ROBUST ESTIMATION AND SKETCHING OF POINTS,
LINES, TRAJECTORIES AND OTHER SHAPES

by
Pingfan Tang

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computing
The University of Utah
June 2019

Copyright (© Pingfan Tang 2019
All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Pingfan Tang

has been approved by the following supervisory committee members:

Jeff M Phillips , Chair(s)

Date Approved

Bei Wang Phillips , Member

Date Approved

Aditya Bhaskara , Member

Date Approved

Kevin Buchin , Member

Date Approved

Tom Fletcher , Member

Date Approved

by _Ross T Whitaker , Chair/Dean of

the Department/College/School of Computing
and by _David B. Kieda , Dean of The Graduate School.

ABSTRACT

We study robust estimators for uncertain points, and sketching of lines, trajectories and
other shapes. For locationally uncertain points, each point in a data set has a discrete
probability distribution describing its location. The probabilistic nature of uncertain data
makes it challenging to compute such estimators, since the true value of the estimator is
now described by a distribution rather than a single point. We show how to construct and
estimate the distribution of the median and other robust estimators of an uncertain point
set. More generally, for robust estimators, we also give a result about the robustness of
composite estimators: under mild conditions on the individual estimators, the breakdown
point of the composite estimator is the product of the breakdown points of the individual
estimators. Another contribution of this work is a sketched representations based on a set
of landmarks for geometric objects. Using this representation, we develop a new class of
distances for objects including lines, hyperplanes, and trajectories. These distances easily
and interpretably map objects to a Euclidean space, are simple to compute, and perform
well in data analysis tasks. For trajectories, they match and in some cases significantly
out-perform all state-of-the-art other metrics, can effortlessly be used in k-means clustering,
and fast approximate nearest neighbor algorithms which greatly improves the efficiency of
trajectory similarity search. Under reasonable and often simple conditions, these distances
are metrics. We also show how to use sensitivity sampling to approximate such landmark-
based distances, bound the required size of the sketched vector, and give an algorithm to

recover a trajectory from its vectorized representation.

For my parents, Yongping Tang and Naijuan Ya.

CONTENTS

ABST RACT . .. iii
LIST OF FIGURES e s i, viii
LIST OF TABLESo s, X
NOTATION AND SYMBOLS s i, xii
ACKNOWLEDGEMENTo e e e e xiii
CHAPTERS
1. INTRODUCTIONt s, 1
1.1 Main Results 3
2. APPROXIMATING THE DISTRIBUTION OF THE MEDIAN AND OTHER
ROBUST ESTIMATORS ON UNCERTAIN DATA 5
2.1 Introductiono, 5
2.1.1 Formalization of Model and Notation 7
2.1.2 Related Workon UncertainData 8
2.2 Constructing a Single Point Estimate 8
2.3 Approximating the Median Distribution 10
231 Computingcost 12
2.3.2 Building the e-Support T and Bounding its Size 12
2.3.3 Ane-Support for the Tukey Median 14
2.3.4 An e-Support for the Geometric Median 16
235 Sizebound of TinIRY 19
2.3.6 Assigning a Weight to T in Ry 22
2.4 A Randomized Algorithm to Construct a CoveringSet 24
2.4.1 Application to Geometric Median, 25
2.4.2 Application to Siegel Estimator, 26
3. THE ROBUSTNESS OF ESTIMATOR COMPOSITION 27
3.1 Introduction, 27
3.1.1 Examples of Estimator Composition 28
3.1.2 Main Results. . ..o ottt 29
3.2 Robustness of Estimator Composition 30
3.2.1 Formal Definitions of Breakdown Points 30
3.2.2 Definition of E1-E2 Estimators, and their Robustness 32
3.2.3 Multi-level Composition of Estimators 36
3.3 Applications 37

3.3.1 Application 1: Balancing Percentiles 37

3.3.2 Application 2 : Regression of Ly Medians
3.3.3 Application 3 : Significance Thresholds
3.3.4 Application 4 : 3-Level Composition
34 SIMulations e
3.4.1 Simulation 1: Estimator Manipulation
3.4.2 Simulation 2 : Router Monitoring,
3.5 DHSCUSSION oo

4. SIMPLE DISTANCES FOR TRAJECTORIES VIA LANDMARKS

4.1 Introduction
4.2 Distance Between Lines and Hyperplanes
421 Warm Up: Distance Between Lines
4.2.2 Distance Between Hyperplanes
4.2.3 VC-Dimension of Metric Ballsfordg
424 Unsigned Variant for the Distance Between Lines and Hyperplans
425 Applicationsin Analysis il
42.6 Direct Extension (literally) to Trajectories
4.3 Landmark Distances Between Trajectories
4.3.1 MetricProperties i il
4.4 Trajectories Analysis via New Distances.
4.4.1 Related Trajectory Distances, and Landmarks
442 Warm-up: k-means Clustering
4.4.3 Classifying Trajectories 1: Beijing Drivers
4.4.4 Classifying Trajectories 2: BusversusCar
44.5 Classifying Trajectories 3: Landmark-Sensitivity
4.4.6 Using dg in Nearest Neighbor Search
447 OnlineDataandCode
45 DISCUSSION . . .ottt

5. SKETCHED MINDIST i

51 Introduction
511 OurResults.........
5.1.2 Connections to other Domains, and Core Challenges

5.2 The Distance Between Two Hyperplanes
5.2.1 Estimation of dg by Sensitivity Samplingon Q.....................
5.2.2 Sensitivity Computation and its Relationship with Leverage Score
5.2.3 Estimate the Distance by Online Row Sampling
5.2.4 A Strong O(0,¢,J)-Approximation for Qover H.

5.3 Distance Between Two Geometric Objects
5.3.1 Lower Bound on Total Sensitivity...............
5.3.2 Upper Bound on the Total Sensitivity

5.4 Strong Coresets for the Distance Between Trajectories

5.5 Trajectory Reconstruction. il

6. CONCLUSION e e e e e e
APPENDICES
A. THE APPENDIX OF CHAPTER 2 i

90
91
93

B. THE APPENDIX OF CHAPTER 4
REFERENCES

vii

2.1

2.2

3.1

3.2

4.1

4.2
4.3

44
4.5

4.6
4.7

51

5.2

53
5.4

55

LIST OF FIGURES

The plot of Li(p), Ri(p) and Di(p). « oo 11

Left: Tukey median p is in a grid cell formed by x, x’ and y,y’. Center: The
plane is decomposed into 8 regions with the same shape. Right: Geometric
median p is in an oblique grid cell formed by x,x"and y,y/................. 15

The running result for the case n = 5, k = 8, (x,y0) = (0.9961,1.0126) in

Table 3. 0. . .o e 44
The running result for the case n = 5, k = 8, (xo, o) = (10.7631,11.0663) in

Table 3. 1. . .o 44
Left: dge (¥, 1) = dae (4, ¢2), but which of ¢; and ¢; is more similar to ¢ with

respect to Q? Right: Each p; is the projectionof g;on €..................... 53
Multi-modality inregression. i 61
Hlustrating g; and p; on a trajectory fordgand dg. 63
c; is a critical point of A 65

2 or 3 clusters (color-coded) under k-means on dg, with 20 landmarks Q

shown overlaid on Beijing. i 68
Left: the data set Q; (orange points), Right: the data set Q3 (orange points). 71
Left: Bus (blue) and car (pink) trajectories with landmark sets Q (green points), Q»
(red points). Right: Two classes of trajectories and Q (orange points). 75
Q is the set of blue points, 71 is the red curve, 7 is the green curve, and they coincide
with each other on the boundary of thesquare.. 94
Left: Case 1, r = ¥ < 7,and ¢’ € B(g,7). Right: Case 2, 7 = & > 7, and
I 1 O P e e) TR 9
Hlustration of the dist(g, s;) from point g to segments;.. 101

Left: [is tangent to C;. Rotate / around C; until it is tangent to some C;. Center:
c is an endpoint of 7. Right: c is an internal critical point of 7. In center and
right figures, no tangent line of C; can go through B, 3, without intersecting
withthepinkcurve. 105

Left: {c} = C; NC;, NC;, and B;, C Bj, UB;,. Center: the angle between s
and s’ is at most § and {c} = C;, N C;, N C;; and B;, C B;, UB;,. Right: C;,
C;, are tangent to s, and C;,, C;, are tangent to s’ For each one of these four
circles, any tangent line segment, except s, s’, cannot be extended outside B; g
without intersecting with any othercircle. 108

B.1

B.2

Left: ¢1 L ¢ and B(q1,||q1 —¢||) € B(q2, ||g2 — c||) UB(qg3, ||g3 — c||)- Right: ¢;
is a critical point of v(!) and B(q1, ||q1 — cil|) € B(q2, |g2 — cill) U B(g3, ||g3 —
Cill) e 116

Left: ¢; is a critical point of v and B(q1, |91 —cill) € B(q2, ||g2 —cill)UB(q3, |93 —
cil|)- Right: B(q1, |41 — pall), B(q2, |92 — p2||) are tangent to s, and B(gs, ||q3 —

p3ll), B(qa, ||qa — pal|) are tangent to s’. For each one of these four circles, any
tangent line segment, except s, s’ cannot be extended outside B(c;, %) without
intersecting with any othercircle. 116

1X

3.1
3.2
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B9
B.10
B.11
B.12
B.13

LIST OF TABLES

The running result of Simulation 1. 43
The output for different combinations of estimators and outliers. 45
Classification error on Beijing Drivers with KNN. 70
Classification error on Beijing Drivers with SVM. 70
Classification error on Beijing with [Q1| =200.ooo.... 70
Classification error on Beijing Drivers with different Q (|Q| =20)........... 72
Classification error on Beijing Drivers with different Q (|Q| =200) 73
Classificationerroron Busvs. Car. 74
Landmark-sensitive classification error with KNN. 75
Landmark-sensitive classification error with SVM. 76
Landmark-sensitive classification error with weighted Gaussian SVM. 76
Landmark-sensitive classification error with weighted linear SVM. 77
Landmark-sensitive classification error with weighted quadraticSVM............. 77
The running time experiment of KNNsearch. 78
Distances on analysis tasks as: best ®, competitive e, near competitive o;

possible v or possiblebutslower o o il 79
Mean error of LCSS in Table 4.1 with different parameters.................. 120
Median error of LCSS in Table 4.1 with different parameters. 121
Error standard deviation of LCSS in Table 4.1 with different parameters. 121
Classification Error of EDR in Table 4.1 with different parameters. 121

Classification Error of LSH1g and LSH2, in Table 4.1 with different parameters.122
Classification Error of LSH1g and LSH2, in Table 4.4 with different parameters.122

Mean error of LCSS in Table 4.6 with different parameters.................. 122
Median error of LCSS in Table 4.6 with different parameters. 123
Error standard deviation of LCSS in Table 4.6 with different parameters. 123
Classification error of EDR in Table 4.6 with different parameters............ 123

Classification error of LSH1g and LSH2(, in Table 4.6 with different parameters.123
Mean error of LCSS in Table 4.7 with different parameters.................. 124
Median error of LCSS in Table 4.7 with different parameters. 124

B.14
B.15
B.16
B.17

B.18

B.19
B.20
B.21
B.22
B.23

Error standard deviation of LCSS in Table 4.7 with different parameters. 124
Classification error of EDR in Table 4.7 with different parameters............ 124
Classification Error of LSH1g and LSH2, in Table 4.7 with different parameters.125

Classification error on Beijing Drivers (|Q| = 20, each trajectory contains at

most 40 critical points) 126
Classification error on Beijing Drivers (|Q| = 200, each trajectory contains at

most 40 critical points) 127
Mean error of LCSS in Table B.17 with different parameters. 127
Median error of LCSS in Table B.17 with different parameters............... 128
Error standard deviation of LCSS in Table B.17 with different parameters. 128
Classification Error of EDR in Table B.17 with different parameters. 128

Classification Error of LSH1g and LSH2(, in Table B.17 with different parameters.129

x1i

NOTATION AND SYMBOLS

R the collection of all real numbers
RY the d-dimensional Euclidean space
Z the collection of all integers

P a set of uncertain points

Hy the collection of all half spaces that contain the point p
Priat the union of all uncertain points in P

W the union of multisets

L the collection of all lines in IR?

H the collection of all hyperplanes in R

T the collection of all piece-wise linear curves in IR?
II-|| Euclidean norm

[®° norm

- llos

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my advisor Professor Jeff M Phillips.
He offered me a great opportunity to join the data group in School of Computing. On the
academic level, his professional guidance gives me a chance to be exposed to forefront and
fascinating research topics in data science. When I encounter difficulties in research, he
always provides me with profound encouragement and ingenious suggestions, which are
like a lamp helping me overcome obstacles in darkness. Moreover, his strong recommenda-
tion is a great help for me to successfully find an internship and a full-time position. In a
word, Professor Phillips” constructive advice and relentless support on both my research
and career have been invaluable.

Besides my advisor, I would like to acknowledge the assistance of the rest of my
dissertation committee members (Bei Wang Phillips, Aditya Bhaskara, Kevin Buchin and
Tom Fletcher). Their support and insightful comments in my proposal defense also help me

alot.

CHAPTER 1

INTRODUCTION

With the development of the internet and the world wide web, massive data become
more and more commonplace. How to represent, summarize and sketch these data has
always been an important research topic in machine learning and data mining. This is
because sometimes a good representation of summarization itself can provide us with
lots of useful information. For example, combing the median of population’s income and
living cost, we can have a general understanding to living standard of people in a region.
Moreover, a good summarization and sketch can effectively reduce the size of data, which
means the data can be easily stored, transmitted and visualized. Most importantly, a good
representation or sketch of data can allow us to directly apply many standard machine
learning and data mining algorithms, and run these algorithms on small data sets efficiently.
This dissertation mainly studies two problems. One is how to analyze and summarize the
locationally uncertain data points, especially to model its probabilistic nature. The other is
how to effectively sketch lines, trajectories and other geometric shapes, and the property
and application of this sketched representation.

For a data set drawn iid (independent and identically distributed) from a single distribu-
tion, if we want to use one point to represent this set, then obviously the median is good
choice. Since the median is robust to outliers, it is better than the mean in the presence of
noise and outliers. However, in the age of big data, a number of indirect data collection
methods have led to the proliferation of uncertain data ([1-3]), which can be easily found on
the web, in sensor networks, and within enterprises in structured or unstructured sources.
For a set of uncertain data, a single point usually cannot give a robust estimate for this set
(see the discussion in Section 2.2). To analyze and summarize uncertain data, in Chapter 2,
we initiate the study of robust estimators for uncertain data, by studying the median, as

well as extensions to the Tukey median and geometric median on locationally uncertain

2

data points. We show how to efficiently create approximate distributions for the location of
these medians in R?. We also develop a general approximation technique for distributions
of robust estimators with respect to ranges with bounded VC dimension (Section 2.4). This
includes the geometric median for high dimensions and the Siegel estimator for linear
regression.

While studying the robust estimation of uncertain data, we notice the median of the union
of all uncertain points is more robust than the median of medians of each uncertain point.
This inspires us to study the robustness of composite estimators. The estimator composition
usually appears in data analysis pipeline, and is very common in broad data analysis
literature. In Chapter 3, we formally define the breakdown point ([32, 52]), introduce the
onto-breakdown point and use these conceptions to study the robustness of composite
estimators. Generally, the composition of two or more estimators is less robust than each
individual estimator.

Another problem we try to address is how to effectively sketch lines, trajectories and
general geometric shapes. We introduce sketched representation for geometric objects based
on a set of landmarks Q. Each object | is represented by a vector vg(]), where each entry
vy(J) is defined as the distance between g and]. Using this vectorized representation, we
introduce a new family of landmark-based distances dg. For example, the distance between
two objects can be simply defined as the (normalized) Euclidean distance between their
sketched representations.

In Chapter 4, we give the definition of dg and its variants for lines, hyperplanes and
trajectories, and show their nice mathematical properties, e.g., being psuedo-metrics,
metrics, and bounded VC-dimension of metric balls. These nice properties allow us to
directly apply Algorithm 2.2 in Chapter 2 to robust estimators of linear regression, like
Siegel estimator, on uncertain data (Corollary 4.1), and this is also a motivation for us
to study dg and sketched representation of geometric shapes. In Chapter 4, we mainly
study the application of dg and its variants in trajectories analysis. We apply dg using the
KNN classification algorithm to predict trajectory classes from real and synthetic data and
compare the result with several other distances to show its competitiveness. Moreover, the
vectorized representation also means we can directly apply many existing algorithms in

machine learning and data mining to process and analyze geometric objects. For example,

3

give a set of trajectories we can directly use Lloyd’s algorithm to do k-means clustering
on it (Section 4.4.2), train SVM classifiers, or run efficient k-nearest neighbor searching
algorithms.

In Chapter 5, we study how to approximate dg between two geometric objects when
Qs very large. The idea is to use sensitivity sampling ([40, 44, 63, 86]) on Q. For general
geometric shapes, we show how to bound the total sensitivity under necessary assumptions.
For trajectories, we use the framework in [16] to construct a strong approximation of Q with
high probability, and we also give an algorithm to recover a trajectory from its vectorized

representation.

1.1 Main Results

Here, we list the main results in this dissertation.

e Given a set of uncertain points P, where each point has k possible locations, and
¢ € (0,1], we can construct an ¢-approximate coreset T for Tukey median (or L,
median) on P that has a size |T| = O (lz—j) , and approximately captures the probability

of its distribution of its uncertainty (Theorem 2.5, and Theorem 2.8).

e When estimators E; and E; have breakdown points B and B, respectively, we show
the general conditions under which an E;-E; estimator has a breakdown point of 51

(Theorem 3.2), and provide examples when this does not occur.

e In trajectory classification, we show dg and its variants can match and in some
cases significantly out-perform all state-of-the-art other distances. We also show the
vectorized representation of trajectories can be directly used in k-means clustering,
and plugged into approximate nearest neighbor approaches which immediately
out-perform the best recent advances in trajectory similarity search by several orders

of magnitude (Section 4.4).

e When Q is large, we can use sensitivity sampling to find a set Q C Q to approximate
dg for pairs of general geometric objects (Theorem 5.6), and construct a strong
approximation of Q valid for all trajectories from a mildly restricted family. (Theorem

5.7).

4

e We design an algorithm which can exactly recover a trajectory -y from a mildly
restricted family with k line segments, using only Q and its vectorized representation

vg(7),in O(|Q| + k?) time (Theorem 5.8).

CHAPTER 2

APPROXIMATING THE DISTRIBUTION OF
THE MEDIAN AND OTHER ROBUST
ESTIMATORS ON UNCERTAIN DATA

2.1 Introduction

Most statistical or machine learning models of noisy data start with the assumption that
a data set is drawn iid (independent and identically distributed) from a single distribution.
Such distributions often represent some true phenomenon under some noisy observation.
Therefore, approaches that mitigate the influence of noise, involving robust statistics or
regularization, have become commonplace.

However, many modern data sets are clearly not generated iid, rather each data element
represents a separate object or a region of a more complex phenomenon. For instance, each
data element may represent a distinct person in a population or an hourly temperature
reading. Yet, this data can still be noisy; for instance, multiple GPS locational estimates of a
person, or multiple temperature sensors in a city. The set of data elements may be noisy
and there may be multiple inconsistent readings of each element. To model this noise, the
inconsistent readings can naturally be interpreted as a probability distribution.

Given such locationally noisy, non-iid data sets, there are many unresolved and important
analysis tasks ranging from classification to regression to summarization. In this chapter, we
initiate the study of robust estimators [33,78] on locationally uncertain data. More precisely,
we consider an input data set of size n, where each data point’s location is described by a
discrete probability distribution. We will assume these discrete distributions have a support
of at most k points in IR?; and for concreteness and simplicity we will focus on cases where
each point has support described by exactly k points, each being equally likely.

Although algorithms for locationally uncertain points have been studied in quite a few

6

contexts over the last decade [2-5, 28, 55, 60, 67, 94], few have directly addressed the problem
of noise in the data. As the uncertainty is often the direct consequence of noise in the data
collection process, this is a pressing concern. As such we initiate this study focusing on
the most basic robust estimators: the median for data in R!, as well as its generalization
the geometric median and the Tukey median for data in IR¢, defined in Section 2.1.1. Being
robust refers to the fact that the median and geometric medians have a breakdown points
of 0.5, that is, if less than 50% of the data points (the outliers) are moved from the true
distribution to some location infinitely far away, the estimator remains within the extent of
the true distribution [69]. The Tukey median has a breakdown point between dlﬁ and % [7].

In this chapter, we generalize the median (and other robust estimators) to locationally
uncertain data, where the outliers can occur not just among the n data points, but also as
part of the discrete distributions representing their possible locations.

The main challenge is in modeling these robust estimators. As we do not have precise
locations of the data, there is not a single minimizer of cost(x, Q); rather there may be as
many as k" possible input point sets Q (the combination of all possible locations of the
data). And the expected value of such a minimizer is not robust in the same way that the
mean is not robust. As such we build a distribution over the possible locations of these
cost-minimizers. In R! (by defining boundary cases carefully) this distribution is of size at

most O(1k), the size of the input, but already in R? it may be as large as k".

Our Results. We design algorithms to create an approximate support of these median
distributions. We create small sets T (called an e-support) such that each possible median mg
from a possible point set Q is within a distance ¢ - cost(mg, Q) of some x € T. In R we can
create a support set T of size O(k/¢) in O(nklog(nk)) time. We show that the bound O(k/¢)
is tight since there may be k large enough modes of these distributions, each requiring
Q(1/¢) points to represent. In R? our bound on |T| is O(k?/¢?), for the Tukey median and
the geometric median. If we do not need to cover sets of medians mg which occur with
probability less than ¢, we can get a bound O(d/¢?) in R?. In fact, this general approach in
R? extends to other estimators, including the Siegel estimator [81] for linear regression. We
then need to map weights onto this support set T. We can do so exactly in O(n%k) time in

R! or approximately in O(1/¢?) time in RY.

7

Another goal may be to then construct a single-point estimator of these distributions:
the median of these median distributions. In R! we can show that this process is stable
up to cost(mg, Q) where m is the resulting single-point estimate. However, we also show
that already in IR! such estimators are not stable with respect to the weights in the median
distribution, and hence not stable with respect to the probability of any possible location of
an uncertain point. That is, infinitesimal changes to such probabilities can greatly change
the location of the single-point estimator. As such, we argue the approximate median
distribution (which is stable with respect to these changes) is the best robust representation

of such data.

2.1.1 Formalization of Model and Notation

We consider a set of n locationally uncertain points P = {Py, ..., P,} so that each P; has k
possible locations {p; 1, ..., pix} C RY. Here, P, = {pi1,..., pix} is a multiset, which means
a point in P; may appear more than once. Let Pyay = Ui{pi1, ..., pix} represent all positions
of all points in P, which implies Py,; is also a multiset. We consider each p; ; to be an equally
likely (with probability 1/k) location of P;, and can extend our techniques to non-uniform
probabilities and uncertain points with fewer than k possible locations. For an uncertain
point set P we say Q € P is a traversal of P if Q = {q1,...4x } has each g; in the domain of
P; (e.g., q; = p;j for some j). We denote by Proey[7(Q)] the probability of the event v(Q),
given that Q is a randomly selected traversal from P, where the selection of each g; from P;
is independent of g, from Py .

We are particularly interested in the case where 7 is large and k is small. For technical
simplicity we assume an extended RAM model where k" (the number of possible traversals
of point sets) can be computed in O(1) time and fits in O(1) words of space.

We consider three definitions of medians. In one dimension, given a set Q = {41,792, ...,
qn} that wlo.g. satisfies g1 < g2 < ... < gy, we define the median mg as q 1 when 7 is odd
and gz when 7 is even. There are several ways to generalize the median to higher dimen-

sions [7], herein we focus on the geometric median and Tukey median. Define cost(x, Q) =

1y
n &=

1 lx = gi|| where || - || is the Euclidian norm. Given a set Q = {q1,92,...,4.} C RY,
the geometric median is defined as mg = argmin, s cost(x, Q). The Tukey depth [83] of

a point p with respect to a set Q C R is defined depthg(p) := mingey, |[H N Q| where

8

H, := {H is a closed half space in R? | p € H}. Then a Tukey median of a set Q is a point p

that can maximize the Tukey depth.

2.1.2 Related Work on Uncertain Data

The algorithms and computational geometry communities have recently generated a
large amount of research in trying to understand how to efficiently process and represent
uncertain data [1-5, 28, 55, 60, 62, 67], not to mention some motivating systems and other
progress from the database community [6,30, 31,79, 94]. Some work in this area considers
other models, with either worst-case representations of the data uncertainty [84] which
do not naturally allow probabilistic models, or when the data may not exist with some
probability [5,55,62]. The second model can often be handled as a special case of the
locationally uncertain model we study. Among locationally uncertain data, most work
focuses on data structures for easy data access [3,24, 30, 82] but not the direct analysis
of data. Among the work on analysis and summarization, such as for histograms [27],
convex hulls [5], or clustering [28] it usually focuses on quantities like the expected or most
likely value, which may not be stable with respect to noise. This includes estimation of the
expected median in a stream of uncertain data [58] or the expected geometric median as part
of k-median clustering of uncertain data [28]. We are not aware of any work on modeling
the probabilistic nature of locationally uncertain data to construct robust estimators of
that data, robust to outliers in both the set of uncertain points as well as the probability

distribution of each uncertain point.

2.2 Constructing a Single Point Estimate

We begin by exploring the construction of a single point estimator of set of n locationally
uncertain points P. We demonstrate that while the estimator is stable with respect to the
value of cost, the actual minimum of that function is not stable and provides an incomplete
picture for multimodal uncertainties.

It is easiest to explore this through a weighted point set X C R!. Given a probability
distribution defined by w : X — [0, 1], we can compute its weighted median by scanning
from smallest to largest until the sum of weights reaches 0.5.

There are two situations whereby we obtain such a discrete weighted domain. The first

9

domain is the set T of possible locations of medians under different instantiations of the
uncertain points with weights @ as the probability of those medians being realized; see
constructions in Section 2.3.2 and Section 2.3.6. Let the resulting weighted median of (T,)
be mt. The second domain is simply the set Pq,¢ of all possible locations of P, and its weight
w where w(p; ;) is the fraction of Q € P which take p; ; as their median (possibly 0). Let the

weighted median of (Py,y, w) be msyp.

Theorem 2.1. |m1 — myp| < ecost(myp) < ecost(mg, Q), Q € P is any traversal with my as its

median.

Proof. We can divide R into |T| intervals, one associated with each x € T, as follows. Each
z € Ris in an interval associated with x € T if z is closer to x than any other pointy € T,
unless [z — y| < ecost(z) but |z — x| > cost(z). Thus a point p;; whose weight w(p; ;)
contributes to @(x), is in the interval associated with x.

Thus, if p;; = mp, then the sum of all weights of all points greater than p; ; is at most
0.5, and the sum of all weights of points less than p; ; is less than 0.5. Hence if my is in an
interval associated with x € T, then the sum of all weights of points p; ; in intervals greater
than that of x must be at most 0.5 and those less than that of x must be less than 0.5. Hence

mr = x,and |x — p; ;| < ecost(myp) as desired. O

Non-Robustness of single point estimates. The geometric median of the set {mgisa
geometric median of Q | Q € P} is not stable under small perturbations in weights; it stays
within the convex hull of the set, but otherwise not much can be said, even in R!. Consider
the example with n = 3 and k = 2, where p11 = p12 = p21 =0and prp = p31 = p32 = A
for some arbitrary A. The median will be at 0 or A, each with probability 1/2, depending on
the location of P,. We can also create a more intricate example where cost(0) = cost(A) = 0.
As these examples have mg at 0 or A equally likely with probability 1/2, then canonically
in R! we would have the median of this distribution at 0, but a slight change in probability
(say from sampling) could put it all the way at A. This indicates that a representation of the

distribution of medians as we study in the remainder is more appropriate for noisy data.

10

2.3 Approximating the Median Distribution

The big challenge in constructing an e-support T is finding the points x € Py, which
have small values of cost(x, Q) (recall cost(x, Q) = 1 Y7, ||lx — g;|)) for some Q € P. But
this requires determining the smallest cost Q € P that has x € Q and x is the median of Q.

One may think (as the authors initially did) that one could simply use a proxy function
cOst(x) = Ly, ming<j<x [|x — pj;ll, which is relatively simple to compute as the lower
envelope of cost functions for each P;. Clearly cdst(x) < cost(x, Q) forall Q € P,soaset T
satisfying a similar approximation for cést will satisfy our goals for cost. However, there
exist (rather adversarial) data sets P where T would require Q(nk) points; see Appendix
A.1. On the other hand, we show this is not true for cost. The key difference between cost
and cost is that cost does not enforce the use of some Q € P of which x is a median. That is,
that (roughly) half the points are to the left and half to the right for this Q.

*Proxy functions L, R, and D. We handle this problem by first introducing two families
of functions, defined precisely shortly. We let L;(x) (resp. R;(x)) represent the contribution
to cost at x from the closest possible location p;; of an uncertain point P; to the left (resp.

right) of x. This allows us to decompose the elements of this cost. However, it does not help

us to enforce this balance. Hence we introduce a third proxy function

capturing the difference between L; and R;. We will show that the choice of which points
are used on the left or right of x is completely determined by the D; values. In particular,
we maintain the D; values (for all i € [n]) in sorted order, and use the i with larger D; values
on the right, and smaller D; values on the left for the min cost Q € P.

To define L;, R;, and D;, we first assume that Py, and P; for all i € [n] are sorted (this
would take O(nklog(nk)) time). Then to simplify definitions we add two dummy points to
each P;, and introduce the notation P; = P; U {p;o, pix+1} and P = {Py, P,, - - -, P, }, where
pio = min Py — nA, pirr1 = max Py + 1A, and A = max P — min Py Thus, every
point p € Py,t can be viewed as the median of some traversal of P. Moreover, since we put
the p;p and p; ,41 points far enough out, they will essentially act as points at infinity and

not affect the rest of our analysis.

11

Figure 2.1: The plot of L;(p), Ri(p) and D;(p).

Next, for p € Pq,e we define cost(p) = min{cost(p, Q) | p is the median of Q and Q € P}.
Thus, if there exists Q € P such that p is the median of Q, then cost(p) < cost(p, Q).

Now to compute cost and expedite our analysis, for p € [min P,y — nA, max Pyae + n4)],
we define L;(p) = min{|p; —p| | pi € PN (—co,pl} and Ri(p) = min{|pi —p| | pi €
P;N[p,0)}. and recall D;(p) = Li(p) — Ri(p). Obviously, if p € P, then D;(p) = Li(p) =
R;(p) = 0. For example, if P; = {pio, pi1, Pi2, Pis, Pia}and pio < pi1 < piz < pis < Pia,
then the plot of L;(p), R;(p) and D;(p), is shown in Figure 2.1.

For the sake of brevity, we now assume 7 is odd; adjusting a few arguments by +1 will
adjust for the n is even case.

Consider next the following property of the D; functions with respect to computing
cost(p) for a point p € P;,. Let {i1, i, -+ ,i,—1} = [n]\{io} be a permutation of uncertain
points, except for iy, so that D; (p) < D;,(p) < --- < D; ,(p). Then to minimize cost(p, Q),
we count the uncertain points P;, using L;, if in the permutation 7; < (n —1)/2 and otherwise

count it on the right with R;. This holds since for any other permutation {ji, 2, - -, ju—1} =

[n)\{io} we have X/~2,, Dy (p) > =L, D; (p) and thus

-

n

- — n—1 —
Z LZ/ Z Zl = Z Z
=1 :% I=1 :%
n—1 n—1 % -
<)Y Li(p)—) Dilp) =) L, Z i
1=1 J=ntl =1

n—1

For p € Py, cost(p) = 1 (L%, L, (p) + ':nlj R;,(p)) under this Dj-sorted permutation.
! 2

12

2.3.1 Computing cost

Now to compute cost for all points p € Py,¢, we simply need to maintain the D; in sorted
order, and then sum the appropriate terms from L; and R;. Let us first examine a few facts
about the complexity of these functions.

The function L; (resp. R;) is piecewise-linear, where the slope is always 1 (resp. —1). The
breakpoints only occur at x = p; ; for each p; ; € P;. Hence, they each have complexity O (k)
for all i € [n]. The structure of L; and R; implies that D; is also piecewise-linear, where the
slope is always 2 and has breakpoints for each p; ; € P;. Each linear component attains a
value D;(x) = 0 when x is the midpoint between two pij, Pi,j € Pi which are consecutive in
the sorted order of P;.

The fact that all D; have slope 2 at all non-discontinuous points, and these discontinuous
points only occur at P;, implies that the sorted order of the D; functions does not change
in between points of P,t. Moreover, at one of these points of discontinuity x € Py, the
ordering between D;s only changes for uncertain points D; such that there exists a possible
location py j € Py such that x = py ;. This implies that to maintain the sorted order of D; for
any x, as we increase the value of x, we only need to update this order at the nk points in
Pyt with respect to Dy for which there exists py; € Py with p; ; = x. This takes O(log(nk))
time per update using a balanced BST, and thus O(nklog(nk)) time to define cost(x) for
all values x € R!. To compute cost(x), we also require the values of L; (or R;); these can
be constructed independently for each i € [n] in O(k) time after sorting, and in O(nklogk)

time overall.! Ultimately, we arrive at the following theorem.

Theorem 2.2. Consider a set of n uncertain points P with k possible locations each. We can compute

cost(x) for all x € R such that x = p; ; for some p; ; € Pgat in O(nklog(nk)) time.

2.3.2 Building the e-Support T and Bounding its Size

We next show that there always exists an e-support T and it has a size | T| = O(%).

!When multiple distinct pi; coincide at a point x, then more care may be required to compute cost(x)
(depending on the specifics of how the median is defined in these boundary cases). Specifically, we may not
want to set L;(x) = 0, instead it may be better to use the value R;(x) even if R;(x) = a > 0. This is the case
when « < Ry (x) — Ly (x) for some other uncertain point P; (then we say P; is on the right, and P; is on the
left). This can be resolved by either tweaking the definition of median for these cases, or sorting all D;(x) for
uncertain points P; with some p; ; = x, and some bookkeeping.

13

Theorem 2.3. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1,-- -, pix}

C R, and ¢ € (0,1] we can construct an e-support T that has a size |T| = O().

Proof. We first sort Py, in ascending order, scan Puor = {p1,- -, pur} from left to right
and choose one point from Pq,: every L%J points, and then put the chosen point into T.
Now, suppose p is the median of some traversal Q € P and cost(p) = cost(p, Q). If
p ¢ T, then there are two consecutive points ¢,t' in T such that t < p < . On either
side of p there are at least | 5] points in Q, so without loss of generality, we assume
lp—t'| > 3|t —t|. Since |[p,c0) N Q| > 4 and there are at most | 4| points in [p,], we
have |(t',c0) N Q| > § — | 5] > %, which implies

Y lg—pl>

ge(t,00)NQ

Q=
S|

cost(p) =cost(p, Q) > Y, ¥ —pl
ge(t,00)NQ

(2.1)
1n 1 1

>77 /_ i /_ >7 _ /'

2 et —pl= It —pl = 5t 1]

For any fixed ¢ € (0,1], and two consecutive points ¢,t' (t < t') in T, we put x1, - - - , Xpizy_q
[t—t'|i
[
xi € Tst. |p—xi| < 5|t — |, and from (2.1), we know |p — x;| < ecost(p). In total we put

into T where x; =t + forl1 <i< [%] — 1. So, for the median p € (t,t'), there exists

O(%) points into T’ thus the proof is completed. O

Remark 2.1. The above construction results in an e-support T of size O(k/€), but does not restrict
that T C Pg,e. We can enforce this restriction by for each x placed in T to choose the single nearest
point p € Py to replace it in T. This results in an (2€)-support, which can be made an e-support
by instead adding %] — 1 points between each pair (t,t'), without affecting the asymptotic time

bound.

Remark 2.2. We can construct a sequence of uncertain data {P(n, k) } such that, for each uncertain

data P(n, k), the optimal e-support T has a size Q(%) For example, for e = %, %, %,- e, we

definen = 1, and p;j = (j—1)n+ifori € [n] and j € [k]. Then, for any median p € Ppay,

n2—1
4n?

n-1
we have ecost(p) = LY, % i = < 1, hence covering no other points, which implies

|T| = Q(nk) = Q(é)

We can construct the minimal size e-support T in O(nklog(nk)) time by sorting, and
greedily adding the smallest point not yet covered each step. This yields the slightly

stronger corollary of Theorem 2.3.

14

Corollary 2.1. Consider a set of n uncertain points P = {Py,- - - , P, }, where P; = {pi1,- - , pix}
C R,and e € (0,1]. We can construct an e-support T in O(nk log(nk)) time which has the minimal
size for any e-support, and |T| = O(%).

€

There are multiple ways to generalize the notion of a median to higher dimensions [7].
We focus on two variants: the Tukey median and the geometric median. We start with
generalizing the notion of an e-support to a Tukey median since it more directly follows

from the techniques in Theorem 2.3, and then address the geometric median.

2.3.3 An e-Support for the Tukey Median
A closely related concept to the Tukey median is a centerpoint, which is a point p such
that depthq(p) > 717]Q|. Since for any finite set Q € R its centerpoint always exists, a
Tukey median must be a centerpoint. This means if p is the Tukey median of Q, then for any
closed half space containing p, it contains at least dlﬁ |Q| points of Q. Using this property,

we can prove the following theorem.

Theorem 2.4. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1,- -, pix}
C R?, and ¢ € (0,1], we can construct an e-support T for the Tukey median on P that has a size

T = 0(%).

Proof. Suppose the projections of Py, on x-axis and y-axis are X and Y respectively. We
sort all points in X and choose one point from X every |4 | points, and then put the chosen
points into a set Xr. For each point x € X1 we draw a line through (x,0) parallel to y-axis.
Similarly, we sort all points in Y and choose one point every |} | points, and put the chosen
points into Y. For each point y € Y7 we draw a line through (0, y) parallel to x-axis.

Now, suppose p with coordinates (x;,y,) is the Tukey median of some traversal Q € P
and cost(p, Q) = %quQ lg —pll. fx, ¢ X7 and y, ¢ Y7, then there are x,x’ € X7 and
v,y € Yrsuchthatx < x, < x"and y < y, <y, as shown in Figure 2.2(Left).

Without loss of generality, we assume |x, — x| > 1|x’ — x| and |y, —y| > |y — /|. Since
p is the Tukey median of Q, we have |Q N (—co,00) X (—o0,y,]| > % where (—o0,c0) X
(—o0,yp] = {(x,y) € R?| y < y,}. Recall there are at most | § | points of Py in (—o00,00) x

[yp, y], which implies |Q N (—o00,00) x (—00,y)| > & — [§] > {5. So, we have

15

1 1n 1
cost(p, Q) 2 —) e on(—ooma)x (oo 11 =PI Z — 5l = vl = S7ly =¥/l

Using a symmetric argument, we can obtain cost(p, Q) > 2 |x — x'|.
For any fixed € € (0, 1], and any two consecutive points x, x"in X1 we putxq,---, Xras1_q

into Xt where x; = x + ‘Xﬁé]‘i- Also, for any two consecutive point y,y’ in Y7, we put

Vi Yy into Yr where y; = y + ‘y(;sy%‘i. So, for the Tukey median p € (x,x") x (y,y),
there exist x; € Xt and y; € Y7 such that |x, — x;| < glx —x'| and |y, —yi| < gly —¥'|.
Since we have shown that 5;|x — x| and 5; |y — /| are lower bounds for cost(p, Q), we

obtain

€
1Gxpryp) = Gyl <lp = 2l + lyp —yjl < o (e =2+ ly = v/'1)
§%(24cost(p, Q) + 24cost(p, Q)) = ecost(p, Q).

Finally, we define T as T := Xt X Y7. Then for any Q & P, if p is the Tukey median of Q,
there exists t € T such that ||t — p|| < ecost(p, Q). Thus, T is an e-support for the Tukey

median on P. Moreover, since | X7| = O(%) and |Yr| = O(%), we have |T| = O(L‘—i) O

In a straight-forward extension, we can generalize the result of Theorem 2.4 to d dimen-

sions.

Theorem 2.5. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1,- -, pix}
C RY and e € (0,1], we can construct an e-support T for the Tukey median on P that has a size

IT| = O((2d(d + 1)(d +2)2%)4).

y
Yp o Q
D Tz
y N
x i‘p x/

Figure 2.2: Left: Tukey median p is in a grid cell formed by x, x" and y,’. Center: The
plane is decomposed into 8 regions with the same shape. Right: Geometric median p is in
an oblique grid cell formed by x,x" and y, /.

16

2.3.4 An e-Support for the Geometric Median

Unlike the Tukey median, there does not exist a constant C > 0 such that: for any
geometric median p of point set Q C R?, any closed half space containing p contains at least
%\Q] points of Q. For example, suppose in IR? there are 21 + 1 points on x-axis with the
median point at the origin; this point is also the geometric median. If we move this point
upward along the y direction, then the geometric median also moves upwards. However,
for the line through the new geometric median and parallel to the x-axis, all 2n other points
are under this line.

Hence, we need a new idea to adapt the method in Theorem 2.5 for the geometric median
in R?. We first consider the geometric median in IR?. We show we can find some line through

it, such that on both sides of this line there are at least g points.

Lemma 2.1. Suppose p is the geometric median of Q C R?* with size |Q| = n. There is a line {

through p so both closed half planes with { as boundary contain at least g points of Q.

Proof. We first build a rectangular coordinate system at the point p, which means p is the
origin with coordinates (xp,y,) = (0,0). Then we use the x-axis, y-axis and lines x = y,
x = —y to decompose the plane into eight regions, as shown in Figure 2.2(Center). Since
all these eight regions have the same shape, without loss of generality, we can assume
Q = {(x,y) € R?| x >y > 0} contains the most points of Q. Then |Q N Q| > %, otherwise
n=|Q| =|R>NQ| <8QNQ| < n, which is a contradiction.

If QN {p}| > g, ie., the multiset Q contains p at least § times, then obviously this
proposition is correct. So, we only need to consider the case [Q N {p}| < §. We introduce
notations QO = O\ {p} and Q° = O\ 90, and denote the coordinates of any g € Q as

q = (x4,Y4)- From a property of the geometric median (proven in Appendix A.1) we know
Ygco\{p} ﬁ < 1QN{p}|- Since |Q N {p}| < § this implies

x 5
Lot g T oo g < 5

since p is the originand Q \ {p} = (QN Q) U (Q\ Q). From ﬁﬁ = xquryz > %, Vg € Q
q q
we obtain
QA= <Y art <ty < g\al < k(- Qn)
V3 = Lacend [<8~ Laceio g = 8 =5

17

which implies there are not too many points in Q,

~ 2
QNQ| < V29 sen

(1+v2) 8

Now, we define the two pairs of half spaces which share a boundary with Q: H =
{(x,y) e Ry > 0}, H = {(x,y) € R}y < 0}and Hy = {(x,y) € R*| x—y >0},
Hy = {(x,y) € R*} x —y < 0}. We assert either |[H;’ NQ| > % and [H; NQ| > %, or
|Hy NQ| > % and |H, N Q| > §. Otherwise, since QN Q| > % and O C H NH,, we
have |[H; N Q| < § and |[Hy, NQ| < §. From H; UH, UQ° = R? we have

n=|Q| = [R*NQ| = |(H UH; UQ°)NQ| < [H nQ|+|Hy NQ|+|Q°NQ|
~ n o n
<|H; NQ|+ |H, NQ|+]QnQ| < g+§+0.66n <n,

which is a contradiction. Therefore, among lines /1 : y = 0 and ¢, : x — y = 0, which both

go through p, one of them has at least /8 points from Q on both sides. O

Theorem 2.6. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1, -, pix}
C R?, and ¢ € (0,1], we can construct an e-support T for the geometric median on P that has a size

T| = 0(%).

Proof. The idea to prove this theorem is to use several oblique coordinate systems. We
consider an oblique coordinate system, the angle between x-axis and y-axis is 6 € (0, 5],
and use the technique in Theorem 2.4 to generate a grid. More precisely, we project Py
onto the x-axis along the y-axis of the oblique coordinate system to obtain a set X, sort all
points in X, and choose one point from X every | § | points to form a set X7. Then we use
the same method to generate Y and Yt projecting along the x-axis in the oblique coordinate
system. For each point x € X7 we draw a line through (x,0) parallel to the (oblique) y-axis,
and for each point y € Yr we draw a line through (0, y) parallel to the (oblique) x-axis.

Let p with coordinates (x;,y,) be the geometric median of some traversal Q € P and
cost(p,Q) = %):qu lg—pl. fx, & Xrand y, ¢ Yr, then there are x,x’ € X7 and
v,y € Yrsuch thatx, € (x,x’) and y, € (y,¥'), as shown in Figure 2.2(Right).

If we have the condition:

Q1 (~o0,00) x (o0, y]] =

|QN (=00, xp] X (—00,00)| >

, 1Q N (=00,00) X [yp,00)| >

, 1Q N [xp, 00) X (—00,00)| >

(2.2)

| I I

~

then we can make the following computation.

18

Without loss of generality, we assume |x, — x| > %]x’ —x|and |y, —y| > %]y — /.
There are at most | 4| points of Py in (—co,00) X [y, y], which implies |Q N (—o0,00) x
(—oo,y)| > § — |§] = 75. So, we have

1 1n Sil’l(e)
cost(p, Q) > EZQGQQ(_OQ,OO)X(_OW) lg—pll > Eﬁh/_yr?’ = 144 ly —

|

Similarly, we can prove cost(p, Q) > & 4(f Vx — 2.

For any fixed ¢ € (0,1], and any two consecutive points x,x" in X7 we put xq,-- -,
|x—x']i
[seiney |

Yr, we put y1, -,y 2 1 into Yr where y; = y + Hy;g |i]. So, for the L1 median p €
esin esin(6)

X 288 11 into Xt where x; = x + . Also, for any two consecutive point v,y in

esin(6)

(x,2") x (y,y'), there exist x; € Xr and y; € Yr such that |x, — x;| < Sszigég) |x — x'| and

lyp —yjl < Eszigéo) ly — v/'|. Since we have shown that both 51&(46) |x — x'| and Si&(f) ly — /| are

lower bounds for cost(p, Q), using the distance formula in an oblique coordinate system,

we have
1Gepryp) — Cea)l <((xp — %)% + (yp — y))* +2(xp — %) (i — yp) cos(6))

1
<((xp —xi)2+ (yp —yj)* +20xp — xillyi — ypl)2 = xp — xi| + [yp —]

(0 / /
<#500) (x| 4 ly o)

in(0 144 144
Ses;;é) <Sin(9) COSt(p, Q) + sin(@) COSt(p/ Q)) - SCOSt(p, Q)

Therefore, if all k" geometric medians of traversals satisfy (2.2) and 6 € (0, %] is a constant
then T = Xt X Yt is an e-support of size O (ﬁ) for the geometric median on P.

Although we cannot find an oblique coordinate system to make (2.2) hold for all k"
medians, we can use several oblique coordinate systems. Using the result of Lemma 2.1, for
any geometric median of n points Q, we know there exists a line ¢ through p and parallel
toalinein{l; :y=0,l:x—y=0, l3:x=0, {4: x+y = 0}, such that in both sides
of this line, there are at least g points of Q. Since we did not make any assumption on the
distribution of points in Q, if we rotate /1, {2, {3, {4 anticlockwise by ¢ around the origin,
we can obtain four lines ¢/, £}, ¢4, £}, and there exists a line ¢’ through p and parallel to a
line in {¢}, 05, ¢4, £} }, such that on both sides of this line, there are at least § points of Q. The
angle between ¢ and ¢’ is at least §.

Therefore, given £ = {1, 05, 03,04} and L' = {¢1, 05,05, 0} }, for each pair (£,0') € L x L/,

we take ¢ and ¢’ as x-axis and y-axis respectively to build an oblique coordinate system,

19

and then use the above method to compute a set T(¢, ¢'). Since for any geometric median p

there must be an oblique coordinate system based on some (¢, ¢') € £ x £ to make (2.2)

hold for p, we can take T = Uz peT(¢,0') as an e-support for geometric median on P,

and the size of T'is |T| = O (16@) =0 (g) O
2.3.5 Size bound of T in R?

Using the method in the proof of Theorem 2.6, we can generalize the result of this theorem

to R® and higher dimensional space.

Theorem 2.7. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1,-- -, pix}

C R ande € (0,1], we can construct an e-support T for Ly median on P that has a size
T =0(5%).

Proof. The first step is to obtain a result similar to Lemma 2.1: if p is the L; median of a set
of n points Q C RR?, then we can find a plane h through p, such that any closed half space
with h as its boundary contains at least 5; points of Q.

To prove this, we build a rectangular coordinate system at the point p, and use nine
planes Hz = {x; = 0,2, = 0,x3 = 0,x; £ xp = 0,x + x3 = 0, x3 = x; = 0} to partition R®
into 24 regions: {Q;s| i € {1,2,3},s € {1, =1}°}, where Qs = Q; (5, s, 5,) := { (X1, %2,x3) €
R3| sjx; > sixj >0, forj =1, 2,3}. All of these regions have the same shape with Oy,111) =
{(x1,x2,%3) € R3|x; > xo > 0,x1 > x3 > 0}, which means they can coincide with each
other through rotation, shift and reflection. So, we define (3 = () (1 1,1) and without loss of
generality assume |[Q N Q| = maXjc)seq1,-13 |Q N Q| Obviously, we have [Q N Q| > 7.

We only need to consider the case |Q N {p}| < 7;. Introducing notations Q=0\{p},
0% = O\ 90, from the property of L1 median we know Y_,c o\ (p} xﬁ; ;""1 <lQn{p} < %
Since p is the origin, we havequQﬁﬁ W + quQ\Q W < 77, which implies |Q N Q| % <

1 41Q\Q| < &+ (n—]QNQJ) since T\qull < \1[, for all g € Q). Thus, we obtain

V3n 25
143 24

Now, for x = (x1,x2,x3) € R3 we define hi(x) = x1 — x2, ha(x) = x1 — x3, h3(x) = xo,
hy(x) = x3,and H" = {x € R®| hj(x) > 0}, H- — = {x € IR3] hi(x) < 0}, and assert there
exists i € [4] such that |H;" N Q| > 4 and |H; N Q| > 2. Otherwise, since [QN Q| > 1L

0NQl <

< 0.67n. (2.3)

20

and Q C N?_H;", we have |[H; N Q| < 4 foralli € [4]. From U} H UQ° = R?and (2.3)
we have

4
n=|Q| = [R*NQ| = [(UiHf uQ) nQI <} [H NQI+1Q"N Q|

\ i=1 (2.4)

<Y |Hy mQy+meQ\<—+067n<n
i=1

which is a contradiction. Therefore, in {x; — x; = 0,x1 — x3 = 0,x, = 0, x3 = 0} there exists
at lease one plane such that any closed half space with this line as the boundary contains at
least 53 points of Q.

The second step is to obtain three sets of planes which have the same structure with
s, and this can be done through orthogonal transformation. Since a plane through
the origin can be uniquely determined by its normal vector, we can use normal vectors
Vs = {(1,0,0),(0,1,0),(0,0,1),(1,£1,0),(0,1,£1),(£1,0,1) } to represent planes in Hs.
Then, we choose three orthogonal matrices M1, M, M3 and define Va(M;) = {vM;|v € V3}
for i = 1,2,3. One set of feasible orthogonal matrices is {M;| M; = I3 — 2”3,1‘”3,1-/ fori =
1,2,3}, where I3 is a 3 x 3 identity matrix, and u3; = (1/,2/,3))T is a column vector. It
can be verified that min,, cy, (a1, v ic3] |Det([v1;v2;v3])| > 4.8468 x 10~*, where [v1; v2; v3]
is a 3 x 3 matrix and v; is its i" row. This means if we arbitrarily choose three vectors
v1, V2,03 from V3(M;), V3(M,) and V3(Ms3) respectively, then these three vectors are lin-
early independent, so the three planes determined by these vectors can form an oblique
coordinates system. We can use the method in the proof of Theorem 2.6, to generate a set
T(v1,02,03) with size O(Cy, ;0,05 & . 5) in this oblique coordinate system, where Cjy, ., .0,] is
a constant determined by |Det([v1; v2;v3])|. For the three orthogonal matrices we chose
above, |Det([v1; v2;v3])| has a lower bound, so the constant Cloy;00;05) has an upper bound,
which implies O (C[U1 02703] 3 k3> =0 (’;—;)

For any L; median p of n points Q and any V3(M;) there must be a plane through p and
orthogonal to a vector in V3(M;) such that in both sides of this plane there are at least 5;
points of Q. So, there exist (v1,v2,v3) € V3(M;y) x V3(Ma) x Va(Ms) and x € T(v1,v2,v3)
such that |[x — p|| < ecost(p, Q). Therefore, we can take T = Uy, cv,(m,)v ic3) T (v1,03,03) as

an e-support for L; median on P with size O(';—g) O

In the proof of Theorem 2.7, we choose three orthogonal matrices M, M>, M3. These

21

three matrices are independent from the input data P, so we can store these orthogonal
matrices and use them to compute the e-support of L; median for any P in R3.

To generalize the result of Theorem 2.7 to R?, we can use d + 2(}) hyperplanes H,; =
{xi=0]ie[d}lu{xitx;=0] 1 <i<j<d}topartition R? into d2¢ regions:
{Qis i€ [d],se{1,-1}"}, where Qig = O; (5 .5y = {(x1, -+, xg) € R | sp%; > sjxj >
0,V j € [d]}. All of these regions have the same shape with () (1.... 1y = {(x1, -+ ,x4) €
R? | x1 > xj>0,forj=2,---, d}. Using the method in the proof of Theorem 2.7 we can
show, if p is the L; median of n points Q and is the origin, then there is a hyperplane & in

H, such that any half space with & as the boundary contains at least -5; points of Q. (In

d2d

RY, (2.4) will become 1 < Z dZ"’) + 1\[\”[dézjl, and it is easy to show the right side of this

inequality is always less than n for all 4 > 3, so the method in the proof of Theorem 2.7 still

works.)

Suppose Vj is the collection of normal vectors of all hyperplanes in H;. We randomly
choose a set of d-dimensional orthogonal matrices M = {M;, - - - , M}, and define V;(M;) =
{oM; v e Vy}fori=1, - ,d. lf min,cy,m,)yvicla) | Det([o1; -+ ;0a])| > e > 0, where
c is a positive constant dependent on M and [vy; - - - ;v,4] is a d X d matrix with v; as its
ith row, then we can store these matrices, for each (v1, - ,v4) € Vz(Mi) X -+ x Vz(My)
build an oblique coordinate system, and use the method in Theorem 2.6, to generate a
set T(vq,- -+ ,vy) with size O(C[v];.,.;vd]lg—s) = O(CMIS‘—Z), where Cy is a positive constant
dependent on M. Finally, we return T = Uy cy,(m,)v ic[) T (01, - - - ,va) as an e-support for
L1 median on P, and the size of T is |T| = O(CMIE—:) = O(lz—;), since M is fixed for all
uncertain data in R%.

Since a d-dimensional orthogonal matrix has d(d — 1) /2 independent variables, we can
always find orthogonal matrices My, - - - , M; and a constant cy, such that

min Det(|vqy;--- ;0 > o >0,
Z},‘EVd(Ml‘),V lG[d] ‘ ([! d])’ M

and for fixed d, My, - - - , M can be stored to deal with any input data P in R?. For example,
for d = 4 we can define M; = I — 2”4,1‘”2,1', fori =1,---,4, where I is an identity matrix
and uy; = (1/,2/,3',4')7, and it can be verified that min,,cy, (u,)v icja) [Det([v1; - - - ;04])| >
3.7649 x 107°.

For d = 5, we can define M; = I5 — 2u5,iu§i, fori = 1,---,5, where I5 is an identity

22

matrix and us; = (1/,2/,3,4%,5)T, and we have min,, ey, (m;)v ic(s) [Det([v1; - - ;vs])| >

2.3635 x 10711, In summary, we have the following theorem.

Theorem 2.8. Given a set of n uncertain points P = {Py,--- ,P,}, where P; = {pi1,- -, pix}
C RY, and e € (0,1], for any fixed d we can construct an e-support T for Ly median on P that has a
size |T| = O (’;—:)

2.3.6 Assigning a Weight to T in R!

Here we provide an algorithm to assign a weight to T in R!, which approximates the
probability distribution of median. For T in R?, we provide a randomized algorithm in
Section 2.4.1.

Define the weight of p;; € Phat as w(pij) = %[{Q € P | pi; is the median of Q}|, the
probability it is the median. Suppose T is constructed by our greedy algorithm for R!. For

Pij € Priar, we introduce a map fr : Phar — T,

fr(pij) = argmin{|x — p;;| | x € T, |x — p;j| < ecost(p;;)},

where cost(p; ;) = min{cost(p;;, Q) | pi; is the median of Q and Q € P}.
Intuitively, this maps each p;; € Ppa; onto the closest point x € T, unless it violates the
e-approximation property which another further point satisfies.

Now for each x € T, define weight of x as @(x) = X i€ Pume | fr (i) =x) w(pi;). So we

Pij
first compute the weight of each point in Py, and then obtain the weight of points in T
in another linear sweep. Our ability to calculate the weights w for each point in Py, is
summarized in the next lemma. The algorithm, explained within the proof, is a dynamic

program that expands a specific polynomial similar to Li et.al. [64], where in the final state,

the coefficients correspond with the probability of each point being the median.
Lemma 2.2. We can output w(p; ;) for all points in Pyay in RY in O(n?k) time.

Proof. For any p;, € P;,, we define the following terms to count the number of points to the

0’/

left (I;) or right (r;) of it in the jth uncertain point (excluding P;)):

23
L _fHpeplp<p}l #1<j<i-1
T Hp e lp<pu}l ifio<j<n—1
_JHpeplpzpi}l if1<j<ig-1
"UlHp el lp=pi}l ifig<j<n—1

. Then, if n is odd, we can write the weight of p;, as

1
w(pio):]?l Z (lil'liz""'li@'r]'l'rl'z""'r]'n;l)’
S$1NS=0 2 2
51U52={1,---,n71}

where Sy = {iy,ip, - - - ,ian} and S» = {j1, /2, - ,]%} This sums over all partitions Sy, S;
of uncertain points on the left or right of p;, for which it is the median, and each term is
the product of ways each uncertain point can be on the appropriate side. We define w(p;,)
similarly when 7 is even, then the last index of S is jx.

We next describe the algorithm for n odd; the case for n even is similar. To compute

Y sins,—0 (g -ly,-...-li, -1j -7y -...-1j,), we consider the following polynomial:
51U52={1,---,n71} 2 2
(hx+r)(bx+71) - (ln_1x +14-1), (2.5)
where Y 55,0 (i - ly ool oy o7y oo 15,) is the coefficient of x"T. We
S]USQZ{l,-",Vl—l} 2 v

define p;; (1 < i < n—1,0 < j < i) as the coefficient of x/ in the polynomial (I;x +
r1) -+ (lix +r;) and then it is easy to check p;; = l;p;_1,-1 + ripