and then obtain the weight of points in T

in another linear sweep. Our ability to calculate the weights w for each point in Pflat is

summarized in the next lemma. The algorithm, explained within the proof, is a dynamic

program that expands a specific polynomial similar to Li et.al. [64], where in the final state,

the coefficients correspond with the probability of each point being the median.

Lemma 2.2. We can output w(pi,j) for all points in Pflat in R1 in O(n2k) time.

Proof. For any pi0 ∈ Pi0 , we define the following terms to count the number of points to the

left (lj) or right (rj) of it in the jth uncertain point (excluding Pi0):
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lj =

{
|{p ∈ Pj | p ≤ pi0}| if 1 ≤ j ≤ i0 − 1
|{p ∈ Pj+1 | p ≤ pi0}| if i0 ≤ j ≤ n− 1

,

rj =

{
|{p ∈ Pj | p ≥ pi0}| if 1 ≤ j ≤ i0 − 1
|{p ∈ Pj+1 | p ≥ pi0}| if i0 ≤ j ≤ n− 1

. Then, if n is odd, we can write the weight of pi0 as

w(pi0) =
1
kn ∑

S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · li n−1
2
· rj1 · rj2 · . . . · rj n−1

2
),

where S1 = {i1, i2, · · · , i n−1
2
} and S2 = {j1, j2, · · · , j n−1

2
}. This sums over all partitions S1, S2

of uncertain points on the left or right of pi0 for which it is the median, and each term is

the product of ways each uncertain point can be on the appropriate side. We define w(pi0)

similarly when n is even, then the last index of S2 is j n
2
.

We next describe the algorithm for n odd; the case for n even is similar. To compute

∑ S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · li n−1
2
· rj1 · rj2 · . . . · rj n−1

2
), we consider the following polynomial:

(l1x + r1)(l2x + r2) · · · (ln−1x + rn−1), (2.5)

where ∑ S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · li n−1
2
· rj1 · rj2 · . . . · rj n−1

2
) is the coefficient of x

n−1
2 . We

define ρi,j (1 ≤ i ≤ n − 1, 0 ≤ j ≤ i) as the coefficient of xj in the polynomial (l1x +

r1) · · · (lix + ri) and then it is easy to check ρi,j = liρi−1,j−1 + riρi−1,j. Thus we can use

dynamic programming to compute ρn−1,0, ρn−1,1, · · · , ρn−1,n−1, as shown in Algorithm 2.1.

Algorithm 2.1 Compute ρn−1,0, ρn−1,1, · · · , ρn−1,n−1

Let ρ1,0 = r1, ρ1,1 = l1, ρ1,2 = 0.
for i = 2 to n− 1 do

for j = 0 to i do
ρi,j = liρi−1,j−1 + riρi−1,j

ρi,i+1 = 0
return ρn−1,0, ρn−1,1, · · · , ρn−1,n−1.

Thus Algorithm 2.1 computes the weight 1
kn w(pi0) = ρn−1, n−1

2
for a single pi0 ∈ Pflat. Next

we show, we can reuse much of the structure to compute the weight for another point; this

will ultimately shave a factor n off of running Algorithm 2.1 nk times.
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Suppose for pi0 ∈ Pi0 we have obtained ρn−1,0, ρn−1,1, . . . , ρn−1,n−1 by Algorithm 2.1, and

then we consider pi′0
= min{p ∈ Pflat \ Pi0 | p ≥ pi0}. We assume pi′0

∈ Pi′0
, and if i′0 < i0, we

construct a polynomial

(l1x + r1) · · · (li′0−1x + ri′0−1)(l̃i′0 x + r̃i′0
)(li′0+1x + ri′0+1) · · · (ln−1x + rn−1) (2.6)

and if i′0 > i0, we construct a polynomial

(l1x + r1) · · · (li′0−2x + ri′0−2)(l̃i′0−1x + r̃i′0−1)(li′0 x + ri′0
) · · · (ln−1x + rn−1) (2.7)

where l̃i′0 = l̃i′0−1 = |{p ∈ Pi0 | p ≤ pi′0
}| and r̃i′0

= r̃i′0−1 = |{p ∈ Pi0 | p ≥ pi′0
}|.

Since (2.5) and (2.6) have only one different factor, we obtain the coefficients of (2.6) from

the coefficients of (2.5) in O(n) time. We recover the coefficients of (l1x + r1) · · · (li′−1x +

ri′−1)(li′0+1x + ri′0+1) · · · (ln−1x + rn−1) from ρn−1,0, ρn−1,1, · · · , ρn−1,n−1, and then use these

coefficients to compute the coefficients of (2.6). Similarly, if i′0 > i0, we obtain the coefficients

of (2.7) from the coefficients of (2.5). Therefore, we can use O(n2) time to compute the weight

of the first point in Pflat and then use O(n) time to compute the weight of each other point.

The whole time is O(n2) + nkO(n) = O(n2k).

Corollary 2.2. We can assign ŵ(x) to each x ∈ T in R1 in O(n2k) time.

2.4 A Randomized Algorithm to Construct a Covering Set
In this section we describe a much more general randomized algorithm for robust

estimators on uncertain data. It constructs an approximate covering set of the support of

the distribution of the estimator, and estimates the weight at the same time. The support

of the distribution is not as precise compared to the techniques in the previous section in

that the new technique may fail to cover regions with small probability of containing the

estimator.

Suppose P = {P1, P2, · · · , Pn} is a set of uncertain data, where for i ∈ [n], Pi = {pi,1, pi,2,

· · · , pi,k} ⊆ X for some domain X. An estimator E : {Q | Q b P} 7→ Y maps Q b P to a

metric space (Y, ϕ). Let B(y, r) = {y′ ∈ Y| ϕ(y, y′) ≤ r} be a ball of radius r in that metric

space. We denote ν as the VC-dimension of the range space (Y,R) induced by these balls,

with R = {B(y, r) | y ∈ Y, r ≥ 0}.

We now analyze the simple algorithm which randomly instantiates traversals Q b P,

and constructors their estimators z = E(Q). Repeating this N times builds a domain
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T = {z1, z2, . . . , zN} each with weight w(zi) = 1/N. Duplicates of domain points can have

their weights merged as described in Algorithm 2.2.

Algorithm 2.2 Approximate the weight of points in T
Initialize T = ∅
for j = 1 to N do

Randomly choose Q b P, and set z = E(Q).
if z = z′ for some z′ ∈ T, then increment cz′ = cz′ + 1
else add z to T, and set cz = 1.

return cz
N as the approximate value of w(z) for all z ∈ T

Theorem 2.9. For ε > 0 and δ ∈ (0, 1), set N = O((1/ε2)(ν + log(1/δ))). Then, with

probability at least 1− δ, for any B ∈ R we have |∑z∈T∩B w(z)− PrQbP[E(Q) ∈ B]| ≤ ε.

Proof. Let T∗ be the true support of E(Q) where Q b P, and let w∗ : T∗ → R+ be the

true probability distribution defined on T∗; e.g., for discrete T∗, then for any z′ ∈ T∗,

w∗(z′) = PrQbP[E(Q) = z′]. Then each random z generated is a random draw from w∗.

Hence for a range space with bounded VC-dimension [85] ν, we can apply the sampling

bound [65] for ε-approximations of these range spaces to prove our claim.

In Theorem 2.9, for zi ∈ T, if we choose B = B(zi, r) ∈ R with r small enough such that

T ∩ B only contains zi, then we obtain the following.

Corollary 2.3. For ε > 0 and δ ∈ (0, 1), set N = O((1/ε2)(ν + log(1/δ))). Then, with

probability at least 1− δ, for any z ∈ Y we have |w(z)− PrQbP[E(Q) = z]| ≤ ε.

Remark 2.3. We can typically define a metric space (Y, ϕ) where ν = O(1); for instance for point

estimators (e.g., the geometric median), define a projection into R1 so no zis map to the same point,

then define distance ϕ as restricted to the distance along this line, so metric balls are intervals (or

slabs in Rd); these have ν = 2.

2.4.1 Application to Geometric Median

For each Q b P, the geometric median mQ may take a distinct value. Thus even

calculating that set, let alone their weights in the case of duplicates, would require at least

Ω(kn) time. But it is straightforward to apply this randomized approach. For Pflat ∈ Rd, the

natural metric space (Y, ϕ) is Y = Rd and ϕ as the Euclidian distance.
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However, there is no known closed form solution for the geometric median; it can be

computed within any additive error φ through various methods [12, 14, 17, 88]. As such, we

can state a slightly more intricate corollary.

Corollary 2.4. Set ε > 0 and δ ∈ (0, 1) and N = O((1/ε2)(d + log(1/δ))). For an uncertain

point set P with Pflat ⊂ Rd, let the estimator E be the geometric median, and let Eφ be an algorithm

that finds an approximation to the geometric median within additive error φ > 0. Run the algorithm

using Eφ. Then for any ball B = B(x, r) ∈ R, there exists2 another ball B′ = B(x, r′) with

|r− r′| ≤ φ such that with probability at least 1− δ,∣∣∣ ∑
z∈T∩B′

w(z)− Pr
QbP

[E(Q) ∈ B]
∣∣∣ ≤ ε.

2.4.2 Application to Siegel Estimator

The Siegel (repeated median) estimator [81] is a robust estimator S for linear regression

in R2 with optimal breakdown point 0.5. For a set of points Q, for each qi ∈ Q it computes

slopes of all lines through qi and each other q′ ∈ Q, and takes their median ai. Then it

takes the median a of the set {ai}i of all median slopes. The offset b of the estimated line

` : y = ax + b, is the median of (yi − axi) for all points qi = (xi, yi). For uncertain data

Pflat ⊂ R2, we can directly apply our general technique for this estimator.

We use the following metric space (Y, ϕ). Let Y = {` | ` is a line in R2 with form y =

ax + b, where a, b ∈ R}. Then let ϕ be the Euclidean distance in the standard dual; for

two lines ` : y = ax + b and `′ : y = a′x + b′, define ϕ(`, `′) =
√
(a− a′)2 + (b− b′)2.

By examining the dual space, we see that (Y,R) with R = {B(`, r) | ` ∈ Y, r ≥ 0} and

B(`, r) = {`′ ∈ Y | ϕ(`, `′) ≤ r} has a VC-dimension 3.

From the definition of the Siegel estimator [81], there can be at most O(n3k3) distinct

lines in T = {S(Q) | Q b P}. By Corollary 2.3, setting N = O((1/ε2) log(1/δ)), then with

probability at least 1− δ for all z ∈ T we have
∣∣∣w(z)− PrQbP[S(Q) = z]

∣∣∣ ≤ ε.

2To simplify the discussion on degenerate behavior, define ball B′, so any point q on its boundary can be
defined inside or outside of B, and this decision can be different for each q, even if they are co-located.



CHAPTER 3

THE ROBUSTNESS OF ESTIMATOR

COMPOSITION

3.1 Introduction
Robust statistical estimators [51, 56] (in particular, resistant estimators), such as the

median, are an essential tool in data analysis since they are provably immune to outliers.

Given data with a large fraction of extreme outliers, a robust estimator guarantees the

returned value is still within the non-outlier part of the data. In particular, the role of

these estimators is quickly growing in importance as the scale and automation associated

with data collection and data processing becomes more commonplace. Artisanal data

(hand crafted and carefully curated), where potential outliers can be removed, is becoming

proportionally less common. Instead, important decisions are being made blindly based on

the output of analysis functions, often without looking at individual data points and their

effect on the outcome. Thus using estimators as part of this pipeline that are not robust are

susceptible to erroneous and dangerous decisions as the result of a few extreme and rogue

data points.

Although other approaches like regularization and pruning a constant number of obvious

outliers are common as well, they do not come with the important guarantees that ensure

these unwanted outcomes absolutely cannot occur.

In this chapter, we initiate the formal study of the robustness of composition of estimators

through the notion of breakdown points. These are especially important with the growth

of data analysis pipelines where the final result or prediction is the result of several layers

of data processing. When each layer in this pipeline is modeled as an estimator, then our

analysis provides the first general robustness analysis of these processes.

The breakdown point [32, 52] is a basic measure of robustness of an estimator. Intuitively, it
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describes how many outliers can be in the data without the estimator becoming unreliable.

However, the literature is full of slightly inconsistent and informal definitions of this concept.

For example:

• Aloupis [7] write “the breakdown point is the proportion of data which must be

moved to infinity so that the estimator will do the same.”

• Huber and Ronchetti [57] write “the breakdown point is the smallest fraction of bad

observations that may cause an estimator to take on arbitrarily large aberrant values.”

• Dasgupta, Kumar, and Srikumar [90] write “the breakdown point of an estimator is

the largest fraction of the data that can be moved arbitrarily without perturbing the

estimator to the boundary of the parameter space.”

All of these definitions have similar meanings, and they are typically sufficient for

the purpose of understanding a single estimator. However, they are not mathematically

rigorous, and it is difficult to use them to discuss the breakdown point of composite

estimators.

Composition of Estimators. In a bit more detail (we give formal definitions in Section

3.2.1), an estimator E maps a data set to single value in another space, sometimes the

same as a single data point. For instance the mean or the median are simple estimators

on one-dimensional data. A composite E1-E2 estimator applies two estimators E1 and E2

on data stored in a hierarchy. Let P = {P1, P2, . . . , Pn} be a set of subdata sets, where each

subdata set Pi = {pi,1, pi,2, . . . , pi,k} has individual data readings. Then the E1-E2 estimator

reports E2(E1(P1), E1(P2), . . . , E1(Pn)), that is the estimator E2 applied to the output of

estimator E1 on each subdata set.

3.1.1 Examples of Estimator Composition

Composite estimators arise in many scenarios in data analysis.

Uncertain Data. For instance, in the last decade there has been increased focus on the

study of uncertainty data [28, 60, 79] where instead of analyzing a data set, we are given

a model of the uncertainty of each data point. Consider tracking the summarization of a

group of n people based on noisy GPS measurements. For each person i we might get k
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readings of their location Pi, and use these k readings as a discrete probability distribution

of where that person might be. Then in order to represent the center of this set of people a

natural thing to do would be to estimate the location of each person as xi ← E1(Pi), and

then use these estimates to summarize the entire group E2(x1, x2, . . . , xn). Using the mean

as E1 and E2 would be easy, but would be susceptible to even a single outrageous outlier

(all people are in Manhattan, but a spurious reading was at (0, 0) lat-long, off the coast

of Africa). An alternative is to use the L1-median for E1 and E2, that is known to have an

optimal breakdown point of 0.5. But what is the breakdown point of the E1-E2 estimator?

Robust Analysis of Bursty Behavior. Understanding the robustness of estimators can also

be critical towards how much one can “game” a system. For instance, consider a start-up

media website that gets bursts of traffic from memes they curate. They publish a statistic

showing the median of the top half of traffic days each month, and aggregate these by taking

the median of such values over the top half of all months. This is a composite estimator,

and they proudly claim, even through they have bursty traffic, it is robust (each estimator

has a breakdown point of 0.25). If this composite estimator shows large traffic, should a

potential buyer of this website be impressed? Is there a better, more robust estimator the

potential buyer could request? If the media website can stagger the release of its content,

how should they distribute it to maximize this composite estimator?

Part of the Data Analysis Pipeline. This process of estimator composition is very common

in broad data analysis literature. This arises from the idea of an “analysis pipeline” where

at several stages estimators or analysis is performed on data, and then further estimators

and analysis are performed downstream. In many cases a robust estimator like the median

is used, specifically for its robustness properties, but there is no analysis of how robust the

composition of these estimators is.

3.1.2 Main Results

This chapter initiates the formal and general study of the robustness of composite

estimators.

• In Subsection 3.2.1, we give two formal definitions of breakdown points which are

both required to prove composition theorem. One variant of the definition closely
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aligns with other formalizations [32, 52], while another is fundamentally different.

• The main result provides general conditions under which an E1-E2 estimator with

breakdown points β1 and β2, has a breakdown point of β1β2 (Theorem 3.2 in Subsec-

tion 3.2.2).

• Moreover, by showing examples where our conditions do not strictly apply, we gain

an understanding of how to circumvent the above result. An example is in composite

percentile estimators (e.g., E1 returns the 25th percentile, and E2 the 75th percentile of

a ranked set). These composite estimators have larger breakdown point than β1 · β2.

• The main result can extended to multiple compositions, under suitable conditions, so

for instance an E1-E2-E3 estimator has a breakdown point of β1β2β3 (Theorem 3.3 in

Subsection 3.2.3). This implies that long analysis chains can be very suspect to a few

carefully places outliers since the breakdown point decays exponentially in the length

of the analysis chain.

• In Section 3.3, we highlight several applications of this theory, including robust

regression, robustness of p-values, a depth-3 composition, and how to advantageously

manipulate the observation about percentile estimator composition. We demonstrate

a few more applications with simulations in Section 3.4.

3.2 Robustness of Estimator Composition
3.2.1 Formal Definitions of Breakdown Points

In this chapter, we give two definitions for the breakdown point: Asymptotic Breakdown

Point and Asymptotic Onto-Breakdown Point. The first definition, Asymptotic Breakdown

Point, is similar to the classic formal definitions in [52] and [32] (including their highly

technical nature), although their definitions of the estimator are slightly different leading

to some minor differences in special cases. However our second definition, Asymptotic

Onto-Breakdown Point, is a structurally new definition, and we illustrate how it can result

in significantly different values on some common and useful estimators. Our main theorem

will require both definitions, and the differences in performance will lead to several new

applications and insights.
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We define an estimator E as a function from the collection of some finite subsets of a metric

space (X , d) to another metric space (X ′, d′):

E : A ⊂ {X ⊂ X | 0 < |X| < ∞} 7→ X ′, (3.1)

where X is a multiset. This means if x ∈ X then x can appear more than once in X, and the

multiplicity of elements will be considered when we compute |X|.

Finite Sample Breakdown Point. For estimator E defined in (3.1) and positive integer n we

define its finite sample breakdown point gE(n) over a set M as

gE(n) =

{
max(M) if M 6= ∅
0 if M = ∅

(3.2)

where for ρ(x′, X) = maxx∈X d(x′, x) is the distance from x′ to the furthest point in X,

M = {m ∈ [0, n] | ∀X ∈ A , |X| = n, ∀ G1 > 0, ∃ G2 = G2(X, G1) s.t.

∀X′ ∈ A , if |X′| = n and |{x′ ∈ X′ | ρ(x′, X) > G1}| ≤ m

then d′(E(X), E(X′)) ≤ G2}.

(3.3)

For an estimator E in (3.1) and X ∈ A , the finite sample breakdown point gE(n) means if

the number of unbounded points in X′ is at most gE(n), then E(X′) will be bounded. Lets

break this definition down a bit more. The definition holds over all data sets X ∈ A of size

n, and for all values G1 > 0 and some value G2 defined as a function G2(X, G1) of the data

set X and value G1. Then gE(n) is the maximum value m (over all X, G1, and G2 above)

such that for all X′ ∈ A with |X′| = n then |{x′ ∈ X′ | ρ(x′, X) > G1}| ≤ m (that is at most

m points are further than G1 from X) where the estimators are close, d′(E(X), E(X′)) ≤ G2.

For example, consider a point set X = {0, 0.15, 0.2, 0.25, 0.4, 0.55, 0.6, 0.65, 0.72, 0.8, 1.0}

with n = 11 and median 0.55. If we set G1 = 3, then we can consider sets X′ of size 11 with

fewer than m points that are either greater than 3 or less than −2. This means in X′ there

are at most m points which are greater than 3 or less than −2, and all other n−m points are

in [−2, 3]. Under these conditions, we can (conservatively) set G2 = 4, and know that for

values of m as 1, 2, 3, 4, or 5, then the median of X′ must be between −3.45 and 4.55; and

this holds no matter where we set those m points (e.g., at 20 or at 1000). This does not hold

for m ≥ 6, so gE(11) = 5.
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Asymptotic Breakdown Point. If the limit limn→∞
gE(n)

n exists, then we define this limit

β = lim
n→∞

gE(n)
n

(3.4)

as the asymptotic breakdown point, or breakdown point for short, of the estimator E.

Remark 3.1. It is not hard to see that many common estimators satisfy the conditions. For example,

the median, L1-median [7], and Siegel estimators [81] all have asymptotic breakdown points of 0.5.

Asymptotic Onto-Breakdown Point. For an estimator E given in (3.1) and positive integer

n, if

M̃ = {0 ≤ m ≤ n | ∀ X ∈ A , |X| = n, ∀ y ∈ X ′,

∃ X′ ∈ A s.t. |X′| = n, |X ∩ X′| = n−m, E(X′) = y}

is not empty, we define

fE(n) = min(M̃). (3.5)

The definition of fE(n) implies, if we change fE(n) elements in X, we can make E become

any value in X ′: it is onto. In contrast gE(n) only requires E(X′) to become far from E(X),

perhaps only in one direction. Then the asymptotic onto-breakdown point is defined as the

following limit if it exists

lim
n→∞

fE(n)
n

. (3.6)

Remark 3.2. For a quantile estimator E that returns a percentile other than the 50th, then

limn→∞
gE(n)

n 6= limn→∞
fE(n)

n . For instance, if E returns the 25th percentile of a ranked set,

setting only 25% of the data points to −∞ causes E to return −∞; hence limn→∞
gE(n)

n = 0.25.

And while any value less than the original 25th percentile can also be obtained; to return a value

larger than the largest element in the original set, at least 75% of the data must be modified, thus

limn→∞
fE(n)

n = 0.75.

As we will observe in Section 3.3, this nuance in definition regarding percentile estimators will

allow for some interesting composite estimator design.

3.2.2 Definition of E1-E2 Estimators, and their Robustness

We consider the following two estimators:

E1 : A1 ⊂ {X ⊂ X1 | 0 < |X| < ∞} 7→ X2, (3.7)



33

E2 : A2 ⊂ {X ⊂ X2 | 0 < |X| < ∞} 7→ X ′
2 , (3.8)

where any finite subset of E1(A1), the range of E1, belongs to A2. Suppose Pi ∈ A1, |Pi| = k

for i = 1, 2, · · · , n and Pflat = ]n
i=1Pi, where ] means if x appears n1 times in X1 and n2

times in X2 then x appears n1 + n2 times in X1 ] X2. We define

E(Pflat) = E2 (E1(P1), E1(P2), · · · , E1(Pn)) . (3.9)

Theorem 3.1. Suppose gE1(k) and gE2(n) are the finite sample breakdown points of estimators E1

and E2 which are given by (3.7) and (3.8) respectively. If gE(nk) is the finite sample breakdown

point of E given by (3.9), then we have

gE2(n)gE1(k) ≤ gE(nk). (3.10)

and if

β1 = lim
k→∞

gE1(k)
k

, β2 = lim
n→∞

gE2(n)
n

, β = lim
n,k→∞

gE(nk)
nk

and all exist, then

β1β2 ≤ β. (3.11)

Proof. For any fixed G1 > 0, and any subsets P′1, P′2, · · · , P′n ∈ A1 satisfying |P′1| = |P′2| =

· · · = |P′n| = k, and

|{p′ ∈ P′flat| ρ(p′, Pflat) > G1}| ≤ gE2(n)gE1(k) (3.12)

where P′flat = ]n
i=1P′i , we introduce the notation

X = {E1(P1), E1(P2), · · · , E1(Pn)}, X′ = {E1(P′1), E1(P′2), · · · , E1(P′n)}.

So, in order to prove (3.10), we only need to bound E(P′flat).

We define

I1 =
{

1 ≤ i ≤ n| |{p′ ∈ P′i | ρ(p′, Pi) > G1}| > gE1(k)
}

(3.13)

and then have

|I1| ≤ gE2(n). (3.14)

Otherwise, since ρ(p′, Pi) > G1 implies ρ(p′, Pflat) > G1, from |I1| > gE2(n) and (3.13) we

can obtain

|{p′ ∈ P′flat| ρ(p′, Pflat) > G1}| > gE2(n)gE1(k)

which is contradictory to (3.12).
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For any i /∈ I1, we have |{p′ ∈ P′i | ρ(p′, Pi) > G1}| ≤ gE1(k), so, from the definition of

gE1(k) we know

∃ Gi
2 = Gi

2(Pi, G1), s.t. d2(E1(P′i ), E1(Pi)) ≤ Gi
2 ∀ i /∈ I1.

where d2 is the metric of space X2. Let

G2 = max
i/∈I1

Gi
2 + max

1≤i,j≤n
d2(E1(Pi), E1(Pj))

then we have

ρ(E1(P′i ), X) ≤ G2, ∀ i /∈ I1. (3.15)

Defining I2 = {1 ≤ i ≤ n | ρ(E1(P′i ), X) > G2} from (3.15) we have I2 ⊂ I1, which implies

|I2| ≤ |I1| ≤ gE2(n) by (3.14). Therefore, from the definition of gE2(n), we have

∃ G3 = G3(X, G2) s.t. ‖E(P′flat)− E(Pflat)‖ = ‖E2(X′)− E2(X)‖ ≤ G3,

which implies (3.10), and (3.11) can be obtained from (3.10) directly. Thus, the proof is

completed.

Remark 3.3. Under the condition of Theorem 3.1, we cannot guarantee β = β1β2. For example,

suppose E1 and E2 take the 25th percentile and the 75th percentile of a ranked set of real numbers

respectively. So, we have β1 = β2 = 1
4 . However, β = 1

4 ·
3
4 = 3

16 .

In fact, the limit of gE(nk)
nk as n, k → ∞ may even not exist. For example, suppose E1 takes the

25th percentile of a ranked set of real numbers. When n is odd E2 takes the the 25th percentile of a

ranked set of n real numbers, and when n is even E2 takes the the 75th percentile of a ranked set of

n real numbers. Thus, β1 = β2 = 1
4 , but gE(nk) ≈ 1

4 nk if n is odd, and gE(nk) ≈ 1
4 ·

3
4 nk if n is

even, which implies limn,k→∞
gE(nk)

nk does not exist.

Therefore, to guarantee β exist and β = β1β2, we introduce the definition of asymptotic

onto-breakdown point in (3.6). As shown in Remark 3.2, the values of (3.4) and (3.6) may be

not equal. However, with the condition of the asymptotic breakdown point and asymptotic

onto-breakdown point of E1 being the same, we can finally state our desired clean result.
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Theorem 3.2. For estimators E1, E2 and E given by (3.7), (3.8) and (3.9) respectively, suppose

gE1(k), gE2(n) and gE(nk) are defined by (3.2), and fE1(k) is defined by (3.5). Moreover, E1 is an

onto function and for any fixed positive integer n we have

∃ X ∈ A2, |X| = n, G1 > 0, s.t. ∀ G2 > 0, ∃ X′ ∈ A2 satisfying

|X′| = n, |X′ \ X| = gE2(n) + 1, and d′2(E2(X), E2(X′)) > G2.
(3.16)

where d′2 is the metric of space X ′
2 .

If

β1 = lim
k→∞

gE1(k)
k

= lim
k→∞

fE1(k)
k

, and β2 = lim
n→∞

gE2(n)
n

(3.17)

both exist, then

β = lim
n,k→∞

gE(nk)
nk

exists and β = β1β2. (3.18)

Proof. For any fixed positive integer n, we can find X = {x1, x2, · · · , xn} ∈ A2, and G1 > 0

satisfying (3.16). Since E1 is an onto function, we can find Pflat = ]n
i=1Pi such that Pi ∈ A1

and E1(Pi) = xi for all 1 ≤ i ≤ n.

From (3.16), we know for any G2 > 0, we can find X′ ∈ A2 such that |X′| = n, |X′ \ X| =

gE2(n) + 1 and

d′(E2(X), E2(X′)) > G2.

This implies the number of different elements between X and X′ is gE2(n) + 1. For any

x′i ∈ X′ \ X, we can find P′i ∈ A1 such that |P′i | = k, E1(P′i ) = x′i and |P′i \ Pi| = fE1(k). So,

we only need to change fE1(k)(gE2(n) + 1) points of Pflat, and then we can obtain P′flat such

that |P′flat \ Pflat| = fE1(k)(gE2(n) + 1) and d′(E(Pflat), E(P′flat)) > G2. This implies

gE(nk) ≤ fE1(k)(gE2(n) + 1). (3.19)

Therefore, from Theorem 3.1 and (3.19) we have

gE1(k)
k

gE2(n)
n
≤ gE(nk)

nk
≤ fE1(k)

k
(gE2(n) + 1)

n
. (3.20)

Letting n and k go to infinity in (3.20), we obtain (3.18) from (3.17). Thus, the proof of this

theorem is completed.

Remark 3.4. Without the introduction of fE(n), we cannot even guarantee β ≤ β1 or β ≤ β2 only

under the condition of Theorem 3.1, even if E1 and E2 are both onto functions. For example, for any
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P = {p1, p2, · · · , pk} ⊂ R and X = {x1, x2, · · · , xn} ⊂ R, we define E1(P) = 1/median(P) (if

median(P) 6= 0, otherwise define E1(P) = 0) and E2(X) = median(y1, y2, · · · , yn), where yi (1 ≤

y ≤ n) is given by yi = 1/xi (if xi 6= 0, otherwise define yi = 0). Since gE1(k) = gE2(n) = 0 for

all n, k, we have β1 = β2 = 0. However, in order to make E2(E1(P1), E1(P2), · · · , E1(Pn))→ +∞,

we need to make about n
2 elements in {E(P1), E(P2), · · · , E(Pn)} go to 0+. To make E1(Pi)→ 0+,

we need to make about k
2 points in Pi go to +∞. Therefore, we have gE(nk) ≈ n

2 ·
k
2 and β = 1

4 .

3.2.3 Multi-level Composition of Estimators

To study the breakdown point of composite estimators with more than two levels, we

introduce the following estimator:

E3 : A3 ⊂ {X ⊂ X ′
2 | 0 < |X| < ∞} 7→ X ′

3 , (3.21)

where any finite subset of E2(A2), the range of E2, belongs to A3. Suppose Pi,j ∈ A1,

|Pi,j| = k for i = 1, 2, · · · , n, j = 1, 2, · · · , m and Pj
flat = ]n

i=1Pi,j, Pflat = ]m
j=1Pj

flat. We define

E(Pflat) = E3

(
E2(P̃1

flat), E2(P̃2
flat), · · · , E2(P̃m

flat)
)

, (3.22)

where P̃j
flat = {E1(P1,j), E1(P2,j), · · · , E1(Pn,j)}, for j = 1, 2, · · · , m.

From Theorem 3.2, we can obtain the following theorem about the breakdown point of E

in (3.22).

Theorem 3.3. For estimators E1, E2, E3 and E given by (3.7), (3.8), (3.21) and (3.22) respectively,

suppose gE1(k), gE2(n), gE3(m) and gE(mnk) are defined by (3.2), and fE1(k), fE2(n) are defined

by (3.5). Moreover, E1 and E2 are both onto functions, and for any fixed positive integer m we have

∃ X ∈ A3, |X| = m, G1 > 0, s.t. ∀ G2 > 0, ∃ X′ ∈ A3

satisfying |X′| = m, |X′ \ X| = gE3(m) + 1, and d′3(E3(X), E3(X′)) > G2.

where d′3 is the metric of space X ′
3 . If

β1 = lim
k→∞

gE1(k)
k

= lim
k→∞

fE1(k)
k

, β2 = lim
n→∞

gE2(n)
n

= lim
n→∞

fE2(n)
n

, (3.23)

and β3 = limm→∞
gE3 (m)

m all exist, then

β = lim
m,n,k→∞

gE(mnk)
mnk

exist and β = β1β2β3. (3.24)
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Proof. We define an estimator Ẽ:

Ẽ(P̃j
flat) = E2(E1(P1,j), E1(P2,j), · · · , E1(Pn,j))

for j = 1, 2, · · · , m, and first prove the breakdown point of Ẽ is β̃ = β1β2.

For any fixed y ∈ X ′
2 and X = {E1(P1), E1(P2), · · · , E1(Pn)}, we can find X′ ∈ A2 such

that |X′| = n, |X ∩ X′| = n− fE2(n) and E2(X′) = y. For any element y′ ∈ X′ \ (X ∩ X′),

we can find E1(Pi) ∈ X \ (X ∩ X′) and P′i ∈ A1 such that |P′i | = k, |Pi ∩ P′i | = k− gE1(k) and

E1(P′i ) = y′. This implies we can find a set P′flat ⊂ X1 such that |P′flat| = nk, |Pflat ∩ P′flat| =

nk− fE2(n) fE1(k) and Ẽ(P′flat) = y, i.e. we only need to change fE2(n) fE1(k) points in Pflat,

and Ẽ can become any value. So, we have

fẼ(nk) ≤ fE2(n) fE1(k). (3.25)

Applying Theorem 3.1 to E1 and E2, we obtain

gE2(n)gE1(k) ≤ gẼ(nk). (3.26)

Since gẼ(nk) < fẼ(nk), from (3.25) and (3.26), we have

gE2(n)
n

gE1(k)
k
≤

gẼ(nk)
nk

<
fẼ(nk)

nk
≤ fE2(n)

n
fE1(k)

k
. (3.27)

Letting n, k go to infinity in (3.27), from (3.23) we obtain the breakdown point of Ẽ is

β̃ = lim
n,k→∞

gẼ(nk)
nk

= lim
n,k→∞

fẼ(nk)
nk

= β1β2.

Since E(Pflat) = E3(Ẽ(P̃1
flat), Ẽ(P̃2

flat), · · · , Ẽ(P̃m
flat)), we apply Theorem 3.2 to Ẽ and E3, and

then obtain (3.24).

3.3 Applications
We next discuss several applications of our main theorems and observations. Applications

2 and 4 are direct applications of the easy to use theorems. Applications 1 and 3 take

advantage of some of the nuances in definition, in particular the unexpected robustness of

composing quantile estimators.

3.3.1 Application 1 : Balancing Percentiles

For n companies, for simplicity, assume each company has k employees. We are interested

in the income of the regular employees of all companies, not the executives who may have



38

exorbitant pay. Let pi,j represents the income of the jth employee in the ith company.

Set Pflat = ]n
i=1Pi where the ith company has a set Pi = {pi,1, pi,2, · · · , pi,k} ⊂ R and for

notational convenience pi,1 ≤ pi,2 ≤ · · · ≤ pi,k for i ∈ {1, 2, · · · , n}. Suppose the income

data Pi of each company is preprocessed by a 45-percentile estimator E1 (median of lowest

90% of incomes), with breakdown point β1 = 0.45. In theory E1(Pi) can better reflect the

income of regular employees in a company, since there may be about 10% of employees

in the management of a company and their incomes are usually much higher than that of

common employees. So, the preprocessed data is X = {E1(P1), E1(P2), · · · , E1(Pn)}.

If we define E2(X) = median(X) and E(Pflat) = E2(X), then the breakdown point of E2

is β2 = 0.5, and the breakdown points of E is β = β1β2 = 0.225.

However, if we use another E2, then E can be more robust. For example, for X =

{x1, x2, · · · , xn} where x1 ≤ x2 ≤ · · · ≤ xn, we can define E2 as the 55-percentile estimator

(median of largest 90% of incomes). In order to make E(Pflat) = E2(X) = E2(E1(P1), E1(P2),

· · · , E1(Pn)) go to infinity, we need to either move 55% points of X to −∞ or move 45%

points of X to +∞. In either case, we need to move about 0.45 · 0.55nk points of Pflat to

infinity. This means the breakdown point of E is β = 0.45 · 0.55 = 0.2475 which is greater

than 0.225.

This example implies if we know how the raw data is preprocessed by estimator E1, we

can choose a proper estimator E2 to make the E1-E2 estimator more robust.

3.3.2 Application 2 : Regression of L1 Medians

Suppose we want to use linear regression to robustly predict the weight of a person from

his or her height, and we have multiple readings of each person’s height and weight. The

raw data is Pflat = ]n
i=1Pi where for the ith person we have a set Pi = {pi,1, pi,2, · · · , pi,k} ⊂

R2 and pi,j = (xi,j, yi,j) for i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , k}. Here, xi,j and yi,j are the

height and weight respectively of the ith person in their jth measurement.

One “robust” way to process this data, is to first pre-process each Pi with its L1-median [7]:

(x̄i, ȳi) ← E1(Pi), where E1(Pi) = L1-median(Pi) has breakdown point β1 = 0.5. Then we

could generate a linear model to predict weight ŷi = ax + b from the Siegel Estimator [81]:

E2(Z) = (a, b), with breakdown point β2 = 0.5. From Theorem 3.2 we immediately know

the breakdown point of E(Pflat) = E2(E1(P1), E1(P2), · · · , E1(Pn)) is β = β1β2 = 0.5 · 0.5 =
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0.25.

Alternatively, taking the Siegel estimator of Pflat (i.e., returning E2(Pflat)) would have a

much larger breakdown point of 0.5. So a seemingly harmless operation of normalizing the

data with a robust estimator (with optimal 0.5 breakdown point) drastically decreases the

robustness of the process.

3.3.3 Application 3 : Significance Thresholds

Suppose we are studying the distribution of the wingspread of fruit flies. There are

n = 500 flies, and the variance of the true wingspread among these flies is on the order of

0.1 units. Our goal is to estimate the 0.05 significance level of this distribution of wingspread

among normal flies.

To obtain a measured value of the wingspread of the ith fly, denoted Fi, we measure

the wingspread of ith fly k = 100 times independently, and obtain the measurement set

Pi = {pi,1, pi,2, · · · , pi,k}. The measurement is carried out by a machine automatically and

quickly, which implies the variance of each Pi is typically very small, perhaps only 0.0001

units, but there are outliers in Pi with small chance due to possible machine malfunction.

This malfunction may be correlated to individual flies because of anatomical issues, or it

may have autocorrelation (the machine jams for a series of consecutive measurements).

To perform hypothesis testing we desire the 0.05 significance level, so we are interested in

the 95th percentile of the set F = {F1, F2, · · · , Fn}. So a post processing estimator E2 returns

the 95th percentile of F and has a breakdown point of β2 = 0.05 [54]. Now, we need to

design an estimator E1 to process the raw data Pflat = ]n
i=1Pi to obtain F = {F1, F2, · · · , Fn}.

For example, we can define E1 as Fi = E1(Pi) = median(Pi) and estimator E as E(Pflat) =

E2(E1(P1), E1(P2), · · · , E1(Pn)).

Then, the breakdown point of E1 is 0.5. Since the breakdown point of E2 is 0.05, the

breakdown point of the composite estimator E is β = β1β2 = 0.5 · 0.05 = 0.025. This

means if the measurement machine malfunctioned only 2.5% of the time, we could have

an anomalous significant level, leading to false discovery. Can we make this process more

robust by adjusting E1?

Actually, yes!, we can use another pre-processing estimator to get a more robust E. Since

the variance of each Pi is only 0.0001, we can let E1 return the 5th percentile of a ranked
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set of real numbers, then there is not much difference between E1(Pi) and the median of

Pi. (Note: this introduces a small amount of bias that can likely be accounted for in other

ways.) In order to make E(Pflat) = E2(F) go to infinity we need to move 5% points of X to

−∞ (causing E2 to give an anomalous value) or 95% points of X to +∞ (causing many, 95%,

of the E1 values, to give anomalous values). In either case, we need to move about 5% · 95%

points of Pflat to infinity. So, the breakdown points of E is β = 0.05 · 0.95 = 0.0475 which is

greater than 0.025. That is, we can now sustain up to 4.75% of the measurement machine’s

reading to be anomalous, almost double than before, without leading to an anomalous

significance threshold value.

This example implies if we know the post-processing estimator E2, we can choose a

proper method to preprocess the raw data to make the E1-E2 estimator more robust.

Remark 3.5. A further study would be required to use such a composite estimator in practice due

some bias it introduces. To replicate the normalization process on new experimental data (e.g., on

a new species with hypothesized long wingspread), we would probably need to make one of the

following adjustments to the standard process of measuring the wingspread of the new species

and directly comparing it to the significance threshold. (a) Also consider the 5th percentile of the

experimental measurements (with breakdown point 0.05 instead of 0.5). (b) Adjust the significance

level by roughly 0.0001 units (the variance over Pi) making it conservative with respect to the 5th

percentile versus the 50th percentile decision of each fly’s measurements, so the 50th percentile could

be used on the new experimental data. Or, (c) use a different percentile (say the (95 + ε)th percentile

instead of 95th) to balance the bias in using the 5th percentile of measurements. In the specific

scenario we describe, we believe option (b) may be a very acceptable option with little lack in precision

(due to difference in variance 0.1 and 0.0001) but with large gain in robustness.

3.3.4 Application 4 : 3-Level Composition

Suppose we want to use a single value to represent the temperature of the US in a certain

day. There are m = 50 states in the country. Suppose each state has n = 100 meteorological

stations, and the station i in state j measures the local temperature k = 24 times to get the

data Pi,j = {ti,j,1, ti,j,2, · · · , ti,j,k}. We define Pj
flat = ]n

i=1Pi,j, Pflat = ]m
j=1Pj

flat and
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E1(Pi,j) = median(Pi,j), E2(Pj
flat) = median

(
E1(P1,j), E1(P1,j), · · · , E1(Pn,j)

)
E(Pflat) = E3(E2(P1

flat), E2(P2
flat), · · · , E2(Pm

flat)) = median(E2(P1
flat), E2(P2

flat), · · · , E2(Pm
flat)).

So, the break down points of E1, E2 and E3 are β1 = β2 = β3 = 0.5. From Theorem 3.3,

we know the break down point of E is β = β1β2β3 = 0.125. Therefore, we know the

estimator E is not very robust, and it may be not a good choice to use E(Pflat) to represent

the temperature of the US in a certain day.

This example illustrates how the more times the raw data is aggregated, the more

unreliable the final result can become.

3.4 Simulations
We next describe a few more scenarios where our new theory on estimator composition

is relevant. For these we simulate a couple of data sets to demonstrate how one might

construct interesting algorithms from these ideas.

3.4.1 Simulation 1 : Estimator Manipulation

In this simulation we actually construct a method to relocate an estimator by modifying

the smallest number of points possible. We specifically target the L1-median of L1-medians

since its somewhat non-trivial to solve for the new location of data points.

In particular, given a target point p0 ∈ R2 and a set of nk points Pflat = ]n
i=1Pi, where Pi =

{pi,1, pi,2, · · · , pi,k} ⊂ R2, we use simulation to show that we only need to change ñk̃ points

of Pflat, then we can get a new set P̃flat = ]n
i=1P̃i such that median(median(P̃1), median(P̃2),

· · · , median(P̃n)) = p0. Here, the ”median” means L1-median, and

ñ =

{
1
2 n if n is even
1
2 (n + 1) if n is odd

, k̃ =

{
1
2 k if k is even
1
2 (k + 1) if k is odd

.

To do this, we first show that, given k points S = {(xi, yi) | 1 ≤ i ≤ k} in R2, and a target

point (x0, y0), we can change k̃ points of S to make (x0, y0) as the L1-median of the new set.

As n and k grow, then ñk̃/(nk) = 0.25 is the asymptotic breakdown point of this estimator,

as a consequence of Theorem 3.2, and thus we may need to move this many points to get

the result.

If (x0, y0) is the L1-median of the set {(xi, yi) | 1 ≤ i ≤ k}, then we have [89]:
k

∑
i=1

xi − x0√
(xi − x0)2 + (yi − y0)2

= 0,
k

∑
i=1

yi − y0√
(xi − x0)2 + (yi − y0)2

= 0. (3.28)
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We define ~x = (x1, x2, · · · , xk̃), ~y = (y1, y2, · · · , yk̃) and

h(~x,~y) =

(
k

∑
i=1

xi − x0√
(xi − x0)2 + (yi − y0)2

)2

+

(
k

∑
i=1

yi − y0√
(xi − x0)2 + (yi − y0)2

)2

.

Since (3.28) is the sufficient and necessary condition for L1-median, if we can find ~x and ~y

such that h(~x,~y) = 0, then (x0, y0) is the L1-median of the new set.

Since

∂xi h(~x,~y) =2
( k

∑
j=1

xj − x0√
(xj − x0)2 + (yj − y0)2

) (yi − y0)2(
(xi − x0)2 + (yi − y0)2

) 3
2

− 2
( k

∑
j=1

yj − y0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)(yi − y0)(
(xi − x0)2 + (yi − y0)2

) 3
2

,

∂yi h(~x,~y) =− 2
( k

∑
j=1

xj − x0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)(yi − y0)(
(xi − x0)2 + (yi − y0)2

) 3
2

+ 2
( k

∑
j=1

yj − y0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)2(
(xi − x0)2 + (yi − y0)2

) 3
2

,

we can use gradient descent to compute ~x,~y to minimize h. For the input S = {(xi, yi)|1 ≤

i ≤ k}, we choose the initial value ~x0 = {x1, x2, · · · , xk̃}, ~y0 = {y1, y2, · · · , yk̃}, and then

update ~x and ~y along the negative gradient direction of h, until the Euclidean norm of

gradient is less than 0.00001.

The algorithm framework is then as follows, using the above gradient descent formulation

at each step. We first compute the L1-median mi for each Pi, and then change ñ points in

{m1, m2, · · · , mn} to obtain

{m′1, m′2, · · · , m′ñ, mñ+1, · · · , mn}

such that median(m′1, m′2, · · · , m′ñ, mñ+1, · · · , mn) = p0. For each m′i, we change k̃ points in

Pi to obtain

P̃i = {p′i,1, p′i,2, · · · , p′i,k̃, pi,k̃+1, · · · , pi,k}

such that median(P̃i) = m′i. Thus, we have

median
(
median(P̃1), · · · , median(P̃ñ), median(Pñ+1), · · · , median(Pn)

)
= p0. (3.29)

To show a simulation of this process, we use a uniform distribution to randomly generate

nk points in the region [−10, 10]× [−10, 10], and generate a target point p0 = (x0, y0) in the
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Table 3.1: The running result of Simulation 1.

n k ñ k̃ (x0, y0) (x′0, y′0)
5 8 3 4 (0.9961, 1.0126) (0.9961, 1.0126)
5 8 3 4 (10.7631, 11.0663) (10.7025 11.0623)
10 5 5 3 (-13.8252, -4.7462) (-13.8330, -4.7482)
50 20 25 10 ( -14.7196, -13.6728) (-14.7263, -13.6784)
100 50 50 25 ( -14.0778, 18.3665) ( -14.0773, 18.3658)
500 100 250 50 (-15.8408, -6.4259) (-15.8385, -6.4250)

1000 200 500 100 (18.6351, -12.1014) (18.7886, -12.2011)

region [−20, 20]× [−20, 20], and then use our algorithm to change ñk̃ points in the given

set, to make the new set satisfy (3.29). Table 3.1 shows the result of running this experiment

for different n and k, where (x′0, y′0) is the median of medians for the new set obtained by

our algorithm. It lists the various values n and k, the corresponding values ñ and k̃ of points

modified, and the target point and result of our algorithm. If we reduce the terminating

condition, which means increasing the number of iteration, we can obtain a more accurate

result, but only requiring the Euclidean norm of gradient to be less than 0.00001, we get

very accurate results, within about 0.01 in each coordinate.

We illustrate the results of this process graphically for a couple of examples in Table

3.1; for the cases n = 5, k = 8, (x0, y0) = (0.9961, 1.0126) and n = 5, k = 8, (x0, y0) =

(10.7631, 11.0663) These are shown in Figure 3.1 and Figure 3.2, respectively. In these two

figures, the green star is the target point. Since n = 5, we use five different markers (circle,

square, upward-pointing triangle, downward-pointing triangle, and diamond) to represent

five kinds of points. The given data Pflat are shown by black points and unfilled points.

Our algorithm changes those unfilled points to the blue ones, and the green points are the

medians of the new subsets. The red star is the median of medians for Pflat, and other red

points are the median of old subsets. So, we only changed 12 points out of 40, and the

median of medians for the new data set is very close to the target point.

3.4.2 Simulation 2 : Router Monitoring

Suppose there are n = 100 routers in a network, and each router monitors a stream of

length k = 1000. A router can use streaming algorithm to monitor a single percentile, for

instance the frugal algorithm here [70] only needs a few bites per percentile maintained – it
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Figure 3.1: The running result for the case n = 5, k = 8, (x0, y0) = (0.9961, 1.0126) in Table
3.1.

Figure 3.2: The running result for the case n = 5, k = 8, (x0, y0) = (10.7631, 11.0663) in
Table 3.1.

does not need to monitor all. We will consider monitoring the approximate median (50%

percentile), 10% percentile, and 90% percentile of the stream, and sending these to a single

command center. The command center will analyze these data to determine whether an

attack occurs. In practice, command centers monitor much larger streams (values of k) and

many more routers (values of n).
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Table 3.2: The output for different combinations of estimators and outliers.

Proportion location of n1 k1 E1: 10% E1: 90% E1: 10% E1: 90% E1: median
of outliers outliers E2: 10% E2: 90% E2: 90% E2: 10% E2: median

0% 0 0 -1.3327 1.3549 -1.2169 1.2254 -0.0085
1.21% [100,110] 11 110 -1.3539 100.5666 -1.2033 1.2093 0.0091
1.21% [-110,-100] 11 110 -100.6573 1.3291 -1.2065 1.2175 0.0021

10.01% [100,110] 11 910 -1.3364 108.6957 100.0553 1.2118 0.0082
10.01% [-110,-100] 11 910 -108.7768 1.3388 -1.2081 -100.0721 -0.0119
26.01% [100,110] 51 510 -1.3388 108.1641 -0.7794 1.2347 100.1062
26.01% [-110,-100] 51 510 -108.2083 1.3163 -1.2313 0.7697 -100.1018
46.41% [100,110] 51 910 -1.3350 108.9832 100.1411 1.2280 104.2258
46.41% [-110,-100] 51 910 -109.0043 1.3350 -1.2423 -100.1340 -104.0705

We use standard normal distribution to generate an array Si with 1000 entries to simulate

the ith stream, and assume the routers use the estimator E1 to process streams, i.e. E1 returns

the approximate 10% percentile, or 90% percentile, or the median of a stream. The command

center uses the estimator E2 to process the gathered data S = (E1(S1), E1(S2), · · · , E1(Sn)),

and E2 can return the 10% percentile, or 90% percentile, or the median of S. In our simulation,

we compute each of these quantities exactly. We use outliers in interval [100, 110] or

[−110,−100] to simulate attacks.

These values may represent some statistic deemed worth monitoring, say the packet

length or header size after it has been appropriately normalized.

We choose n1 streams, and put k1 outliers from the same interval (all positive, or all

negative) to each chosen stream. Table 3.2 shows the final output from command center for

different combinations of estimators and outliers. The first column in Table 3.2 shows the

proportion of outliers, which is equal to n1k1
nk . For example, in the third row of the table, we

choose 11 streams randomly and put 110 outliers drawn from [100,110] into each chosen

stream, so the proportion of outliers is (11× 110)/(100× 1000) = 1.21%. When a value

being monitored as a composite of various percentiles becomes very large (above 100, so

not from the normal distribution) we mark it bold.

It is shown in Table 3.2 that for the case E1 : 10%, E2 : 10% and E1 : 90%, E2 : 90%, we

can use 1.21% of outliers to change the output of E1-E2 estimator, since in this situation

the breakdown point of E1-E2 estimator is 0.01. For the case E1 : 10%, E2 : 90% and

E1 : 10%, E2 : 90%, we can use 10.01% of outliers to change the output of E1-E2 estimator,

since in this situation the breakdown point of E1-E2 estimator is 0.09. When E1 and E2 both
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return the median of a data set, we can use 26.01% of outliers to change the output of E1-E2

estimator, since in this situation the breakdown point of E1-E2 estimator is 0.25.

This experiment illustrates how using various composite estimators with different

percentiles can highlight various levels of potential distributed denial of service attacks. For

instance, if only the E1 : 10%, E2 : 10% estimator is flagged, then we see a few routers have

a few anomalous packets, and even though it is distributed to only about 10% of routers

and 10% of data, we can observe it; but for the most part would be at most a warning. If

E1 : 10%, E2 : 90% estimator or E1 : 50%, E2 : 50% estimator is flagged, it means at least

9% or 25% of the packets across all routers much be anomalous, and we may see a real

DDS or an early sign of one. These are all conservative estimates. On the other hand, if

at least 10% of the packets are modified on 10% of routers (not too much, perhaps as little

as 1%), then the E1 : 10%, E2 : 10% estimator will definitely observe it. And if at least

10% of the packets are modified on 50% of the routers (over 5% of all packets), then an

E1 : 10%, E2 : 50% estimator will definitely observe it. Further work is required to discover

the best combination of percentiles to monitor, but using our observations about composite

estimators suggests this approach which can monitor against various distributions of DDS

attacks without only a few simple estimators, requiring a few bites each, at each router.

3.5 Discussion
In this chapter, we define the breakdown point of the composition of two or more

estimators. These definitions are technical but necessary to understand the robustness of

composite estimators; and they do not stray too far from prior formal definitions [32, 52].

Generally, the composition of two or more estimators is less robust than each individual

estimator. We highlight a few applications and believe many more exist. These results

already provide important insights for complex data analysis pipelines common to large-

scale automated data analysis. Moreover, these approaches provides worst case guarantees

that are concrete about when outliers can or cannot create a problem, as opposed to some

regularization-based approaches that just tend to work on most data.

Next we will highlight a few more insights from this work, or discuss challenges for

follow-on work.

On the dangers of composition. The common case of composing two estimators, each
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with breakdown point of 0.5 yields a composite estimator of 0.25. This means if the result

is anomalous, at least 25% of the data must change, down from 50%. In other cases, the

resulting composite estimator might yield an even smaller breakdown point of say 0.05.

This seems like very bad news! But for large data sets, adversarially changing 5% of data

is still a lot. For instance with 1 million data points, then 5% is 50, 000, which would still

be an ominously difficult task to modify. So even a 0.05 or 0.01 breakdown point on large

data is a useful barrier to manipulation (of the sort in our Simulation 1 below). On the other

hand, repeated composition can quickly (exponentially) decrease the breakdown point

until it is dangerously low; hence we believe this new theory will play an import role in

understanding the robustness and security of long data analysis pipelines.

Robustness and unbiasedness. In this chapter, we focus exclusively on the robustness of

estimators, but it is also important to aim for low-MSE or unbiasedness estimators. An

interesting future direction is to design estimators that are both robust (including have

large onto-breakdown points) as well as other properties. We lead this direction with a few

points:

• Composing two unbiased estimators will typically be unbiased (some care may be

needed in weighting).

• Robustness is a worst-case analysis (protecting against adversarial data) and its claims

are often orthogonal to those about low-MSE.

• Our analysis bounds the robustness of composition of any two (or more) estimators.

So if other work independently shows low-MSE or low-bias properties, then we can

immediately combine these works to show both.

Removing all subsets size k constraint. The restriction |Pi| = k (all subsets at the first

level are the same size) is mainly for expositional convenience. Otherwise, there are some

technical issues with reweighing points in Pflat and defining the limits. In fact, suppose

|Pi| = ki for i = 1, 2, · · · , n, Pflat = ]n
i=1Pi, gE1(k1) ≤ gE1(k2) ≤ · · · ≤ gE1(kn), and

E(Pflat) = E2 (E1(P1), E1(P2), · · · , E1(Pn)) .

Then using the method in the proof of Theorem 3.1, we can obtain a result similar :
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gE2 (n)

∑
i=1

gE1(ki) ≤ gE(
n

∑
i=1

ki) (3.30)

which is a generalization of (3.10).

Finite sampling breakdown point for composite estimators. Theorem 3.2 provides an

asymptotic breakdown point for composite estimators. But for smaller data sets, a finite

sample version is also useful and important. Equation (3.10) already gives a lower bound of

the finite sample breakdown point of composite estimators. To get an upper bound on the

finite sample vesion, we can modify Theorem 3.2, by adding a condition fE1(k) = gE1(k)+C

where C is a positive constant. Then there is also an annoying off-by-one error on gE2 (see

eq (3.20)), so the result would be something like

gE1(k)gE2(n) ≤ gE(nk) ≤ (gE1(k) + C)(gE2(n) + 1),

and it is not completely tight. We leave providing a tight bound (up to these constants) as

an open question.



CHAPTER 4

SIMPLE DISTANCES FOR TRAJECTORIES VIA

LANDMARKS

4.1 Introduction
The choice of a distance is often the most important modeling decision in any data analysis

task. This choice is what determines which objects are close and which are far. However,

this task is often taken lightly or made just based on what provides the simplest or easiest

to compute option.

In this chapter, we explore what we believe to be a new and natural family of distances

between objects, focusing on two cases when the objects are hyperplanes (e.g., regressors

or separators), or when they are trajectories. Our proposed distance dQ uses a set Q of

landmark points, which could be the dataset that regressors or separators are trained on,

or in the case of trajectories these may be points of interest for which a trajectory passing

nearby has specific meaning. However, in a general case, Q can be chosen as arbitrary

or random points placed to cover a domain of focus. Then the new distances, instead of

being directly between the objects themselves, are based on how they interact with the set

of landmarks. In the simplest variant, for n landmarks Q, for any object J we create an

n-dimensional vector vJ = (v1, v2, . . . , vn) of the distance from qi ∈ Q to J, and the distance

between two objects J1 and J2 is the Euclidean distance between the vectors ‖vJ1 − vJ2‖. In

other words, we vectorize the distance between complex objects.

In this chapter, we explore several variants of this formulation, derive convenient

mathematical properties, and demonstrate its efficacy in several data analysis scenarios.

Key properties of a distance. A definition of a distance d is the key building block in

most data analysis tasks. For instance, it is at the heart of any assignment-based clustering

(e.g., k-means) or for nearest-neighbor searching and analysis. We can also define a radial-
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basis kernel K(p, q) = exp(−d(p, q)2) (or similarly), which is required for kernel SVM

classification, kernel regression, and kernel density estimation. A change in the distance,

directly affects the meaning and modeling inherent in each of these tasks. So the first

consideration in choosing a distance should always be, does it capture the properties

between the objects that matter?

As we will observe, by having a distance depend on a set of landmarks Q, then we can

tune it to focus on certain regions. In the case of regressors or separators (e.g., infinite

lines, hyperplanes) this makes sure the distance is determined by how these infinite objects

interact with the support of the data. In the case of trajectories, the distance can be adjusted

to focus on one or more locations of interest (e.g., a sporting event or school) or regions

of interest (e.g., how someone passes through an airport, but not how they get there), as

opposed to its full geometry.

A generic desired property of a distance is that it should be a metric: for instance this is

essential in the analysis for the Gonzalez algorithm [49] for k-center clustering, and many

other contexts such as nearest-neighbor searching.

Another generic goal is analyzing the distance’s metric balls. That is, given a set of objects

J and a distance d : J× J→ R, let B(J, r) = {J′ ∈ J | d(J, J′) ≤ r} be a metric ball around

J ∈ J of radius r. Then we can define a range space (J,R) where R = {B(J, r) | J ∈ J, r ≥ 0},

and consider its VC-dimension [85]. When the VC-dimension ν is small, it implies that the

metric balls cannot interact with each other in a too complex way, indicating the distance

is roughly as well-behaved as a ν-dimensional Euclidean ball. More directly, this implies,

decision boundaries to classify objects can be learned with only ε-fraction generalization

error using O(ν/ε · log(1/ε)) samples if the data is separable, or O(ν/ε2) samples if the

data is not separable [65]. Similar bounds can be shown for other tasks such as preserving

kernel density estimates derived from such distances [61]. In other words, this ensures that

many tasks are stable with respect to the underlying family of objects J.

Main results. We define a new data dependent distance dQ for trajectories and for linear

models (e.g., regressors, separators) built from a landmark data set Q. For the simpler cases

of linear models (in Section 4.2), we show it is a metric as long as Q is full rank. We also

show that its metric balls have VC-dimension bounded only by the ambient dimension
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and not on the size of Q. We find this surprising because the distance corresponds to

an embedding in |Q|-dimensional Euclidean space where an immediate bound for the

VC-dimension is |Q|+ 1; and indeed this will be the best bound we have for most of the

trajectory variants. We show how to directly extend all of these definitions of lines to

trajectories, with a somewhat unintuitive and restrictive distance measure d↔Q .

For the pressing scenario of trajectories, in Section 4.3, we introduce two more intuitive

variants dQ and dπ
Q. We describe simple conditions for Q under which they are metrics. We

can immediately see that both distances are pseudometrics (they satisfy triangle inequality,

and are symmetric, but might have distinct objects with distance 0). We show they satisfy the

final 0-property of a metric as long as the waypoints are distinct and Q is sufficiently dense.

For all new variants we demonstrate that they are at the least as effective for classification

tasks (via KNN classifiers) as compared to the best of 9 other common metrics, and in some

cases significantly outperforms all of these measures. Moreover, the previous competing variants

are typically significantly more complicated or computationally intensive, and may require

parameter tuning.

In contrast to most of these trajectory distance alternatives, all of our proposed distances

are very simple to compute and work with. They map curves (or hyperplanes) to a

|Q|-dimensional parameter space where Euclidean distance (or similar) is used. In dQ

for curves, each coordinate vi is the distance to the closest point on the curve from qi ∈ Q.

In dπ
Q each “coordinate” is actually the d coordinates of the closest point on the curve (not

just the distance). In d↔Q each “coordinate” vi is actually k values, to the distance to the

closest point on the k lines extending the k lines segments of the curve. These mappings are

effective with only 10 or 20 landmark points Q. And because they have a familiar Euclidean

structure, we can immediately invoke favorite algorithms in this space, from Lloyds for

k-means clustering, linear and kernel SVM, and highly-engineered approximate nearest

neighbor libraries. In comparison to recent trajectory similarity search systems [80, 92], we

show using dQ is much simpler and several orders of magnitude faster.

In summary, this chapter introduces a family of metrics for regressors, separators, and

piecewise-linear curves which are incredibly simple to use, provide a sketch vector in

Euclidean space, have many other desirable mathematical properties, and perform as well

as and often significantly better than any existing measure.
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4.2 Distance Between Lines and Hyperplanes
As a warm up to the general case, we define a new landmark-based distance dQ between

two lines, and give the condition under which it is a metric. Then we generalize to

hyperplanes, and provide the general metric proof, the VC-dimension of metric ball proof,

and some algorithmic implications. We conclude with a direct extension to trajectories.

4.2.1 Warm Up: Distance Between Lines

We begin by reviewing alternatives, starting with the default dual Euclidean distance.

Consider the least square regression problem in R2: given Q = {(x1, y1), · · · , (xn, yn)}

⊂ R2, return a line ` : y = ax + b such that (a, b) = arg min(a,b)∈R2 ∑n
i=1(axi + b − yi)

2.

If `1 : y = a1x + b1 is an alternate fit to this data, then to measure the difference in these

variants, we can define a distance between ` and `1. A simple and commonly used distance

(which we called the dual-Euclidean distance) is

ddE(`, `1) :=
√
(a− a1)2 + (b− b1)2.

This can be viewed as dualizing the lines into a space defined by their parameters (slope a

and intercept b), and then taking the Euclidean distance between these parametric points.

However, as shown in Figure 4.1(Left), if both `1 and `2 have the same slope a1 = a2, and

are offset the same amount from ` (|b− b1| = |b− b2|), then ddE(`, `1) = ddE(`, `2), although

intuitively `1 does a much more similar job to ` with respect to Q than does `2.

More generically, a geometric object is usually described by an (often compact) set in Rd.

There are many ways to define and compute distances between such objects [8, 9, 47, 48].

These can be based on the minimum [47, 48] or maximum (e.g., Hausdorff) [8, 9] distance

between objects. We review more later in the context of trajectories in Section 4.4.1. For lines

or hyperplanes which extend infinitely and may intersect at single points, such measures

are not meaningful.

Our formulation. Suppose Q = {q1, q2, · · · , qn} ⊂ R2 where qi has coordinates (xi, yi) for

1 ≤ i ≤ n, and ` is a line in R2, then ` can be uniquely expressed as

` = {(x, y) ∈ R2 | u1x + u2y + u3 = 0},

where (u1, u2, u3) ∈ U3. Here U3 = {u = (u1, u2, u3) ∈ R3 | u2
1 + u2

2 = 1 and the first

nonzero entry of u is positive}, is a canonical way to normalize u where (u1, u2) is unit
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normal vector and u3 is an offset parameter. Let vQi(`) = u1xi +u2yi +u3; it is the signed dis-

tance from qi = (xi, yi) to the closest point on `. Then vQ(`) = (vQ1(`), vQ2(`), . . . , vQn(`))

is the n-dimensional vector of these distances. For two lines `1, `2 in R2, we can now define

dQ(`1, `2) =
∥∥∥ 1√

n
(vQ(`1)− vQ(`2))

∥∥∥ =
( n

∑
i=1

1
n
(vQi(`1)− vQi(`2))

2
) 1

2
.

As shown in Figure 4.1(Right), |vQi(`)| is the distance from qi to `. With the help of

Q, we convert each line ` in R2 to point 1√
n vQ(`) in Rn, and use the Euclidean distance

between two points to define the distance between the original two lines. Via this Euclidean

embedding, it directly follows that dQ is symmetric and follows the triangle inequality. The

following theorem shows, under reasonable assumptions of Q, no two different lines can be

mapped to the same point in Rn, so dQ is a metric.

Theorem 4.1. Suppose in Q = {(x1, y1), (x2, y2), · · · , (xn, yn)} ⊂ R2 there are three non-

collinear points, and L = {` | ` is a line in R2}, then dQ is a metric in L.

Proof. The function dQ(·, ·) is symmetric and by mapping to Rn satisfies the triangle

inequality, and `1 = `2 implies dQ(`1, `2) = 0; we now show if dQ(`1, `2) = 0, then

`1 = `2.

`

`1

`2

y

x

−2 0 2 4 6 8 10

x

y

0

ℓ

|u3|

qi

pi

|−→qipi| = |vQi
(l)|

(u1, u2)

Figure 4.1: Left: ddE(`, `1) = ddE(`, `2), but which of `1 and `2 is more similar to ` with
respect to Q? Right: Each pi is the projection of qi on `.
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Without loss of generality, we assume (x1, y1), (x2, y2), (x3, y3) ∈ Q are not on the same

line, which implies ∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ 6= 0. (4.1)

Suppose `1 and `2 are expressed in the form:

`1 = {(x, y) ∈ R | u(1)
1 x + u(1)

2 y + u(1)
3 = 0},

`2 = {(x, y) ∈ R | u(2)
1 x + u(2)

2 y + u(2)
3 = 0},

where (u(1)
1 , u(1)

2 , u(1)
3 ), (u(2)

1 , u(2)
2 , u(2)

3 ) ∈ U3 represent lines `1 and `2, respectively. If

dQ(`1, `2) = 0, then we have

xi(u
(1)
1 − u(2)

1 ) + yi(u
(1)
2 − u(2)

2 ) + (u(1)
3 − u(2)

3 ) = 0

for i = 1, 2, 3. We can write this as the system

 x1 y1 1
x2 y2 1
x3 y3 1


 u(1)

1 − u(2)
1

u(1)
2 − u(2)

2

u(1)
3 − u(2)

3

 = 0.

Using (4.1), we know it has the unique solution [u(1)
1 − u(2)

1 , u(1)
2 − u(2)

2 , u(1)
3 − u(2)

3 ]T =

[0, 0, 0]T. So, we have u(1)
1 = u(2)

1 , u(1)
2 = u(2)

2 and u(1)
3 =

(2)
3 , and thus `1 = `2.

Remark 4.1. In the above formulation, the absolute value |vQi(`)| is the distance from (xi, yi) to

the line `, i.e. |vQi(`)| = min(x,y)∈`((x− xi)
2 + (y− yi)

2)
1
2 . Moreover, if ` is parallel to `′, then

|vQi(`)− vQi(`
′)| = min(x,y)∈`,(x′,y′)∈`′((x− x′)2 + (y− y′)2)

1
2 for any i ∈ [n], which means dQ

is a generalization of the natural offset distance between two parallel lines.

4.2.2 Distance Between Hyperplanes

Now let H = {h | h is a hyperplane in Rd} represent the space of all hyperplanes.

Suppose Q = {q1, q2, · · · , qn} ⊂ Rd, where qi has the coordinate (xi,1, xi,2. · · · , xi,d). Any

hyperplane h ∈ H can be uniquely expressed in the form

h =
{

x = (x1, · · · , xd) ∈ Rd | ∑d
j=1 ujxj + ud+1 = 0

}
,

where (u1, · · · , ud+1) is a vector in Ud+1 := {u = (u1, · · · , ud+1) ∈ Rd+1 | ∑d
j=1 u2

j = 1

and the first nonzero entry of u is positive}, i.e. (u1, · · · , ud) is the unit normal vector of
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h, and ud+1 is the offset. We introduce the notation vQ(h) = (vQ1(h), · · · , vQn(h)) where

vQi(h) is again the signed distance from qi to the closest point on h. We can specify vQi(h) =

∑d
j=1 ujxi,j + ud+1, which is a dot-product with the unit normal of h, plus offset ud+1. Now

for two hyperplanes h1, h2 in Rd define

dQ(h1, h2) :=
∥∥ 1√

n
(vQ(h1)− vQ(h2))

∥∥ =
( n

∑
i=1

1
n
(vQi(h1)− vQi(h2))

2
) 1

2
. (4.2)

For Q ⊂ Rd, similar to dQ in R2, we want to consider the case that there are d + 1 points

in Q which are not on the same hyperplane. We refer to such a point set Q as full rank since

if we treat the points as rows, and stack them to form a matrix, then that matrix is full rank.

Like lines in R2, a hyperplane can also be mapped to a point in Rn, and if Q is full rank,

then no two hyperplanes will be mapped to the same point in Rn. So, similar to Theorem

4.1, we can prove dQ is a metric in H.

Theorem 4.2. If Q = {q1, q2, · · · , qn} ⊂ Rd is full rank, then dQ is a metric in H.

Remark 4.2. The distance can be generalized to weighted point sets and continuous probability

distributions. Suppose Q = {q1, · · · , qn} ⊂ Rd, W = {w1, · · · , wn} ⊂ (0, ∞), and µ is a

probability measure on Rd. For two hyperplanes h1, h2 in Rd, we define

dQ,W(h1, h2) =
( n

∑
i=1

wi(vQi(h1)− vQi(h2))
2
) 1

2
,

dµ(h1, h2) =
( ∫

Rd
(vx(h1)− vx(h2))

2dµ(x)
) 1

2
,

where vx(·) is defined in the same way as vQi(·) for x ∈ Rd.

4.2.3 VC-Dimension of Metric Balls for dQ

The distance dQ can induce a range space (H,RQ), where again H is the collection of all

hyperplanes in Rd, and RQ = {BQ(h, r) | h ∈ H, r ≥ 0} with metric ball BQ(h, r) = {h′ ∈

H | dQ(h, h′) ≤ r}. We prove that the VC dimension [85] of this range space only depends

on d, and is independent of the number of points in Q.

Theorem 4.3. Suppose Q ⊂ Rd is full rank, then the VC-dimension of the range space (H,RQ) is

at most 1
2 (d

2 + 5d + 6).
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Proof. For any BQ(h0, r) ∈ RQ, suppose Q = {x1, · · · , xn} with xi = (xi,1, · · · , xi,d) and

h ∈ BQ(h0, r). This implies dQ(h, h0) ≤ r, so if h is represented by a unique vector

(u1, · · · , ud+1) ∈ Ud+1, then we have
n

∑
i=1

1
n

( d

∑
j=1

ujxi,j + ud+1 − vQi(h0)
)2
≤ r2. (4.3)

Since this can be viewed as a polynomial of u1, · · · , ud+1, we can use a standard lifting map

to convert it to a linear equation about new variables, and then use the VC-dimension of

the collection of halfspaces to prove the result.

To this end, we introduce the following data parameters aj [for 0 ≤ j ≤ d + 1] and aj,j′

[for 1 ≤ j ≤ j′ ≤ d + 1] which only depend on Q, h0, and r. That is these only depend on

the metric dQ and the choice of metric ball.

a0 =
n

∑
i=1

vQi(h0)
2 − nr2, ad+1 = −2

n

∑
i=1

vQi(h0),

aj = −2
n

∑
i=1

xi,jvQi(h0) [for 1 ≤ j ≤ d],

ad+1,d+1 = n, aj,d+1 = 2
n

∑
i=1

xi,j [ for 1 ≤ j ≤ d],

aj,j =
n

∑
i=1

x2
i,j [for 1 ≤ j ≤ d], and

aj,j′ = 2
n

∑
i=1

xi,jxi,j′[for 1 ≤ j < j′ ≤ d].

We also introduce another set of new variables yj [for 1 ≤ j ≤ d + 1] and yj,j′ [for 1 ≤ j ≤

j′ ≤ d + 1] which only depend on the choice of h:

yj = uj [ for 1 ≤ j ≤ d + 1] and yj,j′ = ujuj′ [ for 1 ≤ j ≤ j′ ≤ d + 1].

Now (4.3) can be further rewritten as
d+1

∑
j=1

ajyj + ∑
1≤j≤j′≤d+1

aj,j′yj,j′ + a0 ≤ 0.

Since the aj and aj,j′ only depend on dQ, h0, and r, and the above equation holds for any

yj and yj,j′ implied by an h ∈ BQ(h0, r), then it converts BQ(h0, r) into a halfspace in Rd′

where d′ = 2(d + 1) + (d+1
2 ) = 1

2 (d
2 + 5d + 4). Since the VC-dimension of halfspaces in Rd′

is d′ + 1, the VC dimension of (H,RQ) is at most d′ + 1 = 1
2 (d

2 + 5d + 6).

Remark 4.3. This distance, metric property, and VC-dimension result extend to operate between

any objects, such as polynomial models of regression, when linearized to hyperplanes in Rd.
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4.2.4 Unsigned Variant for the Distance Between Lines and Hyperplans

There are several other nicely defined variants of this distance. For a line ` we could

define v̂Qi(`) = |vQi(`)|, as the unsigned distance from qi ∈ Q to the line `. When we

consider the distance from qi to some bounded object (e.g., a trajectory in place of `), this

distance is more natural. We are able to show that under similar mild restrictions on Q that

this is a metric; the condition requires 5 points instead of 3. However, we are not able to

show constant-size VC-dimension for its metric balls (as we do for dQ in Section 4.2.3).

Suppose Q = {q1, q2, · · · , qn} ⊂ R2, `1, `2 ∈ L = {` | ` is a line in R2}. Given ` ∈ L,

we write ` in the form as before and define v̂Q(`) = (v̂Q1(`), v̂Q2(`), . . . , v̂Qn(`)) where

v̂Qi(`) = |u1xi + u2yi + u3| and (xi, yi) is the coordinates of qi ∈ Q, and then define the first

variant of dQ as

d̂Q(`1, `2) :=
∥∥ 1√

n
(v̂Q(`1)− v̂Q(`2))

∥∥ =
( n

∑
i=1

1
n
(v̂Qi(`1)− v̂Qi(`2))

2
) 1

2
. (4.4)

For (4.4), we have the following theorem.

Theorem 4.4. Suppose in Q ⊂ R2 there is a subset of five points, and any three points in this

subset are non-collinear, then d̂Q is a metric in L.

Proof. We only need to show if d̂Q(`1, `2) = 0, then `1 = `2. Suppose Q̃ = {q1, · · · , q5} ⊂ Q,

and any three points in Q̃ are not on the same line. If `1 6= `2, then let `′1 and `′2 be the two

bisectors of the angles formed by `1 and `2. From d̂Q(`1, `2) = 0, we know v̂Qi(`1) = v̂Qi(`2)

for i ∈ [5], which means the distances from qi ∈ Q̃ to `1 and to `2 are equal. So, any point

qi ∈ Q̃ must be either on `′1 or on `′2, which implies there must be three collinear points in

Q̃. This is contradictory to the fact that any three points in Q̃ are not on the same line.

Remark 4.4. Definition (4.4) can be generalized to hyperplanes in Rd:

d̂Q(h1, h2) :=
( n

∑
i=1

1
n
(v̂Qi(h1)− v̂Qi(h2))

2) 1
2 , (4.5)

where h1, h2 ∈ H, and v̂Qi(hj) is the distance from point qi in Q ⊂ Rd to hj (j = 1, 2). Using the

similar method, we can show if there is a subset of 2d + 1 points in Q and any d + 1 points in this

subset are not on the same hyperplane, then (4.5) is a metric in H.
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Matrix Norm Variant. In another variant of dQ we define ṽQi(`) as a vector from qi

to the closest point on `. More specifically, suppose ` is in the same form as before,

then the projection of point qi = (xi, yi) on ` is (x̃i, ỹi) = (xi cos2(α)− yi sin(α) cos(α)−

c sin(α),−xi cos(α) sin(α) + yi sin2(α)− c cos(α)), and we define ṽQi(`) = (x̃i − xi, ỹi − yi)

for (xi, yi) ∈ Q, and an n× 2 matrix VQ,l = [ṽQ1(`); · · · ; ṽQn(`)] where ṽQi(`) is the ith row

of VQ,l . For `1, `2 ∈ L we define the distance between these two lines as

d̃Q(`1, `2) := ‖VQ,`1 −VQ,`2‖F, (4.6)

where ‖ · ‖F is the Frobenius norm of matrices. For (4.6), we have the following theorem.

Theorem 4.5. Suppose in Q ⊂ R2 there are two different points q1 and q2, then d̃Q is a metric in

L.

Proof. We only need to show if d̃Q(`1, `2) = 0, then `1 = `2. There are two cases.

(1) ṽQ1(`1) = (0, 0) and ṽQ2(`1) = (0, 0). From d̃Q(`1, `2) = 0 we know ṽQ1(`2) = 0 and

ṽQ2(`2) = 0, which means q1 and q2 are on both `1 and `2, so `1 = `2.

(2) ṽQ1(`1) 6= (0, 0) or ṽQ2(`1) 6= (0, 0). In this case, without loss of generality we assume

ṽQ1(`1) 6= (0, 0). From d̃Q(`1, `2) = 0 we have ṽQ1(`2) = ṽQ1(`1) 6= (0, 0), so introducing

the notation (x̃i − xi, ỹi − yi) = ṽQ1(`1), we know (x̃i, ỹi) is on `1 and `2, and ṽQ1(`1) is the

normal direction of `1 and `2. Since a point and a normal direction can uniquely determine

a line, we have `1 = `2.

Remark 4.5. Definition (4.6) can be generalized to hyperplanes in Rd:

d̃Q(h1, h2) := ‖VQ,h1 −VQ,h2‖F, (4.7)

where h1, h2 ∈ H, and VQ,hj (j = 1, 2) is an n× d matrix with each row being a projection vector

from a point in Q to hj. Using the similar method, we can show if there are d different points in Q,

then (4.7) is a metric in H.

4.2.5 Applications in Analysis

The new distance dQ for hyperplanes has many applications in statistical and algorithmic

data analysis where hyperplanes map to linear models. For example, the vectorized

representation implies we can use Llloyd’s algorithm for k-means clustering on lines or
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hyperplanes, and the metric property implies Gonzalez algorithm [49] for k-center clustering

will give a 2-approximation. Here we elaborate some algorithm applications of dQ and its

stability.

Kernel Density Estimates. Given a large varieties of regression models H = {h1, h2,

. . . , hm} (e.g., stemming from different algorithms or model parameters) we can define a

Gaussian-type kernel K(h1, h2) = exp(−dQ(h1, h2)2)/Z using dQ as the underlying metric,

and with an appropriate normalization constant Z. Then for any regressor h, the kernel

density estimate is defined KDEH(h) = 1
|H| ∑hi∈H K(h, hi).

The constant VC-dimension of the metric balls of dQ from Theorem 4.3 indicates that

despite the complex nature of this distance and high-dimensional embedding, this may

indeed be feasible. For instance, Joshi et.al.[61] considered kernels where the range space

defined by superlevel sets of any kernel have bounded VC-dimension ν. Then for a data

set X, a random sample Y ⊂ X of size O( 1
ε2 (ν + log 1

δ )) approximates the KDEX at any

evaluation point so that |KDEX(x)− KDEY(x)| ≤ ε, with probability at least 1− δ. In the

case of our dQ based kernels, by Theorem 4.3 it indicates that a random sample J ⊂ H of size

O( 1
ε2 (d2 + log 1

δ ) (with normalization factor Z = 1) is sufficient so that with probability at

least 1− δ, then for any evaluation regressor h that |KDEH(h)− KDE J(h)| ≤ ε. Alternatively,

if H represents the set of all possible bootstrapped samples, then we only need to generate

m = O( 1
ε2 (d2 + log 1

δ )) point sets and hyperplanes J to get a ε-approximate estimate of this

density. Then we can run a mode detection algorithm [21] to determine the modality.

Approximating the Siegel Estimator Distribution on Uncertain Data. The Siegel esti-

mator [81] as discussed in Section 2.4.2 is an example of a robust estimator S for linear

regression; given a set P = {p1, p2, · · · , pn} ⊂ R2, it returns a line S(P) : y = ax + b to fit

these n points.

Now consider a set of n uncertain points P = {P1, · · · , Pn}, where the ith point is

represented by a discrete set of k possible locations Pi = {pi,1, · · · , pi,k} ⊂ R2. Define

Pflat = ∪n
i=1Pi, and say A b P is a traversal of P if A = {a1, . . . an} has each ai in the domain

of Pi. A robust way to understand the uncertainty of the data [67] is to build a distribution

over the outcomes S(A) for A b P. To do this, we apply Algorithm 2.2, which can be

rewritten as Algorithm 4.1.
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Algorithm 4.1 Approximate Siegel estimator on uncertain data
Initialize T = ∅, the set of possible Siegel estimators.
for j = 1 to N do

Randomly choose A b P; add z = S(A) to T.
return Multiset T

Suppose L = {` | ` is a line in R2}, and we use the metric dQ(·, ·) in L, with Q = Pflat.

From Theorem 4.3 the VC dimension of (L,RPflat
) is a constant. Therefore, as corollary of

Theorem 2.9, we have the following result.

Corollary 4.1. For error parameters ε > 0 and δ ∈ (0, 1), run Algorithm 4.1 with N =

O((1/ε2)(log(1/δ))), to obtain multiset T. Then, with probability at least 1− δ, for any z ∈ L

and radius r we have ||T ∩ BQ(z, r)|/N − PrAbP[S(A) ∈ BQ(z, r)]| ≤ ε.

Multi-Modality Detection. There are many scenarios in which one may generate a large

set of possible regressions. One may run various algorithms, or use many parameters

for one algorithm, each generating a separate regression. Or to understand the variance

inherent in the data, bootstrapping is a common technique. In this setting, from a data set

Q ⊂ Rd of size n, one randomly samples m data sets X1, X2, . . . , Xm, each of size n from Q

with replacement. Then for each data set Xi, we run a regression formulation to generate a

hyperplane hi. This induces a set H = {h1, . . . , hm} of hyperplanes.

Since the distance between two hyperplanes has been defined and is a metric, we can

run k-center clustering (for instance with Gonzalez algorithm [49]) on the set {h1, · · · , hm}.

Then we use “elbow method” to find the appropriate value of k: if the cost (in this case the

largest distance from some hi to the representative center regressor) drops dramatically up

until the kth center is found, and then it levels off as more centers are added, it implies there

are probably k natural clusters. If the appropriate value of k is greater than 1, it implies

multi-modality in Q with respect to linear models.

For example, in Figure 4.2, suppose Q is a set of n points in R2, and some points in Q are

around the line `, but others are around `′. For a set of bootstrapped samples X1, X2, . . .

from Q, we would expect some robust regression algorithms would fit `i to Xi so `i is

close to `, and for other `j fit to Xj so that `j would be closer to `′. Then likely running the

elbow technique on this set of {`i}i∈[1,m] would result in an estimate of k = 2, indicating
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Figure 4.2: Multi-modality in regression.

multi-modality.

In this process, if Q is very large, we can use the methods in Section 5.2.1 to compute

dQ approximately, and the clustering should still be accurate enough to distinguish multi-

modality (Gonzalez only provides a 2-approximation regardless).

Coreset Evaluation in Regression. Given a finite point set Q ⊂ Rd, the linear regression

problem can usually be formalized as: finding h ∈ H = {h | h is a hyperplane in Rd} to

minimize cost(Q, h), where the cost function depends on different regression models.

Using a coreset Q̂ as a replacement of Q can simplify the computation when Q is

very large. A ε-coreset [41, 42] for Q is a set Q̂ ⊂ Rd such that (1 − ε)cost(Q, h) ≤

cost(Q̂, h) ≤ (1 + ε)cost(Q, h), for all h ∈ H. Suppose h∗ = arg minh∈H cost(Q, h), and

ĥ = arg minh∈H cost(Q̂, h). We can use cost(Q, ĥ)− cost(Q, h∗) to evaluate how well the

coreset Q̂ approximates Q.

However, suppose Q̂1 and Q̂2 are two ε-coresets of Q, and h1 = arg minh∈H cost(Q̂1, h),

h2 = arg minh∈H cost(Q̂2, h). If cost(Q, h1)− cost(Q, h∗) and cost(Q, h2)− cost(Q, h∗) are

very close to each other, which one is a better coreset, Q̂1 or Q̂2? In this situation, we can

directly compare dQ(h∗, h1) and dQ(h∗, h2). If dQ(h∗, h1) < dQ(h∗, h2), then it means Q̂1

does a better job of inducing a model h1 that fits the full data more similarly to how h∗

would than h2 resulting from Q̂2. This provides a more fine-grained method to evaluate

coresets; it describes not just how well they fit the data, but also how similar it is to how

an optimal classifier would fit the same data. With other distance measures, this sort of

analysis was not available.
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4.2.6 Direct Extension (literally) to Trajectories

In this section, we show how dQ can be simply generalized to the distance between two

piecewise-linear curves, while retaining the many nice properties described above. Let

Tk = {γ | γ is a curve in R2 defined by k ordered line segments} represent the space of all

k-piecewise linear curves.

For any curve γ ∈ Tk, let its k segments be 〈s1, s2, . . . , sk〉, and let these map to k lines

`1, . . . , `k where each `j contains sj (literally an “extension” of sj to a line `j). Next add two

more lines: `0 which is perpendicular to `1 and passes through the first end point of s1,

and `k+1 which is perpendicular to `k and passes through the last end point of sk (in high

dimensions, some canonical choice of `0 and `k+1 is needed). We now represent γ as the

ordered set of k + 2 lines (`0, `1, . . . , `k, `k+1). This mapping is 1 to 1, since segments si and

si+1 share a common end point, and this defines the intersection between `i and `i+1. The

intersections with the added lines `0 and `k+1 define first and last endpoints of s1 and sk,

and these endpoints are sufficient to define γ.

Now for two curves γ(1), γ(2) ∈ Γk, we define the distance using their line representations

(`
(1)
0 , . . . , `(1)k+1) and (`

(2)
0 , . . . , `(2)k+1), respectively, as

d↔Q (γ(1), γ(2)) :=
1

k + 2

(
∑k+1

i=0 dQ
(
`
(1)
i , `(2)i

))
.

Metric. If d↔Q (γ(1), γ(2)) = 0, then dQ
(
`
(1)
i , `(2)i

)
= 0 for all i ∈ [k], which implies `(1)i = `

(2)
i

if Q is full rank. Combined with the 1to1 nature of the mapping from γ = (s1, . . . , sk) to

(`0, . . . , `k+1), we have that if Q is full rank, then d↔Q is a metric over Tk.

VC dimension. The distance d↔Q (·, ·) can induce a range space (Tk, SQ,k), where again Tk is

the collection of all k-piecewise linear curves in R2, and SQ,k = {BQ(γ, r) | γ ∈ Tk, r ≥ 0}

with metric ball BQ(γ, r) = {γ′ ∈ Tk | d↔Q (γ, γ′) ≤ r}. Using the straightforward extensions

of the method in the proof of Theorem 4.3, we can show the VC dimension of this range

space only depends on k, and is independent of the number of points in Q. Specifically, for

full rank Q ⊂ R2, the VC-dimension of (Tk, SQ,k) is at most 9k + 19.

While retaining all above mathematical properties, this distance is unintuitive, and as

we show in Section 4.4, can perform less than optimally. We next develop other trajectory

distances which are more intuitive, but have weaker mathematical properties.
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Figure 4.3: Illustrating qi and pi on a trajectory for dQ and dπ
Q.

4.3 Landmark Distances Between Trajectories
In this section, we define two variants of dQ for trajectories, focused on their modeling as

piecewise-linear curves on R2. We let T define the set of such curves, and they are specified

by a series of critical points 〈c0, c1, . . . , ck〉. The curve γ ∈ T is the subset of R2 defined

by the k segments s1, s2, . . . , sk where si = ci−1ci is the continuous set of points between

critical points ci−1 and ci. For notational convenience, we will describe all curves as having

k segments, but the distance will not require this. Moreover, since we model the trajectory as

a continuous subset of R2, it will not distinguish trajectories of different speeds or moving

in opposite directions but following the same paths.

Now for a curve γ ∈ T and size n point set Q ⊂ R2, define vi = minp∈γ ‖qi − p‖ and

pi = arg minp∈γ ‖qi − p‖; see Figure 4.3. If arg minp∈γ ‖qi − p‖ is not unique, then we take

the point with smallest x-cordinate (or smallest y-coordinate when more than two points

have the same smallest x-coordinate) as pi. For two curves γ(1) and γ(2) denote these values

as v(1)i , p(1)i and v(2)i , p(2)i respectively. Our distances are then defined as:

dQ
(
γ(1), γ(2)) = ( 1

n

n

∑
i=1

(
v(1)i − v(2)i

)2
) 1

2
, dπ

Q
(
γ(1), γ(2)) = 1

n

n

∑
i=1

(
‖p(1)i − p(2)i ‖

)
.

The standard variant dQ is the analog of the version for halfspaces, where as the second

variant dπ
Q (the projected landmark distance) projects Q onto the closest points of the curves,

and then computes the average distances with respect to these projected points.
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4.3.1 Metric Properties

In this section, we show a reasonable condition for the trajectories and Q so that both

variants are metrics. As with lines and halfspaces, these distances are always pseudometrics:

the symmetry and triangle inequality are direct consequences of the embedding to Euclidean

space. The only restriction of the trajectories is to ensure that two distinct curves do not

have a distance 0, and in our arguments this requires that the critical points have some

non-zero separation from other parts of the curve. These restrictions may not be necessary,

but it makes the proofs simple enough. Then we basically just require that Q is sufficiently

dense; if we decide many of these points are irrelevant, we can reduce the weights on those

points (keeping them non-zero) and the metric properties still hold.

We define a family of curves Tτ ⊂ T so each γ ∈ Tτ has two restrictions: (R1) Each angle

∠[ci−1,ci ,ci+1] about an internal critical point ci is non-zero (i.e., in (0, π)). (R2) Each critical

point ci is τ-separated, that is the ball B(ci, τ) = {x ∈ R2 | ‖x− ci‖ ≤ τ} only intersects the

two adjacent segments si−1 and si of γ, or one adjacent segment for end points (i.e., only

the s1 for c0 and sk for ck, if γ has k line segments). The τ-separated property, for instance,

enforces that critical points are at least a distance τ apart.

We next restrict that all curves (and Q) lie in a sufficiently large bounded region Ω ⊂ R2.

Let Tτ(Ω) be the subset of Tτ where all curves γ have all critical points within Ω, and in

particular, no ci ∈ γ ∈ Tτ(Ω) is within a distance τ of the boundary of Ω. Now for η > 0,

define an infinite grid Gη = {gv ∈ R2| gv = ηv for v = (v1, v2) ∈ Z2}, where Z is all

integers.

Theorem 4.6. For Q = Gη ∩Ω and η ≤ τ
16 , both dQ and dπ

Q are metrics in Tτ(Ω).

Proof. We prove this theorem for dπ
Q, and the proof for dQ is similar and given in Appendix

B.1. Suppose γ(1), γ(2) ∈ Tτ(Ω) have critical points c0, c1, ...ck and c′0, c′1, ...c′k′ respectively.

We only need to show if dπ
Q(γ

(1), γ(2)) = 0 then γ(1) = γ(2). Here, if two piecewise-linear

curves have the same critical points and their orders are the same or reverse of each other,

then these two curves are regarded as the same curve.

The argument follows 4 steps assuming dπ
Q(γ

(1), γ(2)) = 0: (Step 1) Around each critical

point ci of γ(1), we can identify at least 4 points q1, q2, q3, q4 that map to p1, p2, p3, p4, two

each on the two segments adjacent to ci. (Step 2) The segments between defined by p1 p2
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Figure 4.4: ci is a critical point of γ(1)

and p3 p4 must also be part of γ(2). (Step 3) The line extension of those two line segment

must intersect at ci, and this must also be critical point on γ(2) (Step 4) Because these Steps

1-3 can be repeated for all critical points on γ(1) and on γ(2), they must share critical points

and connecting line segments, and be the same curves.

We formalize these steps based on three observations: (O1) If γ ∈ Tτ, then in any ball

with radius τ
2 , there is at most one critical point of γ. (O2) If a point moves along γ ∈ T,

then it can only stop or change direction at critical points. (O3) For q ∈ Q, γ ∈ T, p = arg

minp′∈γ ‖p′ − q‖, suppose l is the tangent line of the circle C(q, ‖q− p‖) where q is center

and ‖q− p‖ its radius, at point p. If l ∩ B(p, δ) is not apart of γ for all δ > 0 , then p must

be a critical point of γ.

Step 1: Suppose ci = (xi, yi) (1 ≤ i ≤ k− 1) is a critical point of γ(1), and consider a ball

B(ci, 1
2 τ), as shown in Figure 4.4. Since the side length of each grid cell is η ≤ 1

16 τ, from

the τ-separated property (R2) we know for any q ∈ Q∩ B(ci, τ
2 ), p = arg minp′∈γ(1) ‖p′ − q‖

is in B(ci, τ
2 ). So, there exist two points q1, q2 that are mapped to points p1, p2 on one line

segment of γ(1) and another two points q3, q4 are mapped to points p3, p4 on the other line

segment of γ(1) in B(ci, τ
2 ). Since dπ

Q(γ
(1), γ(2)) = 0, we know p1, p2, p3, p4 are also on γ(2).

Step 2: We assert the line segment p1 p2 must be a part of γ(2). From (O1), we know p1 and

p2 cannot both be the critical point of γ(2) at the same time, so we assume p1 is not a critical
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point. Thus, from (O3) we know a small part of tangent line l of circle C(q1, ‖q1 − p1‖) at p1

is a part of γ(2). If p2 is a critical point of γ(2), then from (O1) and (O2) we know the line

segment p1 p2 must be a part of γ(2). If p2 is not a critical point of γ(2), then from (O3) we

know a small part of tangent line l of circle C(q1, ‖q1 − p1‖) at p2 is a part of γ(2). So, in this

case, (O1) and (O2) implies the line segment p1 p2 is a part of γ(2). Using a similar argument,

we know the line segment p3 p4 is also a part of γ(2).

Step 3: We extend the line p1 p2 from p1 to p2 and the line p3 p4 from p3 to p4. Suppose

they intersect with the boundary of B(ci, τ
2 ) at p′2 and p′4 respectively. Since γ(2) cannot go

into the interior of any ball with centers in Q ∩ B(ci, τ
2 ), from (O2) we know there must be

one critical point in line segment p2 p′2. For the same reason, there must be one critical point

in line segment p4 p′4. Thus, (O1) implies ci is a critical points of γ(2).

Step 4: Considering that γ(2) has to pass through p1, p2, p3, p4 and ci, from τ-separated

property (R2), we know γ(1) and γ(2) must overlap with each other in B(ci, τ
2 ). For two

endpoints c0 and ck we can make the same argument, which means in a neighborhood of

each critical point of γ(1), γ(1) overlaps with γ(2). This means {c0, c1, · · · , ck} is a subset

of {c′0, c′1, · · · , c′k′}. Using the same argument {c′0, c′1, · · · , c′k′} is a subset of {c0, c1, · · · , ck}.

Therefore, k = k′ and we know γ(1) and γ(2) must have the same critical points and their

orders must be the same or reverse of each other.

Remark 4.6. We did not try to optimize constants. The point is that for most families of trajectories,

with Q sufficiently dense our distances are metrics, not just pseudometrics. In practice these

distances will work for small sets Q (see below).

4.4 Trajectories Analysis via New Distances
We demonstrate that dQ and dπ

Q (and to lesser extent d↔Q ) work effectively on real world

problems. These approaches achieve state-of-the-art performance, are incredibly simple to

use, and their sketched representation plugs directly into k-means clustering, KNN or SVM

classifiers, or ANN libraries. We show that only a small number of landmarks are needed

for good accuracy, and when certain landmarks are especially meaningful, our approaches

can be easily tuned to achieve very high accuracy.
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4.4.1 Related Trajectory Distances, and Landmarks

There are by now numerous definitions of trajectories, with a variety of different aspects

they can model and take into account.

We compare the classification errors found using d↔Q , dQ and dπ
Q with a series of repre-

sentative distances for trajectories. These are: Euclidean distance among the critical points

(Eu) [95], discrete Frechet distance (dF) [38], dynamic time warping distance (DTW) [93],

discrete Hausdorff distance (dH) [71], longest common subsequence distance (LCSS) [87],

edit distance for real sequences (EDR) [23]. We also compare against the recently proposed

locality sensitive hashing distance (LSH1Q), and the ordered version of locality sensitive

hashing distance (LSH2Q) [13], which consider the intersection of the trajectories with a set

of disks. This is conceptually similar to our methods, where we can think of the landmarks

Q as the centers of disks (as we do in experiments), and their approach requires a radius

parameter r for all disks, and is not a metric. The definitions of these distances are given in

Appendix B.2.

To find the best parameters to minimized the error, for LCSS we tested ε ∈ {0.001, 0.005,

0.01, 0.015, · · · , 0.055}, δ ∈ {1, 2, 3, · · · , 10}, and for EDR we tested ε ∈ {0.001, 0.005, 0.01,

0.015, · · · , 0.055}, and for LSH1Q and LSH2Q we tested r ∈ {0.005, 0.01, 0.02, · · · , 0.11}.

Since in all experiments (except Section 4.4.6), each trajectory is represented by a sequence

of 10 critical points, it is enough to take the largest value of δ as 10 for LCSS. We only

show the best results in this section, but provide the results of other parameter settings in

Appendix B.3.

Zhang et.al. [95] conducted a large comparison of trajectory distances and showed that

in most cases Eu is general enough, efficient, and a superior or nearly as good model as

any other ; we include dF and DTW as examples which search over all possible alignments

and thus do not require the same number of or aligned critical points on both curves. The

restriction that trajectories have the same number of critical points is also not required for

dH, EDR, LSH1Q, and LSH2Q, but in comparisons we always first reduce all trajectories to

10 critical points (with Douglas-Peucker), except in Section 4.4.6, so a fair comparison to

all metrics can be made. In Appendix B.4, we give the results of reducing all trajectories

to at most 40 critical points for Beijing drivers experiment of Section 4.4.3. We do this to

see if there is a large effect from trajectory simplification. In general, there is no large effect.
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Figure 4.5: 2 or 3 clusters (color-coded) under k-means on dQ1 with 20 landmarks Q1 shown
overlaid on Beijing.

The performances of most distances are slightly improved, except LCSS. The mean error of

LCSS is improved about 8.8%, but to find the best pair of parameters for LCSS needs a lot

of computation. More details are discussed in Appendix B.4.

Even beyond the recent trajectory LSH paper [13], the use of waypoints to provide a

distance between trajectories is not new. However, they are typically used in other contexts,

such as annotating with geolocated social media [91]. Or for instance, in the context of a

line of work [46, 50, 66] seeking to find the k nearest time-encoded trajectories to a given

point at a specific time, Lin et.al. [66] use a set of landmarks Q to map trajectories and query

points into the Voronoi cells of Q to quickly help in pruning.

4.4.2 Warm-up: k-means Clustering

As a warm up, we consider clustering the 42 trajectories from user id155 in the Geolife GPS

trajectory dataset [96]. We randomly choose 20 spread-out Beijing POIs as the landmark

set Q1, shown as orange dots in Figure 4.5. Using dQ1 , this maps each trajectory γ to R20,

and we directly run Lloyd’s algorithm for k-means clustering with k = 2, 3, and color-code

the corresponding trajectories in Figure 4.5. We observe that although the trajectories are

intertwined, there is a central-city cluster found in both cases, and either 1 or 2 clusters

found on the north side.
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4.4.3 Classifying Trajectories 1: Beijing Drivers

We also consider classifying trajectories from users in the Geolife dataset [96] with the

same 20 POI landmarks Q1 as in the clustering example. There are 182 users, and each user

has several trajectories in Beijing. We only consider those trajectories with more than 10

critical points, and if a user has less than 10 such trajectories, then we remove this user.

Thus, 54 users are removed, and in the remaining 128 users, 20 of them have more than

200 trajectories. For each of these users, we just randomly sample 200 trajectories (without

replacement), to avoid severe imbalance in classification – dealing with the imbalance

challenge is not the focus of this work.

Suppose two users with id1 and id2 have two sets of trajectories T(1) and T(2) respectively.

Letting |T(1)| = m1 and |T(2)| = m2, we randomly sample b 3m1
10 c trajectories from T(1) and

b 3m2
10 c trajectories from T(2) respectively to form a test set, and use the other trajectories in

T(1) ∪ T(2) as the training data. Then we choose an algorithm and metric to do classification,

and compute the error. For users with id1 and id2, we do this 10 times and take the mean

error as error(id1, id2). We compute error(id1, id2) for all 8128 pairs of 128 uses, and then

output the mean, median, and standard deviation (SD) of these 8128 errors.

For all of these 10 distances, we use the KNN classification (K = 5); see Table 4.1. The

lowest error rates of about 7% error is achieved by dπ
Q1

, DTW and LCSS. Then dQ, Eu, and

EDR achieve error about 8%. Other metrics perform worse with for example, dF at 10%,

LSH1Q1 at 13%, d↔Q1
at 17%, and LSH2Q1 at 24% error. Using the standard deviation, by

Chebyshev’s inequality, over 8128 pairs, these tiers are significant on this data set.

For dQ1 , dπ
Q1

and Eu, since they map a trajectory to a vector in Euclidean space, we can

also directly use SVM to classify these vectors. We use fitcsvm in matlab R2018b and set

‘IterationLimit’ (the maximum iteration number) as 200,000 for all kernel functions, and

set ‘KernelScale’ as ‘auto’ for Gaussian kernel. From Table 4.2, we can see for SVM with

three kinds of kernel functions, both dQ1 and dπ
Q1

are better than Eu. In the case of Gaussian

SVM, both dQ1 and dπ
Q1

achieve an error rate of about 7% which is less than the about 8%

achieved by Eu. Again in this SVM setting d↔Q1
performs much worse (for Gaussian kernels)

or comparable to other measures, about the same as Eu, (linear quadratic kernels).

As we increase the size of Q to 200 (chosen at random), then both dQ̃1
and dπ

Q̃1
slightly

improve in performance, but not drastically, and d↔Q̃1
performs about the same. The error
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Table 4.1: Classification error on Beijing Drivers with KNN.

d↔Q1
dQ1 dπ

Q1
Eu dF DTW dH LCSS EDR LSH1Q1 LSH2Q2

best param - - - - - - - ε=0.005,δ=10 ε=0.005 r=0.06 r=0.1
mean 0.1703 0.0817 0.0724 0.0811 0.1045 0.0722 0.0883 0.0714 0.0802 0.1290 0.2409

median 0.1458 0.0667 0.0581 0.0654 0.0873 0.0571 0.0722 0.0500 0.0554 0.0949 0.2182
SD 0.1038 0.0624 0.0576 0.0634 0.0732 0.0600 0.0656 0.0738 0.0835 0.1130 0.1450

Table 4.2: Classification error on Beijing Drivers with SVM.

kernel statistics d↔Q1
dQ1 dπ

Q1
Eu

linear
mean 0.2170 0.2066 0.2046 0.2173

median 0.1987 0.1851 0.1892 0.2000
SD 0.1185 0.1256 0.1221 0.1282

quadratic
mean 0.2327 0.2190 0.2000 0.2377

median 0.2000 0.1778 0.1455 0.1949
SD 0.1414 0.1678 0.1684 0.1668

Gaussian
mean 0.1725 0.0727 0.0733 0.0845

median 0.1509 0.0587 0.0588 0.0690
SD 0.1047 0.0594 0.0599 0.0670

Table 4.3: Classification error on Beijing with |Q̃1| = 200.

statistics KNN linear-SVM quad-SVM Gauss-SVM

dQ̃1

mean 0.0801 0.1419 0.1398 0.0722
median 0.0650 0.1125 0.0909 0.0581

SD 0.0616 0.1058 0.1425 0.0591

dπ
Q̃1

mean 0.07080.07080.0708 0.1432 0.2606 0.0726
median 0.0558 0.1179 0.2222 0.0583

SD 0.0578 0.1022 0.1932 0.0597

d↔Q̃1

mean 0.1711 0.2362 0.2673 0.1735
median 0.1471 0.2200 0.2460 0.1529

SD 0.1041 0.1173 0.1455 0.1051

statistics is shown in Table 4.3, from which we can see for KNN, the performance of dQ̃1

is better than Euclidean distance, and dπ
Q̃1

provides the smallest error (mean error 0.0708,

smaller than 0.0714 of LCSS). Moreover, we can see as |Q| increases, the error of dQ̃1
and

dπ
Q̃1

with three kernel functions all decrease, except dπ
Q̃1

with quadratic kernel. When we

use quadratic kernel, the algorithm takes a long time to converge, and for |Q| = 200, the

dimension of vectors used in dπ
Q̃1

is 400, so the algorithm may not converge within 200000

iterations. The relatively small improvement also demonstrates that even with a small size,

random Q, the distances still perform at or near the state-of-the-art.

To show different Q sampled from the region can yield a similar result, we sample another
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Figure 4.6: Left: the data set Q2 (orange points), Right: the data set Q3 (orange points).

four sets Q2, Q3 and Q̃2, Q̃3 according to uniform distribution, where Q2, Q3 are shown in

Figure 4.6, and |Q2| = |Q3| = 20, |Q̃2| = |Q̃3| = 200.

The running result of different algorithms with different distances on Q2, Q3 and Q̃2,

Q̃3 are shown in Table 4.4 and Table 4.5 respectively. From these two tables we can see

different Q uniformly sampled from the region does not cause a large difference in statistics

of classification errors, and for the case |Q| = 200 the result almost does not change.

4.4.4 Classifying Trajectories 2: Bus versus Car

As another example, we consider the GPS Trajectories Data Set [29] in UCI machine

learning repository. There are 87 car trajectories, and 76 bus trajectories in Aracaju, a city

of Brazil. We remove those trajectories having less than 10 critical points, and then 78 car

trajectories and 45 bus trajectories are left. For these 123 trajectories are shown in Figure

4.7(Left), where pink curves are car trajectories and blue curves are bus trajectories. We

hand-pick 10 points as Q1 such that each point is close to one class of trajectories, and

randomly generate 20 points as Q2. Each time we randomly choose 23 car trajectories

and 13 bus trajectories as test data, and use other trajectories as training data to perform

classification experiments, and compute the error. We do this 1000 times and then compute

the mean, median and standard deviation (SD) of the error for each algorithm.

The results are shown in Table 4.6, and we see the KNN classification results using all

14 distance, using either Q1 (10 chosen near data) or Q2 (20 randomly chosen). The results

are slightly better for Q2 in almost all distances dQ, dπ
Q, LSH1Q, and LSH2Q – except d↔Q . In
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Table 4.4: Classification error on Beijing Drivers with different Q (|Q| = 20)

distance mean median SD

KNN

d↔Q2
0.1724 0.1493 0.1039

d↔Q3
0.1670 0.1424 0.1029

dQ2 0.0816 0.0667 0.0620
dQ3 0.0802 0.0652 0.0625
dπ

Q2
0.0721 0.0574 0.0573

dπ
Q3

0.0697 0.0556 0.0566
LSH1Q2 (r=0.1) 0.1122 0.0860 0.0964
LSH1Q3 (r=0.1) 0.1190 0.0861 0.1110
LSH2Q2 (r=0.1) 0.2278 0.2027 0.1408

LSH2Q3 (r=0.07) 0.2070 0.1858 0.1256

linear SVM

d↔Q2
0.2176 0.2000 0.1186

d↔Q3
0.2145 0.1965 0.1173

dQ2 0.2039 0.1815 0.1250
dQ3 0.2041 0.1818 0.1246
dπ

Q2
0.2005 0.1824 0.1213

dπ
Q3

0.2018 0.1836 0.1215

quadratic SVM

d↔Q2
0.2362 0.2034 0.1421

d↔Q3
0.2277 0.1912 0.1438

dQ2 0.2155 0.1694 0.1698
dQ3 0.2152 0.1718 0.1678
dπ

Q2
0.2009 0.1469 0.1694

dπ
Q3

0.1932 0.1364 0.1682

Gaussian SVM

d↔Q2
0.1751 0.1542 0.1057

d↔Q3
0.1688 0.1470 0.1038

dQ2 0.0739 0.0595 0.0595
dQ3 0.0730 0.0583 0.0594
dπ

Q2
0.0737 0.0595 0.0597

dπ
Q3

0.0725 0.0580 0.0592

these experiments on Q2, the best mean error (about 21% to 22%) is achieved by d↔Q , dQ,

and LSH1Q (which required a parameter search). The best error is about 20% by d↔Q using

Q2. While dπ
Q, LCSS, EDR, and LSH2Q achieve error between 25% and 27%. Noticeably,

the methods which were competitive with dQ and dπ
Q on the Beijing Drivers data are EDR,

which required a parameter tuned, as well as DTW and Eu, which now have error rate

above 31%. As a baseline, always predicting “car” obtains 36% error.

We show the results of applying SVM in Table 4.6. Again the difference is small between

Q2 and Q1. And while the linear and quadratic SVM do not perform that well; for the

Gaussian kernel on dQ and dπ
Q the mean error is only 16% to 20%, and 19% to 21% for d↔Q .

The overall best is dQ
π
1 achieving a mean error of 16.59%, a significant improvement over

the KNN results.
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Table 4.5: Classification error on Beijing Drivers with different Q (|Q| = 200)

distance mean median SD

KNN

d↔Q̃2
0.1708 0.1469 0.1040

d↔Q̃3
0.1708 0.1471 0.1038

dQ̃2
0.0805 0.0652 0.0619

dQ̃3
0.0798 0.0645 0.0618

dπ
Q̃2

0.0707 0.0560 0.0571
dπ

Q̃3
0.0699 0.0556 0.0569

linear SVM

d↔Q̃2
0.2353 0.2186 0.1173

d↔Q̃3
0.2357 0.2196 0.1173

dQ̃2
0.1425 0.1130 0.1061

dQ̃3
0.1414 0.1121 0.1055

dπ
Q̃2

0.1437 0.1189 0.1022
dπ

Q̃3
0.1429 0.1176 0.1019

quadratic SVM

d↔Q̃2
0.2671 0.2447 0.1468

d↔Q̃3
0.2666 0.2455 0.1465

dQ̃2
0.1410 0.0909 0.1440

dQ̃3
0.1389 0.0895 0.1432

dπ
Q̃2

0.2615 0.2219 0.1937
dπ

Q̃3
0.2611 0.2215 0.1936

Gaussian SVM

d↔Q̃2
0.1730 0.1521 0.1051

d↔Q̃3
0.1734 0.1526 0.1052

dQ̃2
0.0725 0.0582 0.0592

dQ̃3
0.0719 0.0576 0.0589

dπ
Q̃2

0.0726 0.0583 0.0595
dπ

Q̃3
0.0721 0.0578 0.0592

4.4.5 Classifying Trajectories 3: Landmark-Sensitivity

To show the further advantage of dQ and dπ
Q, we create a synthetic data set that appears

random, except one set of trajectories pass nearby a POI and the others do not. We randomly

generate two classes of trajectories on the map of Beijing, and each class has 30 trajectories.

Each trajectory has 10 critical points, and all blue trajectories passes through some point

close to the city center, and all pink trajectories do not. We hand-pick a point at the Palace

Museum, the center of the city, and randomly choose other 9 points to form the set Q.

As shown in Figure 4.7(Right), these trajectories are a mess and largely indistinguishable,

except that the blue set passes near the landmark: Palace Museum. We next show that

dQ and dπ
Q which are landmark-aware (e.g., POI-aware) have significantly more power in

distinguishing these classes.
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We randomly choose 21 trajectories from each class to form a training data set of size 42,

and use the other trajectories as test data. Each time, we record the error, and repeat this

1000 times to output the mean, median and standard deviation (SD) of these errors.

Table 4.7 shows the KNN classification results. Distances Eu and dF provide no advantage

over a random classifier (which would report error 0.5). dπ
Q, dQ, d↔Q , DTW, and Hausdorff

Table 4.6: Classification error on Bus vs. Car.

distance mean median SD

KNN

d↔Q1
0.2027 0.1944 0.0647

d↔Q2
0.2148 0.2222 0.0624

dQ1 0.2331 0.2222 0.0669
dQ2 0.2229 0.2222 0.0637
dπ

Q1
0.2608 0.2500 0.0625

dπ
Q2

0.2505 0.2500 0.0627
Eu 0.3323 0.3333 0.0661
dF 0.3431 0.3333 0.0667

DTW 0.3118 0.3056 0.0679
dH 0.3284 0.3333 0.0627

LCSS (ε=0.015,δ=3) 0.2448 0.2500 0.0605
EDR ( ε=0.015) 0.2640 0.2500 0.0622

LSH1Q1 (r=0.02) 0.2673 0.2778 0.0448
LSH2Q1 (r=0.08) 0.2516 0.2500 0.0467
LSH1Q2 (r=0.03) 0.2209 0.2222 0.0622
LSH2Q2 (r=0.05) 0.2690 0.2778 0.0464

linear SVM

Eu 0.3624 0.3611 0.0085
d↔Q1

0.3652 0.3611 0.0145
d↔Q2

0.3655 0.3611 0.0151
dQ1 0.3611 0.3611 0
dQ2 0.3611 0.3611 0
dπ

Q1
0.3611 0.3611 0

dπ
Q2

0.3612 0.3611 0.0018

quadratic SVM

Eu 0.3609 0.3611 0.0660
d↔Q1

0.3645 0.3611 0.0200
d↔Q2

0.3140 0.3056 0.0415
dQ1 0.3617 0.3611 0.0055
dQ2 0.3625 0.3611 0.0087
dπ

Q1
0.2644 0.2500 0.0645

dπ
Q2

0.2828 0.2778 0.0670

Gaussian SVM

Eu 0.2239 0.2222 0.0587
d↔Q1

0.1940 0.1944 0.0554
d↔Q2

0.2120 0.2222 0.0564
dQ1 0.1894 0.1944 0.0543
dQ2 0.1968 0.1944 0.0573
dπ

Q1
0.16590.16590.1659 0.1667 0.0572

dπ
Q2

0.1731 0.1667 0.0572
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achieve only slight advantage over random classifiers, with error rates about 43% to 48%,

with the best achieved by dπ
Q. This extends to the SVM approaches in Table 4.8. The best

Figure 4.7: Left: Bus (blue) and car (pink) trajectories with landmark sets Q1 (green points), Q2
(red points). Right: Two classes of trajectories and Q (orange points).

Table 4.7: Landmark-sensitive classification error with KNN.

distance mean median SD
Eu 0.5226 0.5000 0.0999
dF 0.5056 0.5000 0.0977

DTW 0.4777 0.5000 0.1033
dH 0.4627 0.4444 0.1025

LCSS (ε = 0.001, δ = 8) 0.3437 0.3333 0.0812
EDR(ε = 0.02) 0.3916 0.3889 0.0823

LSH1Q (r=0.01) 0.2524 0.2222 0.0990
LSH2Q (r=0.02) 0.3248 0.3333 0.0916

dQ 0.4729 0.5000 0.1005
dQ,W (w1 = 0.3) 0.4133 0.3889 0.1052
dQ,W (w1 = 0.6) 0.2687 0.2778 0.0969
dQ,W (w1 = 0.9) 0.0592 0.0556 0.0611

dπ
Q 0.4385 0.4444 0.0961

dπ
Q,W (w1 = 0.3) 0.3846 0.3889 0.0921

dπ
Q,W (w1 = 0.6) 0.2396 0.2222 0.0804

dπ
Q,W (w1 = 0.9) 0.1002 0.0556 0.0817

d↔Q 0.4711 0.4444 0.1027
d↔Q,W (w1 = 0.3) 0.4468 0.4444 0.1062
d↔Q,W (w1 = 0.6) 0.4377 0.4444 0.1060
d↔Q,W (w1 = 0.9) 0.4466 0.4444 0.1002
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parameter free approach is dπ
Q at 43.85% error. The parameterized distances LCSS, EDR,

LSH1Q, and LSH2Q perform better with error rates 25% to 40%; but these can be sensitive

to the parameter choices – we only show the best results.

Next we can consider re-weighting the importance of the landmarks Q, for instance in

the case where one particular POI (in this case q1) is known to have a specific meaning in

the classification task (e.g., did someone stop by the sporting event, or a military point of

interest). Suppose wi > 0 is a weight of qi ∈ Q, and W = (w1, w2, ..., wn). Then we can

generalize the definitions to:

dQ,W(γ(1), γ(2)) =
(

∑n
i=1 wi

(
d(1)i − d(2)i

)2
) 1

2
, dπ

Q,W(γ(1), γ(2)) = ∑n
i=1 wi

(∥∥p(1)i − p(2)i

∥∥).
Let w1 ∈ (0, 1) be the weight of q1, and wi =

1
9 (1− w1) (for 2 ≤ i ≤ 10) be the weight of all

other points in Q.

Now observe in Table 4.7 that the landmark-based distance using a KNN classifier can

achieve very low error (6% for dQ,W and 10% for dπ
Q,W) as we gradually increase the weight

Table 4.8: Landmark-sensitive classification error with SVM.

kernel statistics d↔Q dQ dπ
Q Eu

linear
mean 0.5000 0.4586 0.4941 0.5887

median 0.5000 0.4444 0.5000 0.6111
SD 0.0976 0.0983 0.0997 0.0925

quadratic
mean 0.5403 0.4617 0.5574 0.4795

median 0.5556 0.4444 0.5556 0.5000
SD 0.0957 0.0967 0.1007 0.1059

Gaussian
mean 0.5059 0.4567 0.4556 0.5906

median 0.5000 0.4444 0.4444 0.6111
SD 0.0959 0.0944 0.0997 0.0939

Table 4.9: Landmark-sensitive classification error with weighted Gaussian SVM.

metrics mean median SD
dQ,W (w1 = 0.3) 0.1487 0.1667 0.0809
dQ,W (w1 = 0.6) 0.0303 0 0.0369
dQ,W (w1 = 0.9) 0.01590.01590.0159 0 0.0256
dπ

Q,W (w1 = 0.3) 0.2997 0.2778 0.0937
dπ

Q,W (w1 = 0.6) 0.1053 0.1111 0.0702
dπ

Q,W (w1 = 0.9) 0.0316 0 0.0386
d↔Q,W (w1 = 0.3) 0.4942 0.5000 0.0977
d↔Q,W (w1 = 0.6) 0.4726 0.5000 0.0976
d↔Q,W (w1 = 0.9) 0.4687 0.4444 0.0974
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Table 4.10: Landmark-sensitive classification error with weighted linear SVM.

metrics mean median SD
dQ,W (w1 = 0.3) 0.3309 0.3333 0.0836
dQ,W (w1 = 0.6) 0.3083 0.3333 0.1019
dQ,W (w1 = 0.9) 0.3051 0.3333 0.1089
dπ

Q,W (w1 = 0.3) 0.4936 0.5000 0.0903
dπ

Q,W (w1 = 0.6) 0.4191 0.4444 0.0700
dπ

Q,W (w1 = 0.9) 0.4104 0.3889 0.0694
d↔Q,W (w1 = 0.3) 0.4372 0.4444 0.0901
d↔Q,W (w1 = 0.6) 0.4340 0.4444 0.0893
d↔Q,W (w1 = 0.9) 0.4329 0.4444 0.0895

Table 4.11: Landmark-sensitive classification error with weighted quadratic SVM.

metrics mean median SD
dQ,W (w1 = 0.3) 0.3309 0.3333 0.0836
dQ,W (w1 = 0.6) 0.3084 0.3333 0.1019
dQ,W (w1 = 0.9) 0.3051 0.3333 0.1089
dπ

Q,W (w1 = 0.3) 0.5302 0.5000 0.0992
dπ

Q,W (w1 = 0.6) 0.5270 0.5000 0.1023
dπ

Q,W (w1 = 0.9) 0.3909 0.3889 0.0773
d↔Q,W (w1 = 0.3) 0.4367 0.4444 0.0902
d↔Q,W (w1 = 0.6) 0.4333 0.4444 0.0892
d↔Q,W (w1 = 0.9) 0.4322 0.4444 0.0889

of the point q1 from w1 = 0.1 (i.e., dQ or dπ
Q) to w1 = 0.9 to emphasize a desired POI. The

result is even more pronounced for the Gaussian SVM, as shown in Table 4.9; similar plots

are shown for linear and quadratic kernels in Table 4.10 and Table 4.11. As w1 is increased

from (uniform) 0.1 to 0.9, the mean error decreases from 45% to 1.5% for dQ,W and from

45% to 3% for dπ
Q,W . Thus, while all other distances we tried are only slightly better than

random unless their parameters are tuned, by emphasizing a particular POI (a very intuitive

adjustment), we achieve almost no error in classifying these trajectories.

4.4.6 Using dQ in Nearest Neighbor Search

We demonstrate that dQ’s sketched representation of the trajectories in R|Q| allows for

extremely efficient k-nearest neighbor search. We consider two representative methods [80, 92]

for comparison; but do all, e.g., [39]) which require timing information.

As a first comparison, consider a recent heavily-optimized kNN search algorithm focusing

on Hausdorff and dF distances [92]; this system, DFT, is optimized for distributed algorithms
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on a cluster, but show results on 1 node which we compare against. We obtained a random

sample of the GEN-TRAJ data set containing m = 3 million trajectories, using 36GB of

storage (larger than their 30.9GB dataset [92]). From their Figure 10, their indexes take 2000

to 6000 sec to build, and kNN queries require 50 to 200 seconds for k = 10.

Another distributed system DITA [80] for trajectory similarity search focuses on DTW,

returning all trajectories within a threshold. In their [80] Figures 7(a) and 8(a), using 256

cores they achieve query time between 0.001 and 0.01 seconds on Beijing (10.4GB) and

Chengdu (28GB) datasets.

To perform kNN queries using dQ we can sketch trajectories as |Q|-dimensional vectors

and use Euclidean distance. Hence, once we create the sketches, we can use any of the highly

optimized packages for kNN Euclidean queries (c.f., http://ann-benchmarks.com); we

choose a consistent top performer K-Graph (https://github.com/aaalgo/kgraph) with

settings: recall=0.99 and max iteration=50. We run on a desktop with a 6-core Intel Xeon

CPU ES-1650 v3 @3.5GHz processor, and 128GB RAM; the same processor as in DFT [92].

For experiments, we randomly choose a set of landmarks among the trajectories with

|Q| = {12, 20, 28, 36, 44, 52}. From these Q we preprocess the data to derive m × |Q|

sketches, a txt file we pass to K-Graph. Then K-Graph builds an index, and allows queries.

The preprocessing time (to build sketch), sketch file size, time to build K-Graph’s index,

that index size, and the average query time are shown in Table 4.12. For all these different

values of |Q|, the K-Graph algorithm reaches recall=0.99 within 7 iterations.

Table 4.12: The running time experiment of KNN search.

|Q| 12 20 28 36 44 52
preprocessing time (s) 38 62 88 114 138 160

sketch size (MB) 337 560 785 1012 1331 1536
index time (s) 106 109 114 119 124 129

index file size (MB) 999 999 1005 1002 1007 1001
query time (10−4s) 4.2 3.7 4.2 3.2 3.5 3.7

The preprocessing and index building times take 38 to 160 seconds and 106 to 129

seconds, respectively. By comparison, it takes 673 seconds to load the raw data into memory.

Combined they are an order of magnitude faster than the index build time for Hausdorff

in DFT [92]. The sketch size is only 300 to 1500 MB, and the index sizes are 1000 MB;
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reducing the size by 1 or 2 orders of magnitude from the original size. Finally, the query

times are only 0.00032 to 0.00042 seconds; that is 5 orders of magnitude faster than the

DFT index optimized for Hausdorff distance! and 1 to 2 orders of magnitude faster than

DITA optimized for DTW and using 256 cores on smaller data. Thus, using dQ (and existing

libraries) allows for small data sketches, and extremely efficient kNN queries.

4.4.7 Online Data and Code

The experiments in Section 4.4.2, Section 4.4.3, Section 4.4.4 and Section 4.4.5 are similar to

the experiments in [76], where a link of data and code is given. The raw data, intermediate

data and code to reproduce the result of experiments in Appendix B.4 are available here:

https://drive.google.com/open?id=1OAu5yoSH6MMlaBCkhgll43THxRpUb7Qm

4.5 Discussion
On trajectories, new metrics dQ and dπ

Q are the most general and best or competitive

against all other distances in all analysis tasks; see Table 4.13. LCSS performs better under

some other conditions for Beijing drivers experiment, see Appendix B.4. However from

Table 4.13 we can see dQ and dπ
Q are either the best or nearly best at each task, especially

when the computation cost is considered for each distance. The main point that dQ and dπ
Q

are the consistently among the best should hold under any reasonable subjective way to

alter how this summary is presented.

Table 4.13: Distances on analysis tasks as: best •, competitive •, near competitive ◦; possible
Xor possible but slower X.

task dQ dπ
Q d↔Q Eu dF DTW dH LCSS EDR LSHQ

easy clustering X X X X - - - - - -
learn 1 • • - • ◦ • • • • -
learn 2 • • ◦ ◦ - • - ◦ • ◦
learn 3 • • - - - - - - - -

fast NN X X X X - X - - - X

any k X X - - X X X X X X

The landmark set Q can be randomly chosen and small, or its points can hold specific

meaning in which case, the interpretation and discriminatory ability of the distances are

greatly enhanced. Chapter 5 provides an in depth theoretical study of how many landmarks
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are required to preserve certain errors, how to chose them, and when curves can be explicitly

recovered from them. In this work, we simply empirically show that in most cases 20

random landmarks are sufficient.

These provide meaningful vectorized representations. They are general and simple to

compute and work with. We believe many applications of these sorts of vectorized distances

will be discovered. And there are more mathematical questions to ask about the geometric

and statistical power of these landmark-based distances.



CHAPTER 5

SKETCHED MINDIST

5.1 Introduction
In this chapter we generalize dQ in Chapter 4 to general geometric objects. For an object

J ∈ J, where J ⊂ Rd, this depends on a set of landmarks Q ⊂ Rd; for now let n = |Q|. These

landmarks induce a sketched representation vQ(J) ∈ Rn where the ith coordinate vi(J) is

defined via a MinDist operation

vi(J) = dist(qi, J) = inf
p∈J
‖p− qi‖,

using the ith landmark qi ∈ Q. When the object J is implicit, we simply use vi. Then

our new distance dQ between two objects J1, J2 ∈ J is simply the (normalized) Euclidean

distance between the sketched representations

dQ(J1, J2) =
∥∥v̄Q(J1)− v̄Q(J2)

∥∥,

where v̄Q = 1√
|Q|

vQ.

Chapter 4 introduces other variants of this distance (using other norms or using the

arg minp∈J points on each J ∈ J). We focus on this version as it is the simplest, cleanest,

easiest to use, and was the best or competitive with the best on all empirical tasks. Indeed,

for the pressing case of measuring a distance between trajectories, this new distance measure

dominates a dozen other distance measures (including dynamic time warping, discrete

Frechet distance, edit distance for real sequences) in terms of classification performance,

and is considerably more efficient in clustering and nearest neighbor tasks.

The goal of this chapter is to formally understand how many landmarks in Q are needed

for various error guarantees, and how to chose the locations of these points Q.

Our aims in the choice of Q are two-fold: first, we would like to approximate dQ with dQ̃,

and second we would like to recover J ∈ J exactly only using vQ(J). The specific results
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vary depending on the initial set Q and the object class J. More precisely, the approximation

goal aims to preserve dQ for all objects J in some class J with a subset Q̃ ⊂ Q of landmarks.

Or possibly a weighted set of landmarks W, Q̃ with |Q̃| = N, so each qi is associated with a

weight wi and the weighted distance is defined

dQ̃,W(J1, J2) =

√√√√ N

∑
i=1

wi · (vi(J1)− vi(J2))
2 =

∥∥∥ṽQ̃(J1)− ṽQ̃(J2)
∥∥∥ .

where ṽQ̃ = (ṽ1, · · · , ṽN) with ṽi =
√

wivi. Specifically, our aim is an (ρ, ε, δ)-approximation

of Q over J so when W, Q̃ is selected by a random process that succeeds with probability at

least 1− δ, then for a pair J1, J2 ∈ J with dQ(J1, J2) ≥ ρ

(1− ε)dQ(J1, J2) ≤ dQ̃,W(J1, J2) ≤ (1 + ε)dQ(J1, J2).

When this holds for all pairs in J, we say it is a strong (ρ, ε, δ)-approximation of Q over J. In

some cases we can set to 0 either δ (the process is deterministic) or ρ (this preserves even

arbitrarily small distances), and may be able to use uniform weights wi =
1
|Q̃| for all selected

points.

5.1.1 Our Results

We begin with a special signed variant of the distance associated with the class J of

(d − 1)-dimensional hyperplanes (which for instance could model linear separators or

linear regression models). The signed variant provides vi(J) a negative value on one side

of the separator. In this variant, we show that if Q is full rank, then we can recover J

from vQ(J), and a variant of sensitivity sampling can be used to select O(d/(δε2)) points to

provide a (0, ε, δ)-approximation W, Q̃. Or by selecting O( d
ε2 (d log d + log 1

δ )) results in a

strong O(0, ε, δ)-approximation (Theorem 5.4).

Next we consider the more general case where the objects are bounded geometric objects

S. For such objects it is useful to consider a bounded domain ΩL = [0, L]d (for d a fixed

constant), and consider the case where each S ∈ S and landmarks satisfy S, Q ⊂ ΩL. In this

case, the number of samples required for a (ρ, ε, δ)-approximation is SQ
1

ε2δ
where

SQ = O

(L
ρ

) 2d
2+d

min

(
log

L
η

, log n,
(

L
ρ

)2
) 2

2+d
 , (5.1)

where η = minq,q′∈Q ‖q − q′‖∞. A few special cases are worth expanding upon. When

Q is continuous and uniform over ΩL then SQ = O((L/ρ)
2d

2+d ), and this is tight in R2 at
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SQ = Θ(L/ρ). That is, we can show that SQ = Θ(L/ρ) may be needed in general. When

d = 2 but not necessarily uniform on ΩL, then SQ = O( L
ρ min{

√
log n, L/ρ}). And when

Q is on a grid over ΩL in R2 of resolution Θ(ρ), then SQ = O( L
ρ

√
log L

ρ ), just a
√

log L/ρ

factor more than the lower bound.

We conclude with some specific results for trajectories. When considering the class

Tk with at most k segments, then O( 1
ε2SQ(k3 logSQ + log 1

δ )) samples is sufficient for a

strong (ρ, ε, δ)-approximation. Then when considering trajectories Tτ where the critical

points are at distance at least τ apart from any non-adjacent part of the curve, we can

exactly reconstruct the trajectory from vQ as long as Q is a grid of side length Ω(τ). It is

much cleaner to describe the results for trajectories and Q precisely on a grid, but these

results should extend for any object with k piecewise-linear boundaries, and critical points

sufficiently separated, or Q as having any point in each sufficiently dense grid cell, as

opposed to being exactly on the grid lattice.

5.1.2 Connections to other Domains, and Core Challenges

Before deriving these results, it is useful to lay out the connection to related techniques,

including ones that our results will build on, and the challenges in applying them.

Sensitivity sampling. Sensitivity sampling [40, 44, 63, 86] is an important technique for our

results. This typically considers a dataset X (a subset of a metric space), endowed with a

measure µ : X → R+, and a family of cost functions F. These cost functions are usually

related to the fitting of a data model or a shape S to X, and for instance on a single point

x ∈ X, for f ∈ F, where

f (x) = dist(x, S)2 = inf
p∈S
‖x− p‖2

is the squared distance from x to the closest point p on the shape S. And then f̄ =∫
X f (x)dµ(x). The sensitivity [63] of x ∈ X w.r.t. (F, X, µ) is defined as:

σF,X,µ(x) := sup
f∈F

f (x)
f̄

,

and the total sensitivity of F is defined as: S(F) =
∫

X σF,X,µ(x)dµ(x). This concept is

quite general, and has been widely used in applications ranging from various forms of

clustering [40, 44] to dimensionality reduction [43] to shape-fitting [86]. In particular, this

will allow us to draw N samples X̃ iid from X proportional to σF,X,µ(x), and weighted
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w̃(x̃) = S(F)
N·σF,X,µ(x̃) ; we call this σF,X,µ-sensitive sampling. Then X̃ is a (0, ε, δ)-coreset; that is,

with probability 1− δ for each f ∈ F

(1− ε) f̄ ≤
∫

X̃
f (x̃)dw̃(x̃) ≤ (1 + ε) f̄ ,

using N = O(S(F)
ε2δ

) [63]. The same error bound holds for all f ∈ F (then it is called a (0, ε, δ)-

strong coreset) with N = O(S(F)
ε2 (sF logS(F) + log 1

δ )) where sF is the shattering dimension

of the range space (X, ranges(F)) [16]. Specifically, each range r ∈ (X, ranges(F)) is defined

as those points in a sublevel set of a specific cost function r = {x ∈ X | µ(x)
S(F)

f (x)
f̄ ≤ ξ} for

some f ∈ F and ξ ∈ R.

It seems natural that a form of our results would follow directly from these approaches.

However, two significant and intertwined challenges remain. First, our goal is to ap-

proximate the distance between a pair of sketches ‖vQ(J1)− vQ(J2)‖, where these results

effectively only preserve the norm of a single sketch ‖vQ(J1)‖; this prohibits many of the

geometric arguments in the prior work on this subject. Second, the total sensitivity S(F)

associated with unrestricted Q and pairs J1, J2 ∈ J is in general unbounded (as we prove

in Lemma 5.4). Indeed, if the total sensitivity was bounded, it would imply a mapping

to bounded vector space [63], wherein the subtraction of the two sketches vQ(J1)− vQ(J2)

would still be an element of this space, and the norm bound would be sufficient.

We circumvent these challenges in two ways. First, we identify a special case in Section

5.2 (with negative distances, for hyperplanes) under which there is a mapping of the sketch

vQ(J1) to metric space independent of the size and structure of Q. This induces a bound for

total sensitivity related to a single object, and allows the subtraction of two sketches to be

handled within the same framework.

Second, we enforce a lower bound on the distance dQ(J1, J2) > ρ and an upper bound

on the domain ΩL = [0, L]d. This induces a restricted class of pairs JL/ρ where L/ρ is a

scaleless parameter, and it shows up in bounds we are then able to produce for the total

sensitivity with respect to JL/ρ and Q ⊂ ΩL.

Leverage scores, and large scales. Let (·)+ denotes the Moore-Penrose pseudoinverse of

a matrix, so (AAT)+ = (AAT)−1 when AAT is full rank. The leverage score [36] of the ith

column ai of matrix A is defined as: τi(A) := aT
i (AAT)+ai. This definition is more specific
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and linear-algebraic than sensitivity, but has received more attention for scalable algorithm

development and approximation [15, 25, 26, 35, 36, 74].

However, Theorem 5.2 (in the Appendix 5.2.3) shows that if F is the collection of some

functions defined on a set Q of n points (µ(qi) =
1
n for all qi ∈ Q), where each f ∈ F is the

square of some function v in a finite dimensional space V spanned by a basis {v(1), · · · , v(κ)},

then we can build a κ× n matrix A where the ith column is 1√
n

(
v(1)(qi), · · · , v(κ)(qi)

)T, and

have 1
n · σF,Q,µ(qi) is precisely the leverage score of the ith column of the matrix A. A similar

observation has been made by Varadarajan and Xiao [86].

A concrete implication of this connection is that we can invoke an online row sampling

algorithm of Cohen et.al. [26]. In our context, this algorithm would stream over Q, main-

taining (ridge) estimates of the sensitivity of each qi from a sample Q̃i−1, and retaining each

qi in that sample based on this estimate. Even in this streaming setting, this provides an

approximation bound not much weaker than the sampling or gridding bounds we present;

see Appendix 5.2.3.

Connection from MinDist to shape reconstruction. The fields of computational topology

and surface modeling have extensively explored [18, 19, 77] the distance function to a

compact set J ⊂ Rd

dJ(x) = dist(x, J) = inf
p∈J
‖x− p‖,

their approximations, and the offsets Jr = d−1
J ([0, r]). For instance the Hausdorff distance

between two compact sets J, J′ is dH(J, J′) = ‖dJ − dJ′‖∞. The gradient of dJ implies stability

properties about the medial axis [20]. And most notably, this stability of dJ with respect to

a sample P ∼ J or P ∼ ∂J is closely tied to the development of shape reconstruction (aka

geometric and topological inference) through α-shapes [37], power crust [10], and the like.

The intuitive formulation of this problem through dJ (as opposed to Voronoi diagrams of P)

has led to more statistically robust variants [19, 77] which also provide guarantees in shape

recovery up to small feature size [45], essentially depending on the maximum curvature of

∂J.

Our formulation flips this around. Instead of considering samples P from J (or ∂J) we

consider samples Q from some domain Ω ⊂ Rd. This leads to new but similar sampling

theory, still depending on some feature size (represented by various scale parameters ρ, τ,
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and η), and still allowing recovery properties of the underlying objects. While the samples P

from J can be used to estimate Hausdorff distance via an all-pairs O(|P|2)-time comparison,

our formulation requires only a O(|Q|)-time comparison to compute dQ. We leave as open

questions the recovering of topological information about an object J ∈ J from vQ(J).

Function space sketching. While most geometric inference sampling bounds focus on

low-level geometric parameters (e.g., weak local feature size, etc), a variant based on

the kernel distance dK(P, x) [77] can be approximated (including useful level sets) using

a uniform sample P′ ∼ P. The kernel distance in this setting is defined dK(P, x) =√
1 + µK(P)− 2KDEP(x) where the kernel density estimate is defined KDEP(x) = 1

|P| ∑p∈P

K(p, x) with K(p, x) = exp(−‖x − p‖2) and µK(P) = 1
P ∑p∈P KDEP(p). This sampling

mechanism can be used to analyze KDEP (and thus also dK) [73] by considering a repro-

ducing kernel Hilbert space (RKHS) HK associated with K; this is a function space so each

element φK(p) = K(p, ·) ∈ HK is a function. And averages ΦK(P) = 1
P ∑p∈P φK(p) = KDEP

are kernel density estimates. Ultimately, O( 1
ε2 log 1

δ ) samples P̃ yields [68] with probability

1 − δ that ‖ΦK(P) − ΦK(P̃)‖HK ≤ ε which implies ‖KDEP − KDEP̃‖∞ ≤ ε, and hence

also ‖dK(P, ·)− dK(P̃, ·)‖∞ ≤ Θ(
√

ε). Notably, the natural HK-norm is an `2-norm when

restricted to any finite dimensional subspace (e.g., the basis defined by {φK(p)}p∈P).

Similarly, our approximations of dQ(·, ·) using a sample Q̃ ∼ Q result in a similar

function space approximation. Again the main difference is that dQ is bivariate (so it

takes in a pair J1, J2 ∈ J, which is hard to interpret geometrically), and we seek a relative

error (not an additive error). This connection leads us to realize that there are JL-type

approximations [59] of this feature space. That is, given a set of t objects O = J1, J2, . . . , Jt ⊂

J, and their representations vQ(J1), vQ(J2), . . . , vQ(Jt) ∈ Rn, there is a mapping h to RN

with N = O((1/ε2) log t
δ ), so with probability at least 1 − δ so for any pair J, J′ ∈ O

(1− ε)dQ(J, J′) ≤ ‖h(vQ(J)− h(vQ(J′)‖ ≤ (1 + ε)dQ(J, J′). However, for such a result to

hold for all pairs in J, there likely requires a lower bound on the distance ρ and/or upper

bound on the underlying space L, as with the kernels [22, 75]. Moreover, such an approach

would not provide an explicit coreset Q̃ that is interpretably in the original space Rd.



87

5.2 The Distance Between Two Hyperplanes
In this section, we assume for two hyperplanes h1, h2 ∈ H, dQ is defined by (4.2) and

study how to efficiently compute dQ approximately, when the data set Q is very large.

The basic idea is to use the sensitivity sampling method [63], and an online row sampling

algorithm designed for leverage sampling [36].

5.2.1 Estimation of dQ by Sensitivity Sampling on Q

Suppose Q = {q1, q2, · · · , qn} ⊂ Rd, where qi has the coordinate (xi,1, xi,2. · · · , xi,d).

Without specification, in this chapter Q is a multiset, which means two points in Q can be

at the same location, and ‖ · ‖ represents l2 norm.

Any hyperplane h ∈ H can be uniquely expressed in the form

h =
{

x = (x1, · · · , xd) ∈ Rd | ∑d
j=1 ujxj + ud+1 = 0

}
,

where (u1, · · · , ud+1) is a vector in Ud+1 defined in Section 4.2.2. A sketched halfspace h

has n-dimensional vector vQ(h) = (v1(h), . . . , vn(h)) where each coordinate vi is defined

as the signed distance from qi to the closest points on h, which can be calculated vi(h) =

∑d
j=1 ujxi,j + ud+1; the dot-product with the unit normal of h, plus offset ud+1. As before, the

distance is defined as dQ(h1, h2) = ‖ 1√
n (vQ(h1)− vQ(h2))‖.

When Q ⊂ Rd is full rank – that is, there are d + 1 points in Q which are not on a common

hyperplane – then Chapter 4 shows dQ is a metric on H.

We use sensitivity sampling to estimate dQ with respect to a tuple (F, X, µ). First suppose

Q = {q1, · · · , qn} ⊂ Rd is full rank and n ≥ d + 1. Then we can let X = Q and µ = 1
n ;

what remains is to define the appropriate F. Roughly, F is defined with respect to a

(d + 1)-dimensional vector space V, where for each f ∈ F, f = v2 for some v ∈ V; and V is

the set of all linear functions on x ∈ Q.

We now define F in more detail. Recall each h ∈ H can be represented as a vector

u ∈ Ud+1. This u defines a function vu(q) = ∑d
i=1 uixi + ud+1, and these functions are

elements of V. The vector space is however larger and defined

V = {va : Q 7→ R | va(q) =
d

∑
i=1

aixi + ad+1 where q = (x1, · · · , xd) ∈ Q,

a = (a1 · · · , ad+1) ∈ Rd+1},
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so that there can be va ∈ V for which a /∈ Ud+1; rather it can more generally be in Rd+1.

Then the desired family of real-valued functions is defined

F = { f : Q 7→ [0, ∞) | ∃ v ∈ V s.t. f (q) = v(q)2, ∀q ∈ Q}.

To see how this can be applied to estimate dQ, consider two hyperplanes h1, h2 in Rd and

the two unique vectors u(1), u(2) ∈ Ud+1 which represent them. Now introduce the vector

u = (u1, · · · , ud+1) = u(1) − u(2); note that u ∈ Rd+1, but not necessarily in Ud+1. Now for

q ∈ Q define a function fh1,h2 ∈ F as

fh1,h2(q) = fh1,h2(x1, · · · , xd) =
(
∑d

i=1 uixi + ud+1
)2,

so dQ(h1, h2) = ( 1
n ∑q∈Q fh1,h2(q))

1
2 . And thus an estimation of 1

n ∑q∈Q fh1,h2(q) provides

an estimation of dQ(h1, h2). From [63][Theorem 2.2] (see Lemma 5.1), the total sensitivity

of F is d + 1. In particular, given the sensitivity score σ(q) for each q ∈ Q, we can invoke

[63][Lemma 2.1] to reach the following theorem.

Theorem 5.1. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-sensitive

sampling Q̃ of (Q, F) of size |Q̃| = d+1
δ,ε2 results in a (0, ε, δ)-coreset. And thus an (0, ε, δ)-

approximation so with probability at least 1− δ, for each pair h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W(h1, h2) ≤ (1 + ε)dQ(h1, h2).

5.2.2 Sensitivity Computation and its Relationship with Leverage Score

In this section, we describe how to compute the sensitivity score σ(xi) for each xi ∈ Q.

To this end, we can invoke a theorem about vector norms by Langberg and Shulman [63]:

Lemma 5.1 (Theorem 2.2 in [63], expanding definitions). Suppose µ is a probability measure on

a metric space X, and V = {v : X 7→ R} is a real vector space of dimension κ. Let F = { f : X 7→

[0, ∞) | ∃ v ∈ V s.t. f (x) = v(x)2, ∀x ∈ X}, and {v(1), · · · , v(κ)} be an orthonormal basis for V

under the inner product 〈u, v〉 :=
∫

X u(x)v(x)dµ(x), ∀u, v ∈ V. Then, σF,X,µ(x) = ∑κ
i=1 v(i)(x)2

and S(F) = κ.

We have already set X = Q and µ = 1
n , and have defined V and F. To apply the above

theorem need to define an orthonormal basis {v(1), v(2), . . . , v(d+1)} for V. A straightforward

basis (although not necessarily an orthonormal one) exists as v(d+1)(q) = ve(d+1)(q) =
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1 and v(i)(q) = ve(i)(q) = xi for all i ∈ [d] and q = (x1, · · · , xd) ∈ Rd, where e(i) =

(0, · · · , 0, 1, 0, · · · , 0) is an indicator vector with all zeros except 1 in ith coordinate. That

is the ith basis element v(i) is simply the ith coordinate of the input. Since Q is full rank,

{v(1), · · · , v(d+1)} is a basis of V.

We are now ready to state our theorem on computing sensitivity scores on a general

(F, Q, µ), where we typically set µ = 1
n .

Theorem 5.2. Suppose µ is a probability measure on a metric space Q = {q1, · · · , qn} such that

µ(qi) = pi > 0 for all i ∈ [n], V = {v : Q 7→ R} is a real vector space of dimension κ with a basis

{v(1), · · · , v(κ)}, and F = { f : Q 7→ [0, ∞) | ∃ v ∈ V s.t. f (q) = v(q)2, ∀q ∈ Q}. If we intro-

duce a κ × n matrix A whose ith column ai is defined as: ai = (v(1)(qi)
√

pi, · · · , v(κ)(qi)
√

pi)
T,

then we have

σF,Q,µ(qi) · pi = aT
i (AAT)−1ai, ∀ qi ∈ Q. (5.2)

Proof. Suppose the QR decomposition of AT is AT = Q̃R̃, where Q̃ is an n× κ orthogonal

matrix (Q̃TQ̃ = I), and R̃ is an n× n upper triangular matrix. Since {v(1), · · · , v(κ)} is a basis

of V, the columns of AT are linear independent, which implies the matrix R̃ is invertible.

Using the fact that Q̃TQ̃ is an identity matrix, we have

AT(AAT)−1A =Q̃R̃(R̃TQ̃TQ̃R̃)−1R̃TQ̃T = Q̃R̃(R̃T R̃)−1R̃TQ̃T

=Q̃R̃R̃−1(R̃T)−1R̃TQ̃T = Q̃Q̃T
(5.3)

From Lemma 5.1, we have σF,Q,µ(qi) = ∑κ
j=1(Q̃i,j)

2, which is the i-th entry on the diagonal

of Q̃Q̃T, so from (5.3), we obtain (5.2).

This theorem not only shows how to compute the sensitivity of a point, but also gives the

relationship between sensitivity and the leverage score.

Leverage score. Let (·)+ denotes the Moore-Penrose pseudoinverse of a matrix, so (AAT)+ =

(AAT)−1 when AAT is full rank. The leverage score [36] of the ith column ai of matrix A is

defined as: τi(A) := aT
i (AAT)+ai.

This definition is more specific and linear-algebraic than sensitivity. However, Theorem

5.2 shows that value σF,Q,µ(xi) · pi is just the leverage score of the ith column of the matrix A.

Compared to sensitivity, leverage scores have received more attention for scalable algorithm

development and approximation [15, 25, 26, 35, 36, 74]
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5.2.3 Estimate the Distance by Online Row Sampling

If the dimensionality is too high and the number of points is too large to be stored and

processed in memory, we can apply online row sampling [26] to estimate dQ. Note that as

more rows are witnessed the leverage score of older rows change. While other approaches

(c.f. [25, 35, 74]) can obtain similar (and maybe slightly stronger) bounds, they rely on more

complex procedures to manage these updating scores. The following Algorithm 5.1 by

Cohen et.al. [26], on the other hand, simply samples columns as they come proportional to

their estimated ridge leverage score [25]; thus it seems like the “right” approach.

Algorithm 5.1 ONLINE-SAMPLE(A, ε, δ)

Set λ := δ
ε , c := 8 log( d

ε2 ), and let Ã be empty (a 0× d matrix).
for rows ai ∈ A do

Let pi := min(c · (1 + ε)aT
i (ÃT Ã + λI)−1ai, 1).

With probability pi, append row ai/
√

pi to Ã; otherwise do nothing.
return Ã.

According to the Theorem 3 in [26], Algorithm 5.1 returns a matrix Ã, with high probabil-

ity, such that (1− ε)AT A− δI � ÃT Ã � (1 + ε)AT A + δI, and the number of rows in Ã is

O(d log(d) log(ε‖A‖2
2/δ)/ε2). (Recall A � B means xT Ax ≤ xTBx for every vector x.)

Given a set of points Q = {q1, · · · , qn} ⊂ Rd, where qi has the coordinates (xi,1, · · · , xi,d),

we introduce an n× (d + 1) matrix AQ whose ith row ai is defined as:

ai = (xi,1, · · · , xi,d, 1),

For any two hyperplanes h1, h2, they can be uniquely expressed by vectors u(1), u(2) ∈ Ud+1,

and define u = u(1) − u(2) ∈ Rd+1, then we have dQ(h1, h2) =
1√
n‖AQu‖. So, if n is very

large we can apply Algorithm 5.1 to efficiently sample rows from AQ, and use AQ̃ to

estimate dQ(h1, h2). From Theorem 3 in [26], we have the following result.

Theorem 5.3. Suppose a set Q and matrix AQ are defined as above. Let AQ̃ = Online-Sample(AQ,

ε, δ) be the matrix returned by Algorithm 5.1. Then, with probability at least 1− 1
d+1 , for any two

hyperplanes h1, h2 expressed by u(1), u(2) ∈ Ud+1, suppose uh1,h2 = u(1) − u(2), we have

1
1 + ε

( 1
n
‖AQ̃uh1,h2‖

2 − 1
n

δ‖uh1,h2‖
2) 1

2 ≤ dQ(h1, h2) ≤
1

1− ε

( 1
n
‖AQ̃uh1,h2‖

2 +
1
n

δ‖uh1,h2‖
2) 1

2 ,
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where ‖ · ‖ is the Euclidean norm, and with probability at least 1− 1
d+1 − e−(d+1) the number of

rows in AQ̃ is O(d log(d) log(ε‖AQ‖2
2/δ)/ε2).

To make the above bound hold with arbitrarily high probability, we can use the standard

median trick: run Algorithm 5.1 k times in parallel to obtain AQ̃1
, · · · , AQ̃k

, then for any two

hyperplanes h1, h2, we take the median of ‖AQ̃1
uh1,h2‖2, · · · , ‖AQ̃k

uh1,h2‖2.

Remark 5.1. Since uh1,h2 = u(1) − u(2), we have

‖uh1,h2‖
2 =(‖u(1) − u(2)‖)2 ≤ (‖u(1)‖+ ‖u(2)‖)2 ≤ 2(‖u(1)‖2 + ‖u(2)‖2)

=2
(
2 + (u(1)

d+1)
2 + (u(2)

d+1)
2) = 4 + 2d2(0, h1) + 2d2(0, h2),

where d(0, h) is the distance from a choice of origin 0 to h. If we assume that any hyperplanes

we consider must pass within a distance ∆ to the choice of origin, then let ∆′ = 4(1 + ∆2) and

‖uh1,h2‖2 ≤ ∆′. Now dQ̃,W(h1, h2))2 = 1
n‖AQ̃uh1,h2‖2 where Q̃ is the set of points corresponding

to rows in AQ̃, and the weighting W is defined so wi = |Q̃|/n. Then the conclusion of Theorem 5.3

can be rewritten as

1
1 + ε

(
dQ̃,W(h1, h2)

2 − ∆′δ
n
) 1

2 ≤ dQ(h1, h2) ≤
1

1− ε

(
dQ̃,W(h1, h2)

2 +
∆′δ
n
) 1

2 ,

which means dQ(h1, h2) can be estimated by dQ̃,W(h1, h2) and the bound ∆ on the distance to the

origin. Recall the distance and the bound in Theorem 5.3 is invariant to the choice of 0, so for this

interpretation it can always be considered so ∆ is small.

5.2.4 A Strong O(0, ε, δ)-Approximation for Q over H.

Now, we use the framework in Braverman et.al. [16] to construct a strong O(0, ε, δ)-

approximation for Q over H. In the remaining part of this subsection, we assume Q is a

set (not a multiset), each q ∈ Q has a weight w(q) ∈ (0, 1], and ∑q∈Q w(q) = 1. Recall that

for a range space (Q,R) the shattering dimension s = dim(Q,R) is the smallest integer s

so that |{S ∩ R | R ∈ R}| ≤ |S|s for all S ⊂ Q. We introduce ranges X where each range

Xh1,h2,η ∈ X is defined by two halfspaces h1, h2 ∈ H and a threshold η > 0. This is defined

with respect to Q and a weighting w : Q→ R+, specifically

Xh1,h2,η = {q ∈ Q | w(q) fh1,h2(q) ≤ η}.
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Next we use the sensitivity σ : Q → R+ to define an adjusted range space (Q,X′)

with adjusted weights w′(q) = σ(q)
d+1 w(q) and adjusted ranges X′h1,h2,η ∈ X′ defined using

gh1,h2(q) =
1

σ(q)
fh1,h2 (q)

f̄h1,h2
as

X′h1,h2,η = {q ∈ Q | w′(q)gh1,h2(q) ≤ η}.

Recall that f̄h1,h2 = ∑q∈Q w(q) fh1,h2(q). To apply [16][Theorem 5.5] we only need to bound

the shattering dimension of the adjusted range space (Q,X′).

Here is a lemma about the computation of the dimension of a range space, which is useful

in bounding the dimension of a query space.

Lemma 5.2. Suppose Q ⊂ Rd, X1 ⊂ Rd1 , X2 ⊂ Rd2 , and R1 = {{q ∈ Q| g1(q, x) ≤ 0}| x ∈

X1}, R2 = {{q ∈ R2| g2(q, x) ≤ 0}| x ∈ X2} where g1, g2 can be any fixed real functions. Define

R3 = {{q ∈ R2| g1(q, x1) ≤ 0} ∩ {q ∈ R2| g2(q, x2) ≤ 0}| x1 ∈ X1, x2 ∈ X2}, R4 = {{q ∈

R2| g1(q, x1) ≤ 0} ∪ {q ∈ R2| g2(q, x2) ≤ 0}| x1 ∈ X1, x2 ∈ X2}. If dim(R2,R1) = s1 and

dim(R2,R2) = s2, then dim(R2,R3) ≤ s1 + s2 and dim(R2,R4) ≤ s1 + s2.

Proof. Suppose G ⊂ R2 and |G| ≤ ∞, then we have

{G ∩ R| R ∈ R3} = {(G ∩ R1) ∩ (G ∩ R2)| R1 ∈ R1, R2 ∈ R2}. (5.4)

So, we have

|{G ∩ R| R ∈ R3}| = |{(G ∩ R1) ∩ (G ∩ R2)| R1 ∈ R1, R2 ∈ R2}|

≤|{G ∩ R1| R1 ∈ R1}| × |{G ∩ R2| R2 ∈ R2}| ≤ |G|s1 |G|s2 = |G|s1+s2 .
(5.5)

which implies dim(R2,R3) ≤ s1 + s2, and similarly we have dim(R2,R4) ≤ s1 + s2.

Now, we can bound the shattering dimension of the adjusted range space (Q,X′).

Lemma 5.3. The shattering dimension of adjusted range space (Q,X′) is bounded by O(d).

Proof. We start by rewriting any element X′h1,h2,η of the adjusted range space as

X′h1,h2,η = {q ∈ Q | w′(q)gh1,h2(x) ≤ η}

= {q ∈ Q | w(q) fh1,h2(q) ≤ η(d + 1) f̄h1,h2}

=
{

q ∈ Q |
√

w(q)
(
∑d

i=1 uixi + ud+1)
)
≤
(
η(d + 1) f̄h1,h2

) 1
2
}

∩
{

q ∈ Q | −
√

w(q)
(
∑d

i=1 uixi + ud+1)
)
≤
(
η(d + 1) f̄h1,h2

) 1
2
}

,
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where (x1, · · · , xd) is the coordinates of q ∈ Q. This means each set X′h1,h2,η ∈ X′ can be

decomposed as the intersection of sets in two ranges over Q from:

R1 =
{{

q ∈ Q |
√

w(q)
(
∑d

i=1 uixi + ud+1)
)
≤
(
η(d + 1) f̄h1,h2

) 1
2
}
| h1, h2 ∈ H, η ≥ 0

}
,

R2 =
{{

q ∈ Q | −
√

w(q)
(
∑d

i=1 uixi + ud+1)
)
≤
(
η(d + 1) f̄h1,h2

) 1
2
}
| h1, h2 ∈ H, η ≥ 0

}
.

By Lemma 5.2, we only need to bound the dimension of each associated range space (Q,R1)

and (Q,R2). We introduce new variables c0 ∈ R, z = (z1, · · · , zd+1), c = (c1, · · · , cd+1) ∈

Rd+1:

zi =
√

w(q)xi for i ∈ [d], zd+1 =
√

w(q),

ci =ui for i ∈ [d + 1], c0 = −
(
r(d + 1) f̄h1,h2

) 1
2 .

Since Q is a fixed set, we know z only depends on q, and c0, c only depend on h1, h2

and η. By introducing new variables we construct an injective map ϕ : Q 7→ Rd+1, s.t.

ϕ(q) = z. So, there is also an injective map from R1 to
{
{z ∈ ϕ(Q)| c0 + 〈z, c〉 ≤ 0}| c0 ∈

R, c ∈ Rd+1}. Since the shattering dimension of the range space (Rd+1,Hd+1), where

Hd+1 = {h is a halfspace in Rd+1}, is O(d), we have dim(Q,R1) = O(d), and similarly

dim(Q,R2) = O(d). Thus, we obtain an O(d) bound for the shattering dimension of

(Q,X).

From Lemma 5.3 and [16][Theorem 5.5] we directly obtain a strong O(0, ε, δ)-approximation

for Q over H.

Theorem 5.4. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-sensitive

sampling Q̃ of (Q, F) of size |Q̃| = O( d
ε2 (d log d + log 1

δ )) results in a strong (0, ε, δ)-coreset. And

thus a strong (0, ε, δ)-approximation so with probability at least 1− δ, for all h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W(h1, h2) ≤ (1 + ε)dQ(h1, h2).

5.3 Distance Between Two Geometric Objects
In this section, we mildly restrict dQ to the distance between any two geometric objects,

in particularly bounded closed sets. Let S = {S ⊂ Rd | S is a bounded closed set} be the

space of objects J we consider.

As before define vi(S) = infp∈S ‖p − qi‖, and then for S1, S2 ∈ S define fS1,S2(qi) =

(vi(S1)− vi(S2))2. The associated function space is F(S) = { fS1,S2 | S1, S2 ∈ S}. Setting
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µ(q) = 1
n for all q ∈ Q, then (dQ(S1, S2))2 = f̄S1,S2 := ∑n

i=1 µ(qi) fS1,S2(qi). Using sensitivity

sampling to estimate dQ(S1, S2) requires a bound on the total sensitivity of F(S).

In this section we show that while unfortunately the total sensitivity S(F(S)) is un-

bounded in general, it can be tied closely to the ratio L/ρ between the diameter of the

domain L, and the minimum allowed dQ distance between objects ρ. In particular, it can be

at least proportional to this, and in R2 in most cases (e.g., for near-uniform Q) is at most

proportional to L/ρ or not much larger for any Q.

5.3.1 Lower Bound on Total Sensitivity

q
0

γ
1

γ
2

Figure 5.1: Q is the set of blue points, γ1 is the red curve, γ2 is the green curve, and they coincide
with each other on the boundary of the square.

Suppose Q is a set of n points in R2 and no two points are at the same location, then for

any q0 ∈ Q we can draw two curves γ1, γ2 as shown in Figure 5.1, where γ1 is composed

by five line segments and γ2 is composed by four line segments. The four line segments

of the γ2 forms a square, on its boundary γ1 and γ2 coincide with each other, and inside

this square, q0 is the endpoint of γ1. We can make this square small enough, such that all

points q 6= q0 are outside this square. So, we have dist(q0, γ1) = 0 and dist(q0, γ2) 6= 0, and

dist(q, γ1) = dist(q, γ2) = 0 for all q 6= q0. Thus, we have fγ1,γ2(q0) > 0 and fγ1,γ2(q) = 0

for all q 6= q0, which implies

σF(S),Q,µ(q0) ≥
fγ1,γ2(q0)

f̄γ1,γ2

=
fγ1,γ2(q0)

1
n ∑q∈Q fγ1,γ2(q)

=
n fγ1,γ2(q0)

fγ1,γ2(q0)
= n.

Since this construction of two curves γ1, γ2 can be repeated around any point q ∈ Q,

S(F(S)) = ∑
q∈Q

µ(q)σF(S),Q,µ(q) ≥ ∑
q∈Q

1
n

n = n.
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We can refine this bound by introducing two parameters L, ρ for S. Given L > ρ > 0 and

a set Q ⊂ Rd of n points, we define S(L) = {S ∈ S | S ⊂ [0, L]d} and F(S(L), ρ) = { fS1,S2 ∈

F(S) | S1, S2 ∈ S(L), dQ(S1, S2) ≥ ρ}. The following lemma gives a lower bound for the

total sensitivity of F(S(L), ρ) in the case d = 2, which directly holds for larger d.

Lemma 5.4. Suppose d = 2, then can construct a set Q ⊂ [0, L]d such that S(F(S(L), ρ)) =

Ω( L
ρ ).

Proof. We uniformly partition [0, L]2 into n grid cells, such that C1
L
ρ ≤ n ≤ C2

L
ρ for constants

C1, C2 ∈ (0, 1). The side length of each grid is η = L√
n . We take Q as the n grid points,

and for each point q ∈ Q we can choose two curves γ1 and γ2 (similar to curves in Figure

5.1) such that dist(q, γ1) = 0, dist(q, γ2) ≥ C2η, and dist(q′, γ1) = dist(q′, γ2) = 0 for all

q′ ∈ Q \ {q} . Thus, we have dQ(γ1, γ2) ≥ C2
η√
n = C2

L
n ≥ ρ. So, fγ1,γ2 ∈ F(S(L), ρ))

and we have σ(q) ≥ n for all q ∈ Q and S(F(S(L), ρ)) ≥ n ≥ C1
L
ρ , which implies

S(F(S(L), ρ)) = Ω( L
ρ ).

5.3.2 Upper Bound on the Total Sensitivity

A simple upper bound of S(F(S(L), ρ) is O
( L2

ρ2

)
follows from the L/ρ constraint. The

sensitivity of each point q ∈ Q is defined as sup fS1,S2∈F(S(L),ρ)
fS1,S2 (q)

f̄S1,S2
, where fS1,S2(q) =

O(L2) for all S1, S2 ∈ S(L) and q ∈ Q ⊂ [0, L]d, and the denominator f̄S1,S2 ≥ ρ2 by

assumption for all fS1,S2 ∈ F(S(L), ρ). Hence, the sensitivity of each point in Q is O
( L2

ρ2

)
,

and thus their average, the total sensitivity is O
( L2

ρ2

)
. In this section we will improve and

refine this bound.

We introduce two variables only depends on Q = {q1, · · · , qn} ⊂ [0, L]d:

Cq := max
0<r≤L

rd

Ld
n

|Q ∩ B∞(q, r)| for q ∈ Q, and CQ :=
1
n ∑

q∈Q
C

2
2+d
q . (5.6)

where B∞(q, r) := {x ∈ Rd | ‖x− q‖∞ ≤ r}. Intuitively, |Q∩B∞(q,r)|
rd is proportional to the

point density in region B∞(q, r), and the value of rd

Ld
n

|Q∩B∞(q,r)| can be maximized, when the

region B∞(q, r) has smallest point density, which means r should be as large as possible but

the number of points contained in B∞(q, r) should be as small as possible. A trivial bound

of Cq is n, but if we make Cq0 = n for one point q0, then it implies the value of Cq for other

points will be small, so for CQ it is possible to obtain a bound better than n
2

d+2 .
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Importantly, these quantities Cq and CQ will be directly related to the sensitivity of a

single point σ(q) and the total sensitivity of the point set SQ, respectively. We formalize

this connection in the next lemma, which for instance implies that for d constant then

SQ = O(CQ · (L/ρ)
2d

2+d ).

Lemma 5.5. For function family F(S(L), ρ) the sensitivity for any q ∈ Q ∈ [0, L]d is bounded

σ(q) ≤ CdC
2

2+d
q

(L
ρ

) 2d
2+d

,

where Cd = 4
2

2+d (8
√

d)
2d

2+d and Cq given by (5.6).

Proof. Recall σ(q) = sup fS1,S2∈F(S(L),ρ)
fS1,S2 (q)

1
n ∑q′∈Q fS1,S2 (q

′)
. For any fixed q ∈ Q, for now suppose

fS1,S2 ∈ F(S(L), ρ) satisfies this supremum σ(q) =
fS1,S2 (q)

1
n ∑q′∈Q fS1,S2 (q

′)
. We define dist(q, S) =

infp∈S ‖q− p‖ (so for qi ∈ Q then dist(qi, S) = vi(S)), and then use the parameter M :=

|dist(q, S1)− dist(q, S2)|, where M2 = fS1,S2(q). If M = 0, then obviously fS1,S2(q) = M2 =

0, and σ(q) = 0. So, without loss of generality, we assume M > 0 and dist(q, S1) = τ and

dist(q, S2) = τ + M. We first prove σ(q) ≤ CdCq
Ld

Md . There are two cases for the relationship

between τ and M, as shown in Figure 5.2.

r

τ

M

q

q′

τ

M

qr

q′

τ

M

qr

q′

Figure 5.2: Left: Case 1, r = M
8 ≤ τ, and q′ ∈ B(q, r). Right: Case 2, r = M

8 > τ, and
q′ ∈ B(q, τ + r).

Case 1: τ ≥ M
8 . For any q′ ∈ B(q, M

8 ) := {q′ ∈ Rd | ‖q′ − qi‖ ≤ M
8 }, we have τ + M =

dist(q, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ M
8 + dist(q′, S2), which implies for all q′ ∈ B(q, M

8 )

dist(q′, S2) ≥ τ + M− M
8

= τ +
7
8

M.
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Similarly dist(q′, S1) ≤ dist(q′, q) + dist(q, S1) ≤ M
8 + τ for all q′ ∈ B(q, M

8 ). Thus for all

q′ ∈ B(q, M
8 )

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥ τ +
7
8

M− (τ +
M
8
) =

3
4

M.

Case 2: 0 ≤ τ < M
8 . For any q′ ∈ B(q, τ + M

8 ) := {q′ ∈ Rd | dist(q′, q) ≤ τ + M
8 }, we have

τ + M = dist(q′, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ τ + M
8 + dist(q′, S2), which implies for all

q′ ∈ B(q, τ + M
8 )

dist(q′, S2) ≥
7
8

M.

Combined with τ < M
8 and dist(q′, S1) ≤ dist(q′, q) + dist(q, S1) ≤ τ + M

8 + τ = M
8 + M

8 +

M
8 ≤

3
8 M for all q′ ∈ B(q, τ + M

8 ), we have

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥
7
8

M− 3
8

M =
M
2

.

Combining these two cases on τ, for all q′ ∈ B(q, M
8 )

|dist(q′, S2)− dist(q′, S1)| ≥
M
2

.

Then since B∞(q, r√
d
) ⊂ B(q, r) for all r ≥ 0, from

Cq = max
0<r≤L

rd

Ld
n

|Q ∩ B∞(q, r)| ≥ (
1

8
√

d
)d Md

Ld
n

|Q ∩ B∞(q, M
8
√

d
)|

,

we can bound the denominator in σ(q) as

1
n ∑

q′∈Q
fS1,S2(q

′) ≥ 1
n ∑

q′∈Q∩B∞(q, M
8
√

d
)

fS1,S2(q
′) =

1
n ∑

q′∈Q∩B∞(q, M
8
√

d
)

(dist(q′, S1)− dist(q′, S2))
2

≥ 1
4

1
n

M2
∣∣∣Q ∩ B∞(q,

M
8
√

d
)
∣∣∣ ≥ 1

4
(

1

8
√

d
)d M2

Cq

Md

Ld =
1
4
(

1

8
√

d
)d 1

Cq

M2+d

Ld ,

which implies

σ(q) =
M2

1
n ∑q′∈Q fS1,S2(q′)

≤ 4(8
√

d)d M2Cq
Ld

M2+d = 4(8
√

d)dCq
Ld

Md .

Combining this with σ(q) ≤ M2

ρ2 , we have σ(q) ≤ min
(M2

ρ2 , 4(8
√

d)dCq
Ld

Md

)
. If M2+d ≤

4(8
√

d)dCqρ2Ld, then M2

ρ2 ≤ 4(8
√

d)dCq
Ld

Md , which means σ(q) ≤ min
(M2

ρ2 , 4(8
√

d)dCq
Ld

Md

)
=

M2

ρ2 ≤ 4
2

2+d (8
√

d)
2d

2+d C
2

2+d
q

(
L
ρ

) 2d
2+d

. If M2+d ≥ 4(8
√

d)dCqρ2Ld, then 4(8
√

d)dCq
Ld

Md ≤ M2

ρ2 , so

we also have σ(q) ≤ min
(M2

ρ2 , 4(8
√

d)dCq
Ld

Md

)
= 4(8

√
d)dCq

Ld

Md ≤ 4
2

2+d (8
√

d)
2d

2+d C
2

2+d
q

(
L
ρ

) 2d
2+d

.
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Hence, to bound the total sensitivity of F(S(L), ρ), we need a bound of CQ = 1
n ∑q∈Q C

2
2+d
q .

Lemma 5.6. Suppose Q ⊂ [0, L]d of size n, η = minq,q′∈Q, q 6=q′ ‖q− q′‖∞, and CQ is given by

(5.6). Then we have

CQ ≤ Cd min
((

log2
L
η

) 2
2+d ,

(1
d

log2 n
) 2

2+d
)

,

where Cd = 2d+1.

Proof. We define C̃Q := 1
n ∑q∈Q Cq, and using Hölder inequality we have

CQ =
1
n ∑

q∈Q
C

2
2+d
q ≤ 1

n

(
∑

q∈Q
Cq

) 2
2+d

n
d

2+d =
( 1

n ∑
q∈Q

Cq

) 2
2+d

= (C̃Q)
2

2+d .

So, we only need to bound C̃Q.

We define rq := arg max0<r≤L
rd

Ld
n

|Q∩B∞(q,r)| for all q ∈ Q, Qi := {q ∈ Q | L
2i+1 < rq ≤ L

2i },

and A := {i ≥ 0 | i is an integer and |Qi| > 0}.

For any fixed i ∈ A, we use li := L
2i+1 as the side length of grid cell to partition the

region [0, L]d into si = ( L
li
)d = 2(i+1)d grid cells: Ω1. · · · , Ωsi where each Ωj is a closed

set, and define Qi,j := Qi ∩ Ωj. Then, |Qi ∩ B̄∞(q, li)| ≥ |Qi,j| for all q ∈ Qi,j where

B̄∞(q, li) := {q′ ∈ Rd| ‖q′ − q‖∞ ≤ li}, and we have

∑
q∈Qi

rd
q

Ld
1

|Qi ∩ B∞(q, rq)|
≤ ∑

q∈Q

Ld

2idLd
1

|Qi ∩ B∞(q, rq)|
≤ 1

2id ∑
q∈Qi

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id ∑

j∈[si ],|Qi,j|>0
∑

q∈Qi,j

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id ∑

j∈[si ],|Qi,j|>0
∑

q∈Qi,j

1
|Qi,j|

=
1

2id ∑
j∈[si ],|Qi,j|>0

|Qi,j|
|Qi,j|

≤ si

2id =
2(i+1)d

2id = 2d.

Then using the definitions of C̃Q and rq we have

C̃Q = ∑
q∈Q

max
0<r≤L

rd

Ld
1

|Q ∩ B∞(q, r)| = ∑
q∈Q

rd
q

Ld
1

|Q ∩ B∞(q, rq)|
= ∑

i∈A
∑

q∈Qi

rd
q

Ld
1

|Q ∩ B∞(q, r)|

≤ ∑
i∈A

∑
q∈Qi

rd
q

Ld
1

|Qi ∩ B∞(q, r)| ≤ ∑
i∈A

2d = 2d|A|.

We assert rq ≥ Ln−
1
d for all q ∈ Q. This is because for any r ∈ (0, Ln−

1
d ) we have

rd

Ld
n

|Q ∩ B∞(q, r)| ≤
Ld

nLd
n
1
= 1 ≤ Ld

Ld
n

|Q ∩ B∞(q, L)| ,

which implies the optimal rq ∈ [Ln−
1
d , L]. Moreover, since rq ≥ minq′∈Q, q′ 6=q ‖q− q′‖∞ ≥

η, we have rq ≥ max(Ln−
1
d , η) for all q ∈ Q. If i > min

(
log2

L
η , 1

d log2 n
)
, then L

2i <
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max(Ln−
1
d , η) ≤ rq, and from the definition of Qi and A we know i /∈ A, which implies

|A| ≤ 1 + min
(

log2
L
η , 1

d log2 n
)
. Hence we obtain C̃Q ≤ 2d+1 min

(
log2

L
η , 1

d log2 n
)

and

using CQ = (C̃Q)
2

2+d we prove the lemma.

Since fS1,S2 ∈ F(S(L), ρ), we know fS1,S2(q) ≤ dL2 for all q ∈ Q and 1
n ∑q′∈Q fS1,S2(q

′) ≥ ρ2,

so σ(q) ≤ dL2

ρ2 for all q ∈ Q. Thus, we can expand 1
|Q| ∑q∈Q σ(q) using Lemma 5.5 and factor

out CQ using Lemma 5.6 to immediately obtain the following theorem about the total

sensitivity of F(S(L), ρ).

Theorem 5.5. Suppose L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d and η = minq,q′∈Q, q 6=q′ ‖q−

q′‖∞. Then, we have

S(F(S(L), ρ)) ≤ SQ = O

(L
ρ

) 2d
2+d

min

(
log

L
η

, log n,
(

L
ρ

)2
) 2

2+d
 .

From Lemma 5.5 and Theorem 5.5, using [63][Lemma 2.1] we can obtain the following

theorem.

Theorem 5.6. Let L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d, S1, S2 ∈ S(L) and dQ(S1, S2) ≥ ρ.

Suppose σ(q) and SQ are defined in Lemma 5.5 and Theorem 5.5 respectively. Then for δ, ε ∈ (0, 1)

a σ-sensitive sampling of size N ≥ SQ
δε2 provides Q̃, a (ρ, ε, δ)-coreset; that is with probability at

least 1− δ, we have

(1− ε)dQ(S1, S2) ≤ dQ̃,W(S1, S2) ≤ (1 + ε)dQ(S1, S2).

If Q describes a continuous uniform distribution in [0, L]d (or sufficiently close to one, like

points on a grid), then there exists an absolute constant C > 0 such that Cq ≤ C for all q ∈ Q,

then in Lemma 5.5 σ(q) ≤ Cd
( L

ρ

) 2d
2+d for all q ∈ Q, and in Theorem 5.5 SQ ≤ Cd

( L
ρ

) 2d
2+d . So,

for uniform distribution, the sample size of Q in Theorem 5.6 is independent from the size

of Q, and for d = 2 the bound SQ = O(L/ρ) matches the lower bound in Lemma 5.4.

Corollary 5.1. If Q describes the continuous uniform distribution over [0, L]d, then the sample size

in Theorem 5.6 can be reduced to N = O
(( L

ρ

) 2d
2+d 1

δε2

)
.

Remark 5.2. To compute the upper bound of σ(q) in Lemma 5.5, we need to compute Cq which can

be obtained in O(n log n) time. For any fixed q ∈ Q, we sort Q \ {q} = {q1, · · · , qn−1} according
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to their l∞ distance from q, so that ‖q− qi‖∞ ≤ ‖q− qj‖∞ for any i < j. Then for i ∈ [n] we

compute rd
i

Ld
n
i , where ri = ‖q− qi‖∞ for = i ∈ [n− 1] and rn = L, and choose the maximum value

of rd
i

Ld
n
i as Cq.

5.4 Strong Coresets for the Distance Between Trajectories
In this section, we study the distance dQ defined on a subset of S(L): the collection of

k-piecewise linear curves, and use the framework in [16] to construct a strong approximation

for Q. We assume the multiset Q contains m distinct points q1, · · · , qm, where each point qi

appears mi times and ∑m
i=1 mi = n. So, in this section Q will be viewed as a a set {q1, · · · , qm}

(not a multiset) and each point q ∈ Q has a weight w(qi) =
mi
n .

Suppose Tk := {γ = 〈c0, · · · , ck〉 | ci ∈ Rd} is the collection of all piecewise-linear

curves with k line segments in Rd. For γ = 〈c0, · · · , ck〉 ∈ Tk, 〈c0, · · · , ck〉 is the se-

quence of k + 1 critical points of γ. The value dist(q, γ) = infp∈γ ‖p − q‖, and function

fγ1,γ2(q) = (dist(q, γ1)−dist(q, γ2))2 are defined as before. We now use weights w(qi) =
mi
n(

∑q∈Q w(q) = 1
)

and the resulting distance is dQ(γ1, γ2) =
(

∑q∈Q w(q) fγ1,γ2(q)
) 1

2 .

For L > ρ > 0, Q = {q1, · · · , qm} ⊂ Rd , we define

Xd
k(L, ρ) := {(γ1, γ2) ∈ Tk × Tk | γ1, γ2 ∈ S(L), dQ(γ1, γ2) ≥ ρ} .

We next consider the sensitivity adjusted weights w′(q) = σ(q)
SQ

w(q) and cost function

gγ1,γ2(q) = 1
σ(q)

fγ1,γ2 (q)
f̄γ1,γ2

. These use the general bounds for sensitivity in Lemma 5.5 and

Theorem 5.5, with as usual f̄γ1,γ2 = ∑q∈Q w(q) fγ1,γ2(q). These induce an adjusted range

space (Q,T′k,d) where each element is defined

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η, γ1, γ2 ∈ Xd
k(L, ρ)}.

Now to apply the strong coreset construction of Braverman et.al. [16][Theorem 5.5] we only

need to bound the shattering dimension of (Q,T′k,d).

Two recent results provide bounds on the VC-dimension of range spaces related to

trajectories. Given a range space (X,R) with VC-dimension ν and shattering dimension

s, it is known that s = O(ν log ν) and ν = O(s). So up to logarithmic factors these terms

are bounded by each other. First Driemel et.al. [34] shows VC-dimension for a ground

set of curves Xm of length m, with respect to metric balls around curves of length k, for

various distance between curves. The most relevant case is where m = 1 (so the ground
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set are points like Q), and the Hausdorff distance is considered, where the VC-dimension

in d = 2 is bounded O(k2 log(km)) = O(k2 log k) and is at least Ω(max{k, log m}) = Ω(k).

Second, Matheny et.al. [72] considered ground sets Xk of trajectories of length k, and ranges

defined by geometric shapes which may intersect those trajectories anywhere to include

them in a subset. The most relevant cases is when they consider disks, and show the

VC-dimension is at most O(d log k), and have a proof that implies it is at least Ω(log k); but

this puts the complexity k on the ground set not the query. More specifically, neither of

these cases directly imply the results for our intended range space, since ours involves a

pair of trajectories.

Lemma 5.7. The shattering dimension of range space (Q,T′k,d) is O(k3), for constant d.

Proof. Suppose (γ1, γ2) ∈ Xd
k(L, ρ) and η ≥ 0, where γ1 = 〈c1,0, · · · , c1,k〉 and γ2 =

〈c2,0, . . . , c2,k〉, then we can define the range Tγ1,γ2,η as

Tγ1,γ2,η :={q ∈ Q | w′(q)gγ1,γ2(q) ≤ η}

={q ∈ Q | w(q) fγ1,γ2(q) ≤ SQ f̄γ1,γ2 η}

={q ∈ Q | w(q)(dist(q, γ1)− dist(q, γ2))
2 ≤ SQ f̄γ1,γ2 η}.
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Figure 5.3: Illustration of the dist(q, sj) from point q to segment sj.

For a trajectory γ defined by critical points c0, c1, . . . , ck for j ∈ [k] define sj as the segment

between cj−1, cj and `j as the line extension of that segment. The distance between q and a

segment sj is illustrated in Figure 5.3 and defined

ξ j := dist(q, sj) =


dist(q, cj−1), if 〈cj − cj−1, q− cj−1〉 ≤ 0
dist(q, cj), if 〈cj−1 − cj, q− cj〉 ≤ 0
dist(q, `j), otherwise

.

Then dist(q, γ) = minj∈[k] ξ j. For trajectories γ1 and γ2, specify these segment distances as

ξ
(1)
i and ξ

(2)
i , respectively. Then the expression for Tγ1,γ2,η can be rewritten as



102

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η}

= {q ∈ Q | w(q)(min
j∈[k]

ξ
(1)
j −min

j∈[k]
ξ
(2)
j )2 ≤ SQ f̄γ1,γ2 η}

= ∪j1,j2∈[k]{q ∈ Q | ξ
(1)
j1
≤ ξ

(1)
j , ξ

(2)
j2
≤ ξ

(2)
j for all j ∈ [k], w(q)(ξ(1)j1

− ξ
(2)
j2

)2 ≤ SQ f̄γ1,γ2 η}

=
⋃

j1,j2∈[k]


(
∩j∈[k],j 6=j1 {q ∈ Q | ξ

(1)
j1
≤ ξ

(1)
j }

)
∩
(
∩j∈[k],j 6=j2 {q ∈ Q| ξ(2)j2

≤ ξ
(2)
j }

)
∩ {q ∈ Q |

√
w(q)(ξ(1)j1

− ξ
(2)
j2

) ≤ (SQ f̄γ1,γ2 η)
1
2 }

∩ {q ∈ Q |
√

w(q)(ξ(2)j2
− ξ

(1)
j1

) ≤ (SQ f̄γ1,γ2 η)
1
2 }

 .

This means set Tγ1,γ2,η can be decomposed as the union and intersection of O(k3) simply-

defined subsets of Q. Specifically looking at the last line, this can be seen as the union over

O(k2) sets (the outer union), and the first two lines are the intersection of O(k) sets, and the

last two lines inside the union are the intersection with one set each.

Next we argue that each of these O(k3) simply defined subsets of Q can be characterized

as an element of a range space. By standard combinatorics [11, 53] (and spelled out in

Lemma 5.2), the bound of the shattering dimension of the entire range space is O(k3) times

the shattering dimension of any of these simple ranges spaces.

To get this simple range space shattering dimension bound, we can use a similar lineariza-

tion method as presented in the proof of Lemma 5.3. For any simple range space R deter-

mined by the set decomposition of Tγ1,γ2,η , we can introduce new variables c0 ∈ R, z, c ∈ Rd′ ,

where z depends only on q, and c0, ci depend only on γ1, γ2 and r, and d′ only depends

on d. Here, Q is a fixed set and thus SQ is a constant. By introducing new variables we

can construct an injective map ϕ : Q 7→ Rd′ , s.t. ϕ(q) = z. There is also an injective map

from R to {{z ∈ ϕ(Q) | c0 + zTc ≤ 0} | c0 ∈ R, c ∈ Rd′}. Since the shattering dimension

of the range space (Rd′ ,Hd′), where Hd′ = {h is a halfspace in Rd′}, is O(d′), we have the

shattering dimension of(Q,R) is O(d′) ≤ Cd where Cd is a positive constant depending

only on d. Piecing this all together we obtain Cdk3 bound for the shattering dimension of

(Q,T′k,d).

Now, we can directly apply Lemma 5.7 and [16][Theorem 5.5] to get a (ρ, ε, δ)-strong

coreset for Xd
k(L, ρ).

Theorem 5.7. Let L > ρ > 0, Q ⊂ [0, L]d, and consider trajectory pairs Xd
k(L, ρ). Suppose σ(q)

and SQ are defined in Lemma 5.5 and Theorem 5.5 respectively. Then for δ, ε ∈ (0, 1) a σ-sensitive
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sampling of size N = O(
SQ
ε2 (k3 logS+ log 1

δ )) provides Q̃, a strong (ρ, ε, δ)-coreset; that is with

probability at least 1− δ, for all pairs γ1, γ2 ∈ Xd
k(L, ρ) we have

(1− ε)dQ(γ1, γ2) ≤ dQ̃,W(γ1, γ2) ≤ (1 + ε)dQ(γ1, γ2).

5.5 Trajectory Reconstruction
In Section 5.4, we use Q to convert a piecewise-linear curve γ to a vector vQ(γ) in R|Q|,

and in this section we study how to recover γ from Q and vQ(γ), and we only consider γ

in R2.

Suppose T := {γ = 〈c0, · · · , ck〉| ci ∈ R2, k ≥ 1} is the set of all piecewise-linear curves

in R2. Let Tτ, Tτ(Ω) and Gη be define in the same way as in Section 4.3. For completeness,

we relist two restrictions for trajectories in Tτ:

(R1) Each angle ∠[ci−1,ci ,ci+1] about an internal critical point ci is non-zero (i.e., in (0, π)).

(R2) Each critical point ci is τ-separated, that is the ball B(ci, τ) = {x ∈ R2 | ‖x− ci‖ ≤ τ}

only intersects the two adjacent segments si−1 and si of γ, or one adjacent segment for

end points (i.e., only the s1 for c0 and sk for ck).

Suppose η ≤ τ
32 , Q = Gη ∩ Ω = {q1, · · · , qn}, γ ∈ Tτ(Ω), vi = minp∈γ ‖qi − p‖ and

vQ(γ) = (v1, . . . , vn). We define some notations that are used in this section for the implied

circle Ci := {x ∈ R2| ‖x− qi‖ = vi}, the closed disk Bi := {x ∈ R2| ‖x− qi‖ ≤ vi}, and the

open disk Ḃi := {x ∈ R2| ‖x− qi‖ < vi} around each qi or radius vi. When the radius is

specified as r (with perhaps r 6= vi), then we, as follows, denote the associated circle Ci,r,

closed disk Bi,r, and open disk Ḃi,r around qi.

For Q, γ ∈ Tτ(Ω) and vQ(γ) we relist three observations in the proof of Theorem 4.6:

(O1) In any ball with radius less than τ, there is at most one critical point of γ; by (R2).

(O2) If a point moves along γ, then it can only stop or change direction at critical points.

(O3) For any qi ∈ Q, γ cannot go into Ḃi. Moreover, Ci must contain at least one point of γ,

and if this point is not a critical point, then γ must be tangent to Ci at this point.

The restriction (R2) only implies if there is a critical point of γ, then in its neighborhood γ

has at most two line segments. However, if there is no critical point in a region, then the
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shape of γ can be very complicated in this region, so we need to first identify the regions

that contain a critical point.

The entire algorithm is overviewed in Algorithm 5.2. For each critical point c ∈ γ, there

exists q ∈ Q such that dist(q, c) < η. So to recover γ, we first traverse {qi ∈ Q | vi < η}

and use ISCRITICAL(qi) (Algorithm 5.3) to solve the decision problem of if there is a critical

point in Bi,3η . Whenever there is a critical point in Bi,3η , we then use FINDCRITICAL(qi)

(Algorithm 5.4) to find it – collectively, this finds all critical points of γ. Finally, we use

DETERMINEORDER (Algorithm 5.5) to determine the order of all critical points of γ, which

recovers γ.

Algorithm 5.2 Recover γ ∈ Tτ(L) from Q and vQ(γ)

Initialize Qη := {qi ∈ Q | vi < η}, close set Qr := ∅, endpoints E = ∅ and critical points
A := ∅.
for each qi ∈ Qη do

if qi ∈ Qr or ISCRITICAL(qi)=FALSE then
continue

Let (c, S) := FINDCRITICAL(qi).
if |S| = 1 then

E := E ∪ {(c, S)}. // c is an endpoint of γ
Let A := A ∪ {(c, S)} and Qr := Qr ∪

(
Qη ∩ Bc,16η

)
. // aggregate critical points

return γ := DETERMINEORDER(E, A)

Existence of critical points.

In Algorithm 5.3, we consider the common tangent line of Ci and Cj for all qj in a

neighborhood of qi. If no common tangent line can go through Bi,3η without going into the

interior of any other circle centered in Bi,3η , then it implies there is a critical point of γ in

Bi,3η .

Algorithm 5.3 ISCRITICAL(qi): Determine the existence of critical point in Bi,3η

for each qj ∈ Qi,3η \ {qi} do
Let `i,j be a common tangent line of Ci and Cj.
if `i,j does not intersect with Ḃk for all qk ∈ Qi,3η \ {qi, qj} then

return FALSE

return TRUE // there must be a critical point in Bi,3η
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Figure 5.4: Left: l is tangent to Ci. Rotate l around Ci until it is tangent to some Cj. Center:
c is an endpoint of γ. Right: c is an internal critical point of γ. In center and right figures,
no tangent line of Ci can go through Bi,3η without intersecting with the pink curve.

Lemma 5.8. Suppose qi ∈ Q and vi < η. If ISCRITICAL(qi) (Algorithm 5.3) returns TRUE, then

there must be a critical point of γ in Bi,3η . Moreover, for any critical point c ∈ γ there exists some

qi ∈ Q such that vi < η and ISCRITICAL(qi) (Algorithm 5.3) returns TRUE for the input qi.

Proof. If Algorithm 5.3 returns TRUE, then no common tangent of Ci and Cj (qj ∈ Qi,3η) can

go through Bi,3η without intersecting with some Ḃk for qk ∈ Qi,3η . This implies no tangent

line of Ci can go through Bi,3η without intersecting with some Ḃk for qk ∈ Qi,3η . Otherwise,

as shown in Figure 5.4(Left), suppose tangent line ` can go through Bi,3η , then we can rotate

` around Ci to line `′ s.t. `′ is tangent to some Cj (qj ∈ Qi,3η) but does not intersect with any

Ḃk (qk ∈ Qi,3η), which leads to a contradiction. So, if there is no critical point on Ci then

(O3) implies one line segment of γ must be tangent to Ci, but Algorithm 5.3 checks that no

tangent line of Ci can go through Bi,3η and thus from (O2) we know γ must have a critical

point in Bi,3η .

If c ∈ γ is a critical point, then there are two possibilities: c is an endpoint of γ, or c is an

internal critical point of γ.

If c is an endpoint, let qi = (xi, yi) be the closest point in Q to c. Obviously we have

vi < η, and there is only one line segment s of γ in Bi,3η . We consider the points set

Si,2η := {(xi + k1η, yi + k2η) | ‖(k1, k2)‖∞ = 2}, i.e. the pink points in Figure 5.4(Center).

Without loss of generality, we assume qi5 = (xi + 2η, yi) and qi6 = (xi + 2η, yi + η) are the

two closest points in Si,2η to s, and their projection on s are pi5 and pi6 respectively (two

green points in Figure 5.4(Center)). Let qi1 = (xi + 2η, yi + 2η), qi2 = (xi − 2η, yi + 2η),
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qi3 = (xi− 2η, yi− 2η) and qi4 = (xi + 2η, yi− 2η) be the four pink corners. Since the radius

of Ci is vi < η, we know any tangent line of Ci must intersect with the piecewise-linear

curve 〈pi6 , qi6 , qi1 , qi2 , qi3 , qi4 , qi5 , pi5〉 before it passes completely through Bi,3η . However, the

curve 〈pi6 , qi6 , qi1 , qi2 , qi3 , qi4 , qi5 , pi5〉 is covered (except points pi6 and pi5) by open disks Ḃk

whose centers are in qk ∈ Si,2η ⊂ Qi,3η . So, no tangent line of Ci can go through Bi,3η without

intersecting with some Ḃk for qk ∈ Qi,3η .

If c is an internal critical point, then there are two line segments s1, s2 in Bi,3η . From

(R1) we know the angle between s1 and s2 is less than π, and we define Ω(s1, s2) := {p ∈

Bi,3η | p is outside the interior angle region formed by s1 and s2}. Let qi = (xi, yi) be the

closest point in Ω(s1, s2) to c, and Si,2η be defined in the same way as before. We have

vi < η. We consider the points set Si,2η ∩Ω(s1, s2), i.e. those pink points in Figure 5.4(Right).

Without loss of generality, we assume qi3 = (xi, yi + 2η) and qi4 = (xi, yi − 2η) are two

closest points in Si,2η ∩Ω(s1, s2) to s1 and s2 respectively, and their projection on s1 and

s2 are pi3 and pi4 respectively (two green points in Figure 5.4(Right)). In this setting, let

qi1 = (xi − 2η, yi + 2η) and qi2 = (xi − 2η, yi − 2η) be the corner points of Si,2η . Since the

radius of Ci is vi < η and the angle formed by s1 and s2 is less than π, we know any tangent

line of Ci must intersect with the piecewise-linear curve 〈pi4 , qi4 , qi2 , qi1 , qi3 , pi3〉 before go

through Bi,3η . However, the curve 〈pi4 , qi4 , qi2 , qi1 , qi3 , pi3〉 is covered by open disks Ḃk whose

centers are qk ∈ Si,2η ∩Ω(s1, s2) ⊂ Qi,3η . So, we know no tangent line of Ci can pass entirely

through Bi,3η without intersecting with some Ḃk for qk ∈ Qi,3η .

Thus, if c is a critical point of γ, Algorithm 5.3 will return TRUE for some qi ∈ Q with

vi < η.

Finding a critical point.

If there is a critical point c in Bi,3η , then using (R2) we know in the neighborhood of c, γ

has a particular pattern: it either has one line segment, or two line segments. We will need

two straightforward subfunctions:

• FCT (Find Common Tangents) takes in three grid points qi, qj, qk, and returns the all

common tangent lines of Cj and Ck which do not intersect the interior of disks Ḃl of an

disk associated with a point ql ∈ Qi,8η . This generates a feasible superset of possible

nearby line segments which may be part of γ.
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• MOS (Merge-Overlapping-Segments) takes a set of line segments, and returns a smaller

set, merging overlapping segments. This combines the just generated potential line

segments of γ.

Now in Algorithm 5.4, for each pair qj, qk ∈ Bi,8η , we first use FCS to find the common

tangent line of Cj, Ck that could be segments of γ, and then use MOS to reduce this set

down to a minimal set of possibilities Sm. By definition, there must be a critical point c, and

thus can be at most 2 actual segments of γ within Bi,8η , so we can then refine Sm. We first

check if c is an endpoint, in which case there must be only one valid segment. If not, then

there must be 2, and we need to consider all pairs in Sm. This check can be done by verifying

that every Ck for qk ∈ Qi,8η is tangent to the associated ray ray(s) (for an endpoint) or for the

associated rays ray(s) and ray(s′) for their associated segment pairs (for an internal critical

point).

Algorithm 5.4 FINDCRITICAL(qi): Find a critical point in Bi,3η

Let Qi,8η := Q ∩ Bi,8η and St := ∅.
for each pair qj, qk ∈ Qi,8η do

St := St ∪ FCT(qi, qj, qk)
Sm := MOS(St).
for each s ∈ Sm do

Extend s to ray ray(s) with endpoint c where it first enters Ḃk for some qk ∈ Qi,8η .
if for all qj ∈ Qi,8η either c ∈ Cj or Cj is tangent to ray(s) (ENDPOINT) then

return (c, {s}) // c is an endpoint of γ
for each pair s, s′ ∈ Sm do

Extend to lines `(s), `(s′).
if `(s) and `(s′) do not intersect in Bi,8η continue
Set c = `(s) ∩ `(s′), and define rays from c containing s and s′ as ray(s) and ray(s′).
if for all qk ∈ Qi,8η either c ∈ Ck or Ck is tangent to ray(s) or ray(s′) (INTERNALPOINT)
then

return (c, {s, s′}) // c is an internal critical point of γ

Lemma 5.9. Suppose c′ ∈ Bi,3η is a critical point of γ, and (c, S) is the output of FINDCRITICAL(qi)

(Algorithm 5.4), then c = c′. Moreover, |S| = 1 if and only if c is an endpoint of γ.

Proof. Since c′ ∈ Bi,3η and η < τ
32 , we have Bi,8η ⊂ B(c′, τ

2 ). So, from (R2) we know in Bi,8η ,

γ either has one line segment which means c′ is an endpoint, or has two line segments

which means c′ is an internal critical point.
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Figure 5.5: Left: {c} = Ci1 ∩ Ci2 ∩ Ci3 and Bi1 ⊂ Bi2 ∪ Bi3 . Center: the angle between s and
s′ is at most π

4 and {c} = Ci1 ∩ Ci2 ∩ Ci3 and Bi1 ⊂ Bi2 ∪ Bi3 . Right: Ci1 , Ci2 are tangent to s,
and Ci3 , Ci4 are tangent to s′, For each one of these four circles, any tangent line segment,
except s, s′, cannot be extended outside Bi,8η without intersecting with any other circle.

If c′ is an endpoint, then the line segment of γ must satisfy Condition ENDPOINT in

Algorithm 5.4. Moreover, if in Algorithm 5.4 s satisfies Condition ENDPOINT, then c must

be a critical point of γ. This is because, as show in Figure 5.5(Left), there exists three points

qi1 , qi2 , qi3 ∈ Qi,8η such that {c} = Ci1 ∩ Ci2 ∩ Ci3 and Bi1 ⊂ Bi2 ∪ Bi3 and the tangent of

Ci1 at c intersects with Ḃi2 ∪ Ḃi3 . This can be seen by observing there must exists points

qi2 , qi3 ∈ Qi,8η which are (i) on the opposite side from s of the perpendicular to s through c,

(ii) are a distance at least 3η from c, and (iii) within a distance of 3η from each other. This

implies there exists another point qi1 ∈ Q ∩ Bi2 ∩ Bi3 and with vi1 ≤ 2η. Hence Bi1 must be

contained in Bi2 ∪ Bi3 . Thus, (O3) implies c is a critical point of γ, and from (O1) we know

c = c′.

If c′ is an interior point, then as show in Figure 5.5(Center and Right), no line segment

can satisfy Condition ENDPOINT in Algorithm 5.4, so the algorithm will not stop before

the third loop. Then the two line segments of γ with c′ as the common endpoint can satisfy

Condition INTERNALPOINT. Moreover, if s and s′ satisfy Condition INTERNALPOINT, then

we will show c must be a critical point of γ. There are two possibilities: the angle between s

and s at most π
4 , or greater than π

4 .

If the angle is less than or equal to π
4 , then as shown in Figure 5.5(Center), there exists

three points qi1 , qi2 , qi3 ∈ Qi,8η such that {c} = Ci1 ∩ Ci2 ∩ Ci3 and Bi1 ⊂ Bi2 ∪ Bi3 and the

tangent of Ci1 at c intersects with Ḃi2 ∪ Ḃi3 . This follows by the same argument as when c is

an endpoint. So, (O3) implies c is a critical point of γ, and from (O1) we know c = c′.
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If the angle is greater than π
4 , then as shown in Figure 5.5(Right), there exists four points

qi1 , qi2 , qi3 , qi4 ∈ Qi,8η outside the interior angular region, and such that Ci1 , Ci2 are tangent

to s′, and Ci3 , Ci4 are tangent to s. Moreover, these four circles can be chosen to not intersect

with each other. Next we can argue that because the angle is sufficiently large, we can

block a path from c′ to outside of Bi,8η both inside the interior angular region, and outside

it. Outside this region, we can choose three points in qk1 , qk2 , qk3 ∈ Qi,8η of which Ck1 is

incident to ray(s), Ck2 is incident to c′, and Ck3 is incident to ray(s′); and that Ḃk1 and Ḃk2

intersect and Ḃk2 and Ḃk3 intersect. Similarly, inside the interior angular region, we can

chose two points qj1 , qj2 ∈ Qi,8η so Cj1 and Cj2 are incident to ray(s) and ray(s′), respectively,

and that Ḃj1 and Ḃj2 intersect. These two sets of points blocks any other straight path from

c′ (required by (O2)) from existing Bi,8η (required by (O1)) without entering the interior of

some Ḃk. And the first four points qi1 , qi2 , qi3 , qi4 ensures that this c′ is unique (by (O1)) and

c′ = c must be a critical point on γ.

Using Algorithm 5.3 and 5.4 we can find all critical points (E, A) with associated line

segments of γ, so the final step is to use function DETERMINEORDER(E, A) (Algorithm 5.5)

to determine their order, as we argue it will completely recover γ.

Algorithm 5.5 DETERMINEORDER(E, A): Determine the order of critical points
Choose any (c0, S0) ∈ E, let k = |A| − 1, A := A \ {(c0, S0)}, s1 ∈ S0 and γ := 〈c0〉.
for i = 1 to k do

Find closest c from (c, S) ∈ A to ci−1 such that c is on ray(si), and let A := A \ {(c, S)}.
Append ci = c to γ, and if i < k then let si+1 = s where s ∈ S is not parallel with si.

return γ

Theorem 5.8. Suppose Q = Gη ∩Ω, η ≤ τ
32 , and vQ(γ) is generated by Q and γ ∈ Tτ(Ω),

then Algorithm 5.2 can recover γ from vQ(γ) in O(|Q|+ k2) time, where k is the number of line

segments of γ.

Proof. From Lemmas 5.3 and 5.4 we know Algorithms 5.3 and 5.4 identify all critical points

of γ, and the line segments of γ associated with each critical point. So we only need to show

Algorithm 5.5 determines the correct order of critical points. This is because if a point moves

along γ it cannot stop or change direction until it hits a critical point (Observation (O2)),
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and when it hits a critical point it has to stop or change direction, otherwise it will violate

(R1) or (R2). So, Algorithm 5.5 starts from an endpoint and moves along the direction of line

segment associated with it, and changes the direction only after arriving at the next critical

point, until all critical points are visited. This gives the correct order of critical points of γ.

Moreover, the running time of Algorithm 5.3 and 5.4 are constant, since they both only

examine a constant number of points, circles, etc in each Bi,3η or Bi,8η . And these can be

retrieved using the implicit grid structure in constant time. Thus the for loop in Algorithm

5.2 takes O(|Q|) time. The final Algorithm 5.5 to recover the order takes O(k2) time, since a

constant fraction of steps need to check a constant fraction of all critical points in A. So, the

total running time of this algorithm is O(|Q|+ k2).



CHAPTER 6

CONCLUSION

In this dissertation, we mainly study how to analyze and summarize the uncertain data

points, how to sketch lines, trajectories and other geometric shapes, and the application

of this sketched representation. We analyze the uncertain data by studying the robust

estimators, especially the median, on the data set. We design an efficient deterministic

algorithm to construct ε-approximate coreset for Tukey median and geometric median on

a set of uncertain data points in high dimensional space. Moreover, for robust estimators

associated with bounded VC-dimension range spaces in a general metric space, we design a

random algorithm to approximate them on uncertain data. We also argue that although we

can use such distributions to calculate a single-point representation of these distributions, it

is not very stable to the input distributions, and serves as a poor representation when the

true scenario is multi-modal; hence further motivating our distributional approach.

Moreover, for robust estimators, we give a formal definition for break down point and

study the robustness of composite estimators. We show the composition of two or more

estimators is usually less robust than each individual estimator, and give the condition under

which the breakdown point of the composite estimator is the product of the breakdown

points of the individual estimators. This result can be applied in understanding complicated

data analysis pipelines and provide worst case guarantees.

Another contribution of this work is a vectorized representations based on landmarks for

geometric objects. Using this representation, we introduce a new family of landmark-based

distances dQ for lines, hyperplanes and general shapes. These distances have nice math-

ematical properties, are easily to compute, and can be applied in trajectory clustering

and classification, where they demonstrate a strong competitiveness and advantages

against other distances. Moreover, when the landmark set Q is very large, we can use

sensitivity sampling method to sample a small subset from Q to approximate dQ for pairs
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of general geometric objects, and for hyperplanes and trajectories we can construct a strong

approximation of Q and bound the sample size. For trajectories from a mildly restricted

family, we design an algorithm to exactly recover them from landmarks and their vectorized

representations. We believe more interesting properties and applications of this vectorized

representation and landmark-based distance are worthy of study.



APPENDIX A

THE APPENDIX OF CHAPTER 2

A.1 The Size of T̂ Based on ˆcost

For a given positive number ε and a set of uncertain points P = {P1, · · · , Pn} where

Pi = {pi,1, · · · , pi,k} ⊂ R, i ∈ [n], if we define ˆcost(x) = 1
n ∑n

i=1 min1≤j≤k |x− pi,j| and try to

find a set T̂ such that for any Q b P , there exists x ∈ T̂ s.t. |x−mQ| ≤ ε ˆcost(mQ), then for

some fixed ε > 0, the size of T̂ may satisfy |T̂| = Ω(nk).

In fact, for this data set: ε = 1
4 , k = 2, pi,1 = 1− 1

2i−1 and pi,2 = 1 for all i ∈ [n], we have

ˆcost(pi,1) =
1
n

(
i−1

∑
j=1

(pj,2 − pi,1) +
n

∑
j=i+1

(pj,1 − pi,1)

)

=
1
n

(
i−1

∑
j=1

(
1− (1− 1

2i−1 )
)
+

n

∑
j=i+1

(
1− 1

2j−1 − (1− 1
2i−1 )

))

=
1

2i−1 +
1
n
( 1

2n−1 − 2
1

2i−1

)
<

1
2i−1 ,

which implies

ε ˆcost(pi,1) + ε ˆcost(pi+1,1) <
1
4

1
2i−1 +

1
4

1
2i <

1
2i = pi+1,1 − pi,1.

So we have [pi,1− ε ˆcost(pi,1), pi,1 + ε ˆcost(pi,1)]∩ [pi+1,1− ε ˆcost(pi+1,1), pi+1,1 + ε ˆcost(pi+1,1)] =

∅ for i ∈ [n], which implies |T̂| ≥ n.

Now, if we consider n = 1, 2, 3, · · · , k = 2, 4, 6, · · · and pi,j =
1
2 (3j− 1)− 1

2i−1 , pi,j+1 =

1
2 (3j− 1) for j = 1, 3, 5, · · · k− 1 and i ∈ [n], then is easy to check |T̂| ≥ 1

2 kn. Therefore, we

have |T̂| = Ω(nk).

A.2 A Property of Geometric Median
To prove the result of Lemma 2.1, we need the following property of geometric median.

Although this result is stated on Wikipedia, we have not found a proof in the literature, so

we present it here for completeness.
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Lemma A.1. Suppose p is the geometric median of Q = {q1, · · · , qn} ⊂ Rd, and (x1, · · · , xd)

and (xi,1, · · · , xi,d) are the coordinates of p and qi respectively, then we have |∑qi∈Q\{p}
xj−xi,j
‖q−p‖ | ≤

|Q ∩ {p}| for any j ∈ [d].

Proof. We introduce the notation f (y) = f1(y) + f2(y) where f1(y) = ∑q∈Q\{p} ‖q− y‖ and

f2(y) = ∑q∈Q∩{p} ‖q− y‖. Suppose vj ∈ Rd is a vector such that its j-th component is one

and all other components are zero. Since p is the global minimum point of f , for any j ∈ [d]

there exists δj > 0 such that

f (p + εvj) ≥ f (p) and f (p− εvj) ≥ f (p), ∀ ε ∈ [0, δj),

which implies

f1(p + εvj) + f2(p + εvj) ≥ f1(p) + f2(p), ∀ ε ∈ [0, δj), (A.1)

and

f1(p− εvj) + f2(p− εvj) ≥ f1(p) + f2(p), ∀ ε ∈ [0, δj). (A.2)

Since f2(p) = 0, from (A.1) we have 1
ε ( f1(p + εvj)− f1(p)) ≥ − 1

ε f2(p + εvj) = −|Q ∩

{p}|. Letting ε→ 0+, we obtain ∂ f1(p)
∂xj
≥ −|Q ∩ {p}| which implies

∑
qi∈Q\{p}

xj − xi,j

‖q− p‖ ≥ −|Q ∩ {p}|. (A.3)

Similarly, using (A.2) we can obtain

∑
qi∈Q\{p}

xj − xi,j

‖q− p‖ ≤ |Q ∩ {p}|. (A.4)

Thus, conclusion of this lemma is obtained from (A.3) and (A.4).

The bound in Lemma A.1 is tight. For example, we consider Q = {(−2, 0), (−1, 0),

(0, 0), (1, 0), (−1, 1), (−1,−1)} ⊂ R2, then p = (−1, 0) is the geometric median of Q and

|∑q=(xq,yq)∈Q\{p}
−1−xq
‖q−p‖ | = 1 = |Q ∩ p|.
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THE APPENDIX OF CHAPTER 4

B.1 Metric Properties for dQ on Trajectories
In this section, we prove Theorem 4.6 for dQ. We first introduce the following lemma.

Lemma B.1. As shown in Figure B.1, suppose the line `2 passes through q1 and c, `1 is perpendicular

to `2 at q1, and c is on the right side of `1. If q2 is outside the circle C(q1, ‖q1 − c‖), on the left

side of `2 and above `2 (the yellow-shaded region)), and q3 is outside the circle C(q1, ‖q1 − c‖),

on the left side of `2 and below `2 (the pink-shaded region), then we have B(q1, ‖q1 − c‖) ⊂

B(q2, ‖q2 − c‖) ∪ B(q2, ‖q2 − c‖).

Proof. We use q1 as the origin, `2 as the x-axis and `1 as the y-axis to build a coordinate

system, and assume the coordinates of c, q2 and q3 are (r, 0), (x2, y2) and (x3, y3) respectively.

So, we have x2
2 + y2

2 > r2, x2
2 + y2

2 > r2 and x2, x3 < 0, y2 > 0 and y3 < 0. Our goal is to

prove if x2 + y2 ≤ r2 then either

(x− x2)
2 + (y− y2)

2 ≤ (x2 − r)2 + y2
2, (B.1)

or

(x− x3)
2 + (y− y3)

2 ≤ (x3 − r)2 + y2
3. (B.2)

If y ≥ 0, then from x ≤ r, x2 < 0, y2 > 0 we have (r− x)x2 ≤ yy2, which is equivalent to

−2xx2 − 2yy2 ≤ −2rx2. Since x2 + y2 ≤ r2, we obtain x2 − 2xx2 + y2 − 2yy2 ≤ −2rx2 + r2,

which implies (B.1) is true. Similarly, if y ≤ 0 then we can show (B.2) is true. Thus, the

proof is completed.

Now, we can give the proof of Theorem 4.6 for dQ.
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Figure B.1: Left: `1 ⊥ `2 and B(q1, ‖q1 − c‖) ⊂ B(q2, ‖q2 − c‖) ∪ B(q3, ‖q3 − c‖). Right: ci
is a critical point of γ(1) and B(q1, ‖q1 − ci‖) ⊂ B(q2, ‖q2 − ci‖) ∪ B(q3, ‖q3 − ci‖).
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Figure B.2: Left: ci is a critical point of γ(1) and B(q1, ‖q1 − ci‖) ⊂ B(q2, ‖q2 −
ci‖)∪B(q3, ‖q3 − ci‖). Right: B(q1, ‖q1 − p1‖), B(q2, ‖q2 − p2‖) are tangent to s, and
B(q3, ‖q3 − p3‖), B(q4, ‖q4 − p4‖) are tangent to s′. For each one of these four circles, any
tangent line segment, except s, s′ cannot be extended outside B(ci, τ

2 ) without intersecting
with any other circle.

Proof. Suppose dQ(γ
(1), γ(2)) = 0, we only need to prove γ(1) = γ(2). We draw a ball

B(ci, 1
2 τ) at a critical point ci (1 ≤ i ≤ k− 1) of γ(1). There are three possibilities.

Case 1. As shown in Figure B.1(Right), ci is an endpoint of γ(1), and B(ci, τ
2 ) contains
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one line segment s of γ(1). In this case, we assume s is part of line `, and draw a line

`⊥ through ci which is perpendicular to `. Then, we choose a point q1 from Q ∩ B(ci, τ
2 ),

which is on the left side of `⊥, close to ` and satisfies ‖q1 − c‖ < 2η. Suppose `2 is the line

through q1 and ci, and `1 is perpendicular to `2 at q1. We choose a point q2 ∈ Q ∩ B(ci, τ
2 )

from the region that is outside B(q1, ‖q1 − ci‖), on the left side of `1 and `⊥, and above `2

(the yellow-shaded region), and choose a point q3 ∈ Q ∩ B(ci, τ
2 ) from the region that is

outside B(q1, ‖q1− ci‖), on the left side of `1 and `⊥, and below `2 (the pink-shaded region).

Obviously, {ci} = C(q1, ‖q1 − ci‖) ∩ C(q2, ‖q2 − ci‖) ∩ C(q3, ‖q3 − ci‖), and from Lemma

B.1, we know B(q1, ‖q1 − ci‖) ⊂ B(q2, ‖q2 − ci‖) ∪ B(q3, ‖q3 − ci‖). So, ci must be on γ(2).

Since the tangent line of C(q1, ‖q1 − ci‖) at ci goes into the interior of B(q2, ‖q2 − ci‖) and

B(q3, ‖q3 − ci‖), from (O3) we know ci must be a critical point of γ(2). There also exists

q4 ∈ B(ci, τ
2 ) and p4 ∈ s such that B(q4, ‖q4− p4‖) is tangent to s at point p4. From (O3) and

(O1) we know the tangent line segment of C(q4, ‖q4− p4‖) through ci must be a part of γ(2),

and this tangent line segment must be s because the other tangent line segment through ci

intersects with other circles. Thus, s is a part of γ(2).

Case 2. As shown in Figure B.2(Left), ci is an internal of γ(1), B(ci, τ
2 ) contains two line

segments s, s′ of γ(1), and the angle between s, s′ is at most π
4 . In this case, we assume ˜̀

is the line bisecting the angle formed by s and s′, and draw two lines `⊥ and `′⊥ which is

perpendicular to s and s′ at ci respectively. Then, we choose a point q1 from Q ∩ B(ci, τ
2 ),

which is on the left side of `⊥ and `′⊥, close to ˜̀ and satisfies ‖q1− c‖ < 2η. Suppose `2 is the

line through q1 and ci, and `1 is perpendicular to `2 at q1. We choose a point q2 ∈ Q∩ B(ci, τ
2 )

from the region that is outside B(q1, ‖q1 − ci‖), on the left side of `1, `⊥ and `′⊥ and above

`2 (the yellow-shaded region), and choose a point q3 ∈ Q ∩ B(ci, τ
2 ) from the region that

is outside B(q1, ‖q1 − ci‖), on the left side of `1, `⊥ and `′⊥ and below `2 (the pink-shaded

region). Obviously, {ci} = C(q1, ‖q1 − ci‖) ∩ C(q2, ‖q2 − ci‖) ∩ C(q3, ‖q3 − ci‖), and from

Lemma B.1, we know B(q1, ‖q1 − ci‖) ⊂ B(q2, ‖q2 − ci‖) ∪ B(q3, ‖q3 − ci‖). So, ci must be

on γ(2). Since the tangent line of C(q1, ‖q1− ci‖) at ci goes into the interior of B(q2, ‖q2− ci‖)

and B(q3, ‖q3 − ci‖), from (O3) we know ci must be a critical point of γ(2). There also exists

q4, q5 ∈ B(ci, τ
2 ) and p4 ∈ s, p5 ∈ s′ such that B(q4, ‖q4− p4‖) is tangent to s at point p4, and

B(q5, ‖q5 − p5‖) is tangent to s′ at point p5. Using the similar argument in Case 1,we can

show s and s′ both belong to γ(2).
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Case 3. As shown in Figure B.2(Right), ci is an internal of γ(1), B(ci, τ
2 ) contains two

line segments s, s′ of γ(1), and the angle between s, s′ is greater than π
4 . In this case, we

choose four points q1, q2, q3, q4 from Q ∩ B(ci, τ
2 ) such that the circles with center q1, q2 are

tangent to s at p1, p2, and the circles with center q3, q4 are tangent to s′ at p3, p4. Moreover,

we can require ‖qj − cj‖ ≤ η for 1 ≤ j ≤ 4 and these four circles do not intersect with

each other. Then, we can choose three points q5, q6, q7 outside the angle region formed

by s and s′, and two points q8, q9 inside this angle region. Using Cj′ (5 ≤ j′ ≤ 9) to

represent the circles corresponding to these five points, we can choose these points close

to the boundary of B(ci, τ
2 ), and require C6 contains ci, C5, C9 are tangent to s, C7, C8 are

tangent to s′, and C5 ∩ C6 6= ∅, C6 ∩ C7 6= ∅, and C8 ∩ C9 6= ∅. Thus, any tangent line

segment of C(qj, ‖qj − pj‖) (1 ≤ j ≤ 4), except s, s′, can not be extended outside B(ci, τ
2 )

without intersecting with ∪5≤j′≤9Cj′ . From (O3) and (O1) we know γ(2) must be tangent

to C(q1, ‖q1 − p1‖) or C(q2, ‖q2 − p2‖), and without loss of generality we assume a tangent

line segment of C(q1, ‖q1 − p1‖) is a part of γ(2). Since (O1), (O2) imply this tangent line

segment must be extended outside B(ci, τ
2 ) without going into the interior of any other

circle, we know s ∩ B(q1, δ) is a part of γ(2) for some δ > 0. Similarly, we have s ∩ B(q3, δ)

is a part of γ(2) for some δ > 0. Since there is at most one critical point of γ(2) in B(ci, τ
2 ),

from (O2) we know ci must be a critical point of γ(2). Thus, s and s′ both belong to γ(2).

From the discussion of above three cases, we know γ(2) overlaps with γ(1) in the ball

B(ci, τ
2 ), and a similar argument leads to γ(1) = γ(2).

B.2 Common Distance Measurements for Trajectories
In this section, we briefly introduce the definition of Euclidian distance, discrete Frechet

distance and dynamic time warping distance. Suppose γ(1) and γ(2) are two trajectories in

R2 with critical points c(1)0 , c(1)1 , ...c(1)k1
and c(2)0 , c(2)1 , ...c(2)k2

respectively.

Euclidean Distance. It requires k1 = k2 and takes the average Euclidean distance between

corresponding critical points.

Eu(γ(1), γ(2)) =
1
k1

∑k1

i=0

∥∥c(1)i − c(2)i

∥∥.

Discrete Frechet Distance. It measures the similarity between two piecewise-linear curves
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by taking into account their location and time ordering. Here, we introduce its definition in

[38]. Suppose A = {a0, a1, · · · , am} ⊂ {0, 1, · · · , k1}, B = {b0, b1, . . . , bm} ⊂ {0, 1, · · · , k2},

and a0 = b0 = 0, am = k1, bm = k2. If for each i ∈ {0, · · · , k1 − 1} we have ai+1 = ai or

ai+1 = ai + 1, and for each i ∈ {0, · · · , k2 − 1}, we have bi+1 = bi or bi+1 = bi + 1, then

we say A and B can determine a coupling L between γ(1) and γ(2), which is a sequence(
c(1)a0 , c(2)b0

)
,
(
c(1)a1 , c(2)b1

)
, · · · ,

(
c(1)am , c(2)bm

)
. We define the length of L as ‖L‖ = max0≤i≤m

∥∥c(1)ai −

c(2)bi

∥∥. The discrete Frechet distance is defined as:

dF(γ(1), γ(2)) = min{‖L‖| L is a a coupling between γ(1) and γ(2)}.

Dynamic Time Warping (DTW) Distance. DTW [93] is an algorithm to find the optimal

matching between the critical points of two trajectories, and it does not require k1 = k2.

It is defined and computed by the recursion formula: D(i, j) =
∥∥c(1)i − c(2)j

∥∥+ min
(

D(i−

1, j), D(i− 1, j− 1), D(i, j− 1)
)
, where D(0, j) = ‖c(1)0 − c(2)j ‖, D(i, 0) = ‖c(1)i − c(2)0 ‖, and

DTW distance between γ(1) and γ(2) is defined as DTW(γ(1), γ(2)) = D(k1, k2).

Discrete Hausdorff Distance. It measure the spatial similarity between two trajectories

[71]:

dH(γ(1), γ(2)) = max(d(γ(1), γ(2)), d(γ(2), γ(1)))

where d(γ(1), γ(2)) = max0≤i≤k1 min0≤j≤k2 ‖c
(1)
i − c(2)j ‖.

Longest Common Subsequence Distance. It finds the alignment between two sequences

that maximize the length of common subsequence. Let Head(γ(1)) be the first k1− 1 critical

points of γ(1), and Head(γ(2)) be the first k2 − 1 critical points of γ(2). Given ε, δ > 0, the

lcssε,δ(γ
(1), γ(2)) is defined as follows [95]:

lcssε,δ(γ
(1), γ(2)) =


0, if γ(1) or γ(2) is empty

1 + lcssε,δ(γ
(1), γ(2)), if ‖c(1)k1

− c(2)k2
‖ < ε and |k1 − k2| < δ

max
(
lcssε,δ(Head(γ(1)), γ(2)), lcssε,δ(γ

(1), Head(γ(2)))
)
, otherwise

LCSS distance is defined as LCSSε,δ(γ
(1), γ(2)) = 1− lcssε,δ(γ

(1),γ(2))
max(k1,k2)

.

Edit Distance for Real Sequences. It is similar to the edit distance on strings, and seeking

the minimum number of edit operations required to change one trajectory to another
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[23]. For EDR with ε > 0, γ(1) and γ(2) are considered to be the same if k1 = k2 and

‖c(1)i − c(2)i ‖ < ε.

Locality Sensitive Hashing Distance. Given a point set Q ⊂ R2, and r > 0, It considers the

disks with centers in Q and radius equal to r. For LSH1Q, each trajectory is converted to a

bit vector of length |Q|, and each bit represents the intersection of the trajectory with a disk.

and uses Hamming distance of two bit vectors to define the distance between two curves.

For LSH2Q, each trajectories is converted to a sequence representing the order in which the

trajectory enters and exits the disks, and uses edit distance of two sequence to define the

distance between two curves [13].

B.3 The error of LCSS, EDR and LSH with Other Parameters in
Section 4.4

In the experiment of Section 4.4, the computation of LCSS, EDR, LSH1Q and LSH2Q

involves some parameters, and we only give the result of best parameter for these distances.

In this section, we describe the change of error statistics for these distances with different

parameters, and show how we obtain the best parameter in each experiment. We use bold

font to mark the smallest mean error and the corresponding median and standard deviation

(SD). In practice, a user would either guess a set of parameters which may be suboptimal,

or they need to do an expensive parameter search (on a held out set) to choose parameters,

which could greatly increase the runtime. In machine learning, the best parameter is usually

chosen through cross-validation only on training data. However, for simplicity, in this work

we directly choose the parameter that can yield the best final result of the experiment, which

Table B.1: Mean error of LCSS in Table 4.1 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.1115 0.0822 0.0856 0.0969 0.1105 0.1297 0.1532 0.1749 0.1902 0.2003 0.2087 0.2182
2 0.0940 0.0785 0.0840 0.0954 0.1085 0.1278 0.1511 0.1731 0.1879 0.1987 0.2064 0.2164
3 0.0901 0.0769 0.0833 0.0946 0.1078 0.1271 0.1503 0.1718 0.1865 0.1977 0.2057 0.2160
4 0.0860 0.0755 0.0823 0.0936 0.1077 0.1267 0.1496 0.1707 0.1861 0.1966 0.2050 0.2151
5 0.0846 0.0745 0.0819 0.0935 0.1079 0.1269 0.1495 0.1704 0.1857 0.1961 0.2046 0.2150
6 0.0826 0.0739 0.0821 0.0939 0.1079 0.1265 0.1494 0.1706 0.1855 0.1958 0.2045 0.2149
7 0.0816 0.0734 0.0823 0.0937 0.1078 0.1261 0.1490 0.1702 0.1853 0.1957 0.2043 0.2147
8 0.0802 0.0729 0.0817 0.0935 0.1075 0.1261 0.1489 0.1702 0.1852 0.1957 0.2041 0.2145
9 0.0795 0.0721 0.0815 0.0933 0.1075 0.1262 0.1490 0.1699 0.1849 0.1955 0.2039 0.2142

10 0.0783 0.07140.07140.0714 0.0811 0.0930 0.1072 0.1258 0.1485 0.1695 0.1845 0.1951 0.2037 0.2140
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involves the test data. Obviously, this is a help for distances that need parameter tuning.

Table B.2: Median error of LCSS in Table 4.1 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.0869 0.0577 0.0589 0.0652 0.0741 0.0889 0.1029 0.1143 0.1240 0.1325 0.1387 0.1474
2 0.0707 0.0536 0.0576 0.0643 0.0722 0.0868 0.1000 0.1118 0.1222 0.1304 0.1360 0.1458
3 0.0667 0.0531 0.0571 0.0640 0.0720 0.0867 0.1000 0.1103 0.1200 0.1297 0.1357 0.1464
4 0.0625 0.0526 0.0565 0.0640 0.0720 0.0864 0.1000 0.1094 0.1200 0.1278 0.1353 0.1449
5 0.0608 0.0524 0.0564 0.0643 0.0728 0.0865 0.1000 0.1087 0.1194 0.1274 0.1357 0.1449
6 0.0590 0.0516 0.0567 0.0649 0.0729 0.0857 0.1000 0.1088 0.1189 0.1267 0.1353 0.1449
7 0.0583 0.0512 0.0571 0.0647 0.0728 0.0857 0.0987 0.1088 0.1187 0.1267 0.1353 0.1446
8 0.0571 0.0506 0.0568 0.0646 0.0730 0.0857 0.0984 0.1083 0.1187 0.1266 0.1346 0.1444
9 0.0566 0.0500 0.0564 0.0645 0.0731 0.0857 0.0984 0.1079 0.1182 0.1261 0.1340 0.1444

10 0.0556 0.05000.05000.0500 0.0563 0.0643 0.0728 0.0850 0.0976 0.1076 0.1179 0.1256 0.1336 0.1440

Table B.3: Error standard deviation of LCSS in Table 4.1 with different parameters.

δ

SD ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.0930 0.0839 0.0879 0.0994 0.1129 0.1273 0.1484 0.1673 0.1775 0.1834 0.1871 0.1916
2 0.0857 0.0823 0.0866 0.0979 0.1109 0.1267 0.1477 0.1660 0.1764 0.1830 0.1867 0.1911
3 0.0846 0.0797 0.0861 0.0969 0.1102 0.1263 0.1471 0.1655 0.1760 0.1826 0.1865 0.1909
4 0.0826 0.0773 0.0847 0.0957 0.1098 0.1259 0.1469 0.1653 0.1760 0.1822 0.1861 0.1904
5 0.0822 0.0764 0.0845 0.0953 0.1097 0.1258 0.1467 0.1652 0.1759 0.1821 0.1860 0.1904
6 0.0809 0.0759 0.0843 0.0951 0.1096 0.1258 0.1466 0.1652 0.1758 0.1822 0.1861 0.1905
7 0.0808 0.0757 0.0844 0.0948 0.1095 0.1256 0.1464 0.1650 0.1756 0.1820 0.1860 0.1905
8 0.0793 0.0751 0.0838 0.0948 0.1094 0.1255 0.1465 0.1650 0.1755 0.1821 0.1861 0.1906
9 0.0792 0.0746 0.0838 0.0946 0.1094 0.1255 0.1465 0.1651 0.1756 0.1821 0.1861 0.1906

10 0.0777 0.07380.07380.0738 0.0834 0.0943 0.1092 0.1254 0.1464 0.1651 0.1754 0.1821 0.1861 0.1906

Table B.4: Classification Error of EDR in Table 4.1 with different parameters.

ε 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
mean 0.1070 0.08020.08020.0802 0.0846 0.0957 0.1096 0.1289 0.1521 0.1744 0.1894 0.1997 0.2078 0.2175

median 0.0833 0.05540.05540.0554 0.0581 0.0640 0.0731 0.0875 0.1009 0.1139 0.1229 0.1319 0.1378 0.1462
SD 0.0918 0.08350.08350.0835 0.0876 0.0990 0.1125 0.1272 0.1482 0.1671 0.1773 0.1834 0.1872 0.1916
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Table B.5: Classification Error of LSH1Q and LSH2Q in Table 4.1 with different parameters.

r 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean 0.4145 0.3792 0.3143 0.2645 0.2197 0.1374 0.12900.12900.1290 0.1501 0.1487 0.1774 0.1680 0.1633

LSH1Q1 median 0.3913 0.3500 0.2693 0.2121 0.1667 0.1000 0.09490.09490.0949 0.1114 0.1046 0.1133 0.1154 0.1179
SD 0.2481 0.2303 0.2116 0.2010 0.1774 0.1236 0.11300.11300.1130 0.1297 0.1328 0.1691 0.1523 0.1440

mean 0.4161 0.3873 0.3449 0.3043 0.2798 0.2637 0.2574 0.2494 0.2445 0.2415 0.24090.24090.2409 0.2426
LSH2Q1 median 0.3919 0.3644 0.3154 0.2605 0.2333 0.2281 0.2255 0.2275 0.2216 0.2195 0.21820.21820.2182 0.2191

SD 0.2492 0.2304 0.2137 0.2013 0.1952 0.1736 0.1647 0.1496 0.1483 0.1450 0.14500.14500.1450 0.1467

Table B.6: Classification Error of LSH1Q and LSH2Q in Table 4.4 with different parameters.

r 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean 0.4113 0.3827 0.3239 0.2615 0.2303 0.2139 0.1830 0.1339 0.1151 0.1173 0.11220.11220.1122 0.1223

LSH1Q2 median 0.3862 0.3448 0.2835 0.2079 0.1650 0.1429 0.1169 0.0958 0.0884 0.0875 0.08600.08600.0860 0.0923
SD 0.2532 0.2482 0.2256 0.1969 0.1952 0.1930 0.1750 0.1228 0.1008 0.1053 0.09640.09640.0964 0.1040

mean 0.3653 0.2740 0.2107 0.1766 0.1894 0.1571 0.1457 0.1399 0.1275 0.1409 0.11900.11900.1190 0.1217
LSH1Q3 median 0.3333 0.2304 0.1639 0.1312 0.1299 0.1040 0.1000 0.0969 0.0889 0.0917 0.08610.08610.0861 0.0909

SD 0.2196 0.1930 0.1666 0.1514 0.1696 0.1534 0.1389 0.1333 0.1216 0.1395 0.11100.11100.1110 0.1066
mean 0.4150 0.3968 0.3482 0.3076 0.2860 0.2690 0.2516 0.2437 0.2335 0.2293 0.22780.22780.2278 0.2278

LSH2Q2 median 0.3889 0.3644 0.3064 0.2683 0.2467 0.2325 0.2190 0.2105 0.2060 0.2048 0.20270.20270.2027 0.2050
SD 0.2529 0.2484 0.2290 0.1984 0.1842 0.1757 0.1636 0.1585 0.1483 0.1427 0.14080.14080.1408 0.1396

mean 0.3748 0.3109 0.2701 0.2471 0.2324 0.2204 0.2129 0.20700.20700.2070 0.2133 0.2099 0.2089 0.2081
LSH2Q3 median 0.3424 0.2819 0.2345 0.2136 0.2083 0.2000 0.1921 0.18580.18580.1858 0.1935 0.1896 0.1893 0.1897

SD 0.2262 0.1895 0.1694 0.1581 0.1409 0.1340 0.1280 0.12560.12560.1256 0.1269 0.1254 0.1244 0.1215

Table B.7: Mean error of LCSS in Table 4.6 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.2761 0.2956 0.2634 0.2676 0.2839 0.3046 0.3049 0.3147 0.3256 0.3459 0.3527 0.3582
2 0.3123 0.2761 0.2718 0.2647 0.2866 0.3148 0.3112 0.3160 0.3267 0.3458 0.3552 0.3598
3 0.3116 0.2905 0.2685 0.24480.24480.2448 0.2941 0.3350 0.3129 0.3160 0.3267 0.3458 0.3542 0.3598
4 0.3112 0.2911 0.2552 0.2556 0.2937 0.3347 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
5 0.2823 0.2919 0.2680 0.2656 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
6 0.2883 0.2904 0.2691 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3596
7 0.2931 0.2887 0.2645 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
8 0.2952 0.2828 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598

19 0.2946 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
10 0.2934 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
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Table B.8: Median error of LCSS in Table 4.6 with different parameters.

δ

median ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.2778 0.3056 0.2500 0.2778 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
2 0.3056 0.2778 0.2778 0.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
3 0.3056 0.2778 0.2778 0.25000.25000.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
4 0.3056 0.2778 0.2500 0.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
5 0.2778 0.2778 0.2778 0.2500 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
6 0.2778 0.2778 0.2778 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
7 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
8 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
9 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611

10 0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611

Table B.9: Error standard deviation of LCSS in Table 4.6 with different parameters.

δ

SD ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.0543 0.0612 0.0618 0.0637 0.0597 0.0587 0.0502 0.0356 0.0277 0.0188 0.0127 0.0168
2 0.0582 0.0593 0.0619 0.0618 0.0597 0.0619 0.0507 0.0351 0.0272 0.0187 0.0149 0.0175
3 0.0545 0.0589 0.0618 0.06050.06050.0605 0.0608 0.0617 0.0504 0.0351 0.0272 0.0187 0.0139 0.0175
4 0.0546 0.0603 0.0592 0.0606 0.0599 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
5 0.0558 0.0588 0.0612 0.0621 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
6 0.0542 0.0572 0.0602 0.0628 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
7 0.0541 0.0581 0.0592 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
8 0.0544 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
9 0.0541 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175

10 0.0540 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175

Table B.10: Classification error of EDR in Table 4.6 with different parameters.

ε 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
mean 0.2748 0.2932 0.2661 0.26400.26400.2640 0.2854 0.3036 0.3050 0.3147 0.3256 0.3459 0.3527 0.3582

median 0.2778 0.2778 0.2639 0.25000.25000.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
SD 0.0531 0.0619 0.0606 0.06220.06220.0622 0.0591 0.0595 0.0501 0.0356 0.0277 0.0188 0.0127 0.0168

Table B.11: Classification error of LSH1Q and LSH2Q in Table 4.6 with different parameters.

r 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean 0.3360 0.2767 0.26730.26730.2673 0.2784 0.3211 0.3804 0.3647 0.3707 0.3627 0.3616 0.3611 0.3659

LSH1Q1 median 0.3611 0.2778 0.27780.27780.2778 0.2778 0.3333 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611
SD 0.0356 0.0512 0.04480.04480.0448 0.0531 0.0618 0.0342 0.0261 0.0348 0.0139 0.0066 0.0000 0.0194

mean 0.3361 0.2959 0.2789 0.2997 0.2869 0.2830 0.2811 0.2543 0.25160.25160.2516 0.2619 0.2684 0.2834
LSH2Q1 median 0.3611 0.3056 0.2778 0.3056 0.2778 0.2778 0.2778 0.2500 0.25000.25000.2500 0.2778 0.2778 0.2778

SD 0.0355 0.0449 0.0395 0.0510 0.0515 0.0561 0.0468 0.0459 0.04670.04670.0467 0.0413 0.0400 0.0371
mean 0.3365 0.2517 0.2352 0.22090.22090.2209 0.2468 0.2642 0.3334 0.3020 0.3754 0.3668 0.3626 0.3611

LSH1Q2 median 0.3333 0.2500 0.2222 0.22220.22220.2222 0.2500 0.2500 0.3333 0.3056 0.3611 0.3611 0.3611 0.3611
SD 0.0265 0.0505 0.0611 0.06220.06220.0622 0.0590 0.0522 0.0525 0.0486 0.0298 0.0221 0.0191 0.0000

mean 0.3472 0.3480 0.3428 0.2879 0.3131 0.26900.26900.2690 0.2945 0.2857 0.3217 0.3072 0.3249 0.3164
LSH2Q2 median 0.3611 0.3611 0.3333 0.2778 0.3056 0.27780.27780.2778 0.3056 0.2778 0.3333 0.3056 0.3333 0.3056

SD 0.0288 0.0254 0.0471 0.0430 0.0528 0.04640.04640.0464 0.0475 0.0481 0.0384 0.0464 0.0466 0.0387



124

Table B.12: Mean error of LCSS in Table 4.7 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.4961 0.4776 0.4484 0.4584 0.4068 0.4395 0.4412 0.4033 0.4233 0.4585 0.5073 0.5142
2 0.4112 0.3867 0.4405 0.4520 0.4363 0.4539 0.4238 0.4611 0.4999 0.5007 0.5062 0.5299
3 0.4025 0.4163 0.4903 0.4728 0.4343 0.4307 0.4389 0.4448 0.4656 0.4737 0.4814 0.5158
4 0.3504 0.4115 0.4320 0.4481 0.4435 0.4066 0.4319 0.4546 0.4397 0.4511 0.4631 0.4901
5 0.3509 0.4190 0.4082 0.4217 0.4177 0.4061 0.4378 0.4453 0.4606 0.4389 0.4738 0.4983
6 0.3481 0.4117 0.3961 0.4000 0.3939 0.4045 0.4368 0.4465 0.4592 0.4391 0.4759 0.4993
7 0.3527 0.4241 0.3996 0.4009 0.3947 0.4071 0.4308 0.4387 0.4569 0.4397 0.4780 0.4993
8 0.34370.34370.3437 0.4141 0.3998 0.4009 0.3947 0.4064 0.4308 0.4324 0.4554 0.4390 0.4780 0.4993
9 0.3499 0.4244 0.4039 0.3969 0.3961 0.4064 0.4308 0.4324 0.4554 0.4390 0.4780 0.4993

10 0.3582 0.4329 0.4041 0.3969 0.3961 0.4064 0.4308 0.4324 0.4554 0.4390 0.4780 0.4993

Table B.13: Median error of LCSS in Table 4.7 with different parameters.

δ

median ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.5000 0.5000 0.4444 0.4444 0.3889 0.4444 0.4444 0.3889 0.4444 0.4444 0.5000 0.5000
2 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000 0.5000 0.5000
3 0.3889 0.4444 0.5000 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
4 0.3333 0.3889 0.4444 0.4444 0.4444 0.3889 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000
5 0.3333 0.4444 0.3889 0.4444 0.4444 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
6 0.3333 0.3889 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
7 0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
8 0.33330.33330.3333 0.4167 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000
9 0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000

10 0.3333 0.4444 0.3889 0.3889 0.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000

Table B.14: Error standard deviation of LCSS in Table 4.7 with different parameters.

δ

SD ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

1 0.0385 0.0596 0.0798 0.0784 0.0836 0.0824 0.0815 0.0760 0.0780 0.0827 0.0874 0.0879
2 0.0715 0.0791 0.0812 0.0836 0.0861 0.0787 0.0830 0.0829 0.0833 0.0853 0.0862 0.0900
3 0.0730 0.0760 0.0843 0.0836 0.0824 0.0749 0.0833 0.0828 0.0886 0.0917 0.0888 0.0963
4 0.0760 0.0807 0.0857 0.0851 0.0852 0.0759 0.0860 0.0850 0.0882 0.0893 0.0875 0.0951
5 0.0832 0.0884 0.0879 0.0855 0.0797 0.0766 0.0850 0.0847 0.0869 0.0886 0.0880 0.0951
6 0.0835 0.0864 0.0878 0.0866 0.0818 0.0769 0.0859 0.0834 0.0849 0.0885 0.0879 0.0951
7 0.0812 0.0848 0.0873 0.0888 0.0838 0.0761 0.0851 0.0822 0.0834 0.0880 0.0874 0.0951
8 0.08120.08120.0812 0.0860 0.0874 0.0888 0.0838 0.0758 0.0851 0.0793 0.0829 0.0880 0.0874 0.0951
9 0.0814 0.0848 0.0873 0.0886 0.0827 0.0758 0.0851 0.0793 0.0829 0.0880 0.0874 0.0951

10 0.0811 0.0839 0.0871 0.0886 0.0827 0.0758 0.0851 0.0793 0.0829 0.0880 0.0874 0.0951

Table B.15: Classification error of EDR in Table 4.7 with different parameters.

ε 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
mean 0.4632 0.4541 0.4171 0.4450 0.39160.39160.3916 0.4134 0.4422 0.4259 0.4618 0.4559 0.4681 0.5123

median 0.4444 0.4444 0.4444 0.4444 0.38890.38890.3889 0.3889 0.4444 0.4444 0.4444 0.4444 0.4444 0.5000
SD 0.0512 0.0654 0.0806 0.0824 0.08230.08230.0823 0.0801 0.0761 0.0775 0.0786 0.0890 0.0899 0.0934
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Table B.16: Classification Error of LSH1Q and LSH2Q in Table 4.7 with different parameters.

r 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean 0.5098 0.25240.25240.2524 0.2950 0.4878 0.4443 0.4691 0.4494 0.4558 0.5046 0.5103 0.4439 0.4305

LSH1Q median 0.5000 0.22220.22220.2222 0.2778 0.5000 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000 0.4444 0.4444
SD 0.0240 0.09900.09900.0990 0.0818 0.0802 0.0789 0.0813 0.0922 0.0768 0.0671 0.0822 0.0828 0.0779

mean 0.5000 0.4547 0.32480.32480.3248 0.3850 0.5271 0.5400 0.5216 0.5130 0.4828 0.4943 0.4406 0.4865
LSH2Q median 0.5000 0.4444 0.33330.33330.3333 0.3889 0.5278 0.5556 0.5000 0.5000 0.5000 0.5000 0.4444 0.5000

SD 0 0.0863 0.09160.09160.0916 0.0872 0.0825 0.0703 0.0677 0.0848 0.0723 0.0701 0.0872 0.0839

B.4 Choose at Most 40 Points for Each Trajectory of Beijing
Drivers

In this section, we redo the Beijing drivers experiment in Section 4.4.3, and the only

difference is when a trajectory in the raw data has at least 10 and at most 40 critical points

we directly retain all the critical points of this trajectory, and when a trajectory in the raw

data has more than 40 critical points, we use Douglas-Peucker algorithm to convert it to

a trajectory with 40 critical points. So, in the data after preprocessing, trajectories have

different numbers of critical points, which implies Euclidean distance and d↔Q cannot be

used in this case. We use the same points set Q1, Q2, Q3 and Q̃1, Q̃2, Q̃3 in Section 4.4.3.

The running result for different algorithms and distances is shown in Table B.17 and Table

B.18. From these two tables, we can see the performances of most distances are slightly

improved, except LCSS whose mean error is greatly reduced and achieves the best result.

However, dQ and dπ
Q are still competitive. dπ

Q achieves the best result in all distances except

LCSS. Moreover, LCSS needs two parameters and for each pair of parameter (δ, ε) it takes

more than 6 hours to get the result of error statistics (we use a computer with Intel Xeon(R)

CPU E5-2660 v3 @2.6GHz (2 processors), 6GB RAM and Windows 10 operating system).

So, to choose the best parameters for LCSS we need to try many or all choices, and this is

why LCSS is actually dramatically slower! For example, the computation of all errors in

Table B.19 needs more than 720 hours. By contrast, dπ
Q does not need parameters and it

only takes about 7 minutes to get the result of error statistics for the case |Q| = 200. It takes

about 10 minutes to convert all trajectories to vectors in R400. So, the computation of dπ
Q is

much faster than LCSS (17 minutes vs. 720 hours), even if the time of data preprocessing

is considered. The computation of dQ is faster than dπ
Q, since for dQ each trajectory is

converted to a vector in R200 rather than R400. Other distances, except Euclidean distance,
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Table B.17: Classification error on Beijing Drivers (|Q| = 20, each trajectory contains at
most 40 critical points)

distance mean median SD

KNN

dQ1 0.0823 0.0676 0.0622
dQ2 0.0820 0.0667 0.0621
dQ3 0.0804 0.0655 0.0620
dπ

Q1
0.0724 0.0583 0.0575

dπ
Q2

0.0720 0.0571 0.0571
dπ

Q3
0.0698 0.0556 0.0565

dF 0.1045 0.0875 0.0731
DTW 0.0708 0.0556 0.0594

dH 0.0889 0.0733 0.0652
LCSS (ε = 0.001, δ = 40) 0.06510.06510.0651 0.0450 0.0695

EDR(ε = 0.005) 0.0756 0.0533 0.0762
LSH1Q1 (r=0.06) 0.1261 0.0927 0.1116

LSH1Q2 (r=0.1) 0.1132 0.0869 0.0969
LSH1Q3 (r=0.1) 0.1182 0.0867 0.1082
LSH2Q1 (r=0.1) 0.2447 0.2250 0.1423
LSH2Q2 (r=0.1) 0.2527 0.2308 0.1513

LSH2Q3 (r=0.11) 0.2113 0.1944 0.1185

linear SVM

dQ1 0.2069 0.1854 0.1257
dQ2 0.2042 0.1818 0.1249
dQ3 0.2042 0.1818 0.1246
dπ

Q1
0.2047 0.1892 0.1219

dπ
Q2

0.2005 0.1818 0.1213
dπ

Q3
0.2019 0.1833 0.1213

quadratic SVM

dQ1 0.2197 0.1778 0.1685
dQ2 0.2155 0.1702 0.1695
dQ3 0.2155 0.1715 0.1676
dπ

Q1
0.1998 0.1468 0.1685

dπ
Q2

0.2010 0.1480 0.1688
dπ

Q3
0.1942 0.1395 0.1676

Gaussian SVM

dQ1 0.0730 0.0588 0.0594
dQ2 0.0740 0.0599 0.0593
dQ3 0.0731 0.0587 0.0593
dπ

Q1
0.0737 0.0594 0.0597

dπ
Q2

0.0738 0.0596 0.0595
dπ

Q3
0.0725 0.0581 0.0593

are also slower than dQ and dπ
Q: dF: about 9.2 hours, dH: about 4.2 hours, DTW: about 7.1

hours, EDR: about 1 hour for one parameter on average, LSH1Q1 : about 3 minutes for one

parameter on average, LSH2Q1 : about 28 minutes for one parameter on average.

The change of error statistics for LCSS, EDR, LSH1Q and LSH2Q with different parameters

are shown in Tables B.19, B.20, B.21, B.22 and B.23. The smallest mean error and the

corresponding median and standard deviation (SD) are marked by bold font.
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Table B.18: Classification error on Beijing Drivers (|Q| = 200, each trajectory contains at
most 40 critical points)

distance mean median SD

KNN

dQ̃1
0.0810 0.0654 0.0626

dQ̃2
0.0811 0.0656 0.0619

dQ̃3
0.0805 0.0651 0.0623

dπ
Q̃1

0.0707 0.0558 0.0575
dπ

Q̃2
0.0708 0.0563 0.0569

dπ
Q̃3

0.0699 0.0556 0.0566

linear SVM

dQ̃1
0.1422 0.1129 0.1057

dQ̃2
0.1426 0.1126 0.1059

dQ̃3
0.1416 0.1125 0.1053

dπ
Q̃1

0.1429 0.1185 0.1014
dπ

Q̃2
0.1438 0.1190 0.1020

dπ
Q̃3

0.1427 0.1179 0.1014

quadratic SVM

dQ̃1
0.1391 0.0909 0.1410

dQ̃2
0.1413 0.0913 0.1435

dQ̃3
0.1390 0.0900 0.1418

dπ
Q̃1

0.2597 0.2222 0.1912
dπ

Q̃2
0.2609 0.2208 0.1928

dπ
Q̃3

0.2590 0.2181 0.1917

Gaussian SVM

dQ̃1
0.0723 0.0582 0.0589

dQ̃2
0.0725 0.0582 0.0587

dQ̃3
0.0719 0.0577 0.0585

dπ
Q̃1

0.0728 0.0586 0.0596
dπ

Q̃2
0.0728 0.0583 0.0596

dπ
Q̃3

0.0724 0.0580 0.0592

Table B.19: Mean error of LCSS in Table B.17 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

31 0.0666 0.0669 0.0760 0.0867 0.0996 0.1152 0.1345 0.1536 0.1680 0.1775 0.1859 0.1947
32 0.0665 0.0666 0.0760 0.0868 0.0994 0.1151 0.1344 0.1535 0.1678 0.1774 0.1857 0.1947
33 0.0664 0.0666 0.0759 0.0868 0.0994 0.1151 0.1344 0.1535 0.1678 0.1775 0.1858 0.1947
34 0.0664 0.0665 0.0759 0.0867 0.0994 0.1151 0.1344 0.1535 0.1678 0.1775 0.1857 0.1948
35 0.0660 0.0664 0.0759 0.0867 0.0995 0.1152 0.1344 0.1535 0.1678 0.1775 0.1857 0.1947
36 0.0657 0.0661 0.0758 0.0867 0.0994 0.1151 0.1344 0.1535 0.1678 0.1775 0.1857 0.1947
37 0.0653 0.0661 0.0757 0.0867 0.0993 0.1151 0.1344 0.1535 0.1678 0.1774 0.1857 0.1946
38 0.0652 0.0660 0.0755 0.0865 0.0993 0.1150 0.1343 0.1534 0.1677 0.1774 0.1856 0.1946
39 0.0652 0.0658 0.0755 0.0864 0.0993 0.1150 0.1343 0.1534 0.1677 0.1774 0.1856 0.1946
40 0.06510.06510.0651 0.0658 0.0754 0.0863 0.0992 0.1149 0.1343 0.1534 0.1677 0.1773 0.1856 0.1945
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Table B.20: Median error of LCSS in Table B.17 with different parameters.

δ

mean ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

31 0.0459 0.0477 0.0547 0.0617 0.0700 0.0809 0.0912 0.1000 0.1101 0.1174 0.1242 0.1332
32 0.0459 0.0474 0.0548 0.0617 0.0700 0.0809 0.0911 0.1000 0.1100 0.1174 0.1242 0.1333
33 0.0460 0.0474 0.0547 0.0617 0.0700 0.0809 0.0911 0.1000 0.1100 0.1174 0.1242 0.1332
34 0.0459 0.0474 0.0547 0.0617 0.0700 0.0809 0.0911 0.1000 0.1100 0.1174 0.1240 0.1333
35 0.0457 0.0474 0.0547 0.0617 0.0700 0.0809 0.0911 0.1000 0.1100 0.1174 0.1242 0.1333
36 0.0455 0.0471 0.0545 0.0617 0.0700 0.0808 0.0911 0.1000 0.1100 0.1174 0.1243 0.1324
37 0.0452 0.0471 0.0545 0.0617 0.0698 0.0808 0.0911 0.1000 0.1099 0.1174 0.1243 0.1323
38 0.0450 0.0469 0.0544 0.0616 0.0697 0.0808 0.0909 0.1000 0.1098 0.1174 0.1240 0.1323
39 0.0450 0.0467 0.0544 0.0615 0.0696 0.0808 0.0909 0.1000 0.1100 0.1174 0.1240 0.1323
40 0.04500.04500.0450 0.0467 0.0543 0.0615 0.0696 0.0808 0.0909 0.1000 0.1100 0.1174 0.1240 0.1322

Table B.21: Error standard deviation of LCSS in Table B.17 with different parameters.

δ

SD ε
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

31 0.0705 0.0683 0.0759 0.0852 0.0984 0.1107 0.1297 0.1474 0.1587 0.1646 0.1685 0.1724
32 0.0706 0.0681 0.0758 0.0852 0.0983 0.1107 0.1297 0.1474 0.1587 0.1646 0.1685 0.1724
33 0.0703 0.0680 0.0757 0.0853 0.0983 0.1107 0.1297 0.1474 0.1587 0.1645 0.1685 0.1724
34 0.0703 0.0680 0.0756 0.0852 0.0983 0.1106 0.1296 0.1474 0.1587 0.1645 0.1685 0.1724
35 0.0699 0.0680 0.0757 0.0852 0.0983 0.1106 0.1296 0.1474 0.1587 0.1645 0.1684 0.1724
36 0.0698 0.0677 0.0756 0.0852 0.0982 0.1106 0.1296 0.1474 0.1587 0.1645 0.1684 0.1724
37 0.0696 0.0678 0.0757 0.0852 0.0982 0.1106 0.1296 0.1473 0.1587 0.1645 0.1684 0.1724
38 0.0695 0.0675 0.0755 0.0851 0.0982 0.1106 0.1296 0.1473 0.1587 0.1645 0.1684 0.1724
39 0.0695 0.0675 0.0755 0.0850 0.0982 0.1106 0.1296 0.1473 0.1586 0.1645 0.1684 0.1724
40 0.06950.06950.0695 0.0674 0.0754 0.0850 0.0982 0.1106 0.1296 0.1473 0.1586 0.1645 0.1684 0.1724

Table B.22: Classification Error of EDR in Table B.17 with different parameters.

ε 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550
mean 0.0874 0.07560.07560.0756 0.0798 0.0909 0.1031 0.1188 0.1388 0.1590 0.1731 0.1824 0.1904 0.1993

median 0.0667 0.05330.05330.0533 0.0571 0.0643 0.0718 0.0833 0.0947 0.1062 0.1144 0.1220 0.1286 0.1368
SD 0.0826 0.07620.07620.0762 0.0785 0.0888 0.1004 0.1126 0.1322 0.1497 0.1605 0.1659 0.1698 0.1740
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Table B.23: Classification Error of LSH1Q and LSH2Q in Table B.17 with different parame-
ters.

r 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100
mean 0.4140 0.3790 0.3099 0.2631 0.2172 0.1354 0.12610.12610.1261 0.1518 0.1476 0.1769 0.1673 0.1634

LSH1Q1 median 0.3914 0.3478 0.2632 0.2096 0.1667 0.1000 0.09270.09270.0927 0.1121 0.1037 0.1148 0.1149 0.1178
SD 0.2481 0.2312 0.2122 0.2007 0.1753 0.1218 0.11160.11160.1116 0.1321 0.1313 0.1667 0.1526 0.1441

mean 0.4094 0.3806 0.3201 0.2574 0.2272 0.2132 0.1823 0.1329 0.1154 0.1196 0.11320.11320.1132 0.1243
LSH1Q2 median 0.3819 0.3436 0.2757 0.2000 0.1607 0.1426 0.1174 0.0953 0.0886 0.0900 0.08690.08690.0869 0.0941

SD 0.2520 0.2466 0.2221 0.1971 0.1936 0.1931 0.1743 0.1214 0.1002 0.1069 0.09690.09690.0969 0.1042
mean 0.3640 0.2706 0.2084 0.1767 0.1876 0.1561 0.1453 0.1380 0.1274 0.1407 0.11820.11820.1182 0.1208

LSH1Q3 median 0.3333 0.2253 0.1606 0.1305 0.1273 0.1020 0.0987 0.0954 0.0889 0.0924 0.08670.08670.0867 0.0900
SD 0.2184 0.1925 0.1667 0.1523 0.1690 0.1525 0.1382 0.1317 0.1214 0.1374 0.10820.10820.1082 0.1057

mean 0.4161 0.3887 0.3482 0.3105 0.2963 0.2810 0.2723 0.2561 0.2470 0.2502 0.24470.24470.2447 0.2454
LSH2Q1 median 0.3939 0.3660 0.3231 0.2730 0.2552 0.2475 0.2401 0.2333 0.2276 0.2316 0.22500.22500.2250 0.2250

SD 0.2496 0.2315 0.2135 0.2027 0.1959 0.1772 0.1683 0.1501 0.1443 0.1435 0.14230.14230.1423 0.1427
mean 0.4138 0.3962 0.3594 0.3193 0.2986 0.2900 0.2666 0.2579 0.2560 0.2542 0.25270.25270.2527 0.2530

LSH2Q2 median 0.3871 0.3625 0.3196 0.2857 0.2641 0.2549 0.2369 0.2302 0.2321 0.2304 0.23080.23080.2308 0.2308
SD 0.2516 0.2480 0.2334 0.2038 0.1907 0.1819 0.1701 0.1618 0.1562 0.1545 0.15130.15130.1513 0.1498

mean 0.3761 0.3106 0.2681 0.2529 0.2384 0.2307 0.2228 0.2178 0.2174 0.2150 0.2125 0.21130.21130.2113
LSH2Q3 median 0.3478 0.2828 0.2363 0.2200 0.2138 0.2091 0.2042 0.2000 0.2010 0.2000 0.1960 0.19440.19440.1944

SD 0.2263 0.1864 0.1681 0.1576 0.1411 0.1324 0.1278 0.1256 0.1228 0.1221 0.1212 0.11850.11850.1185
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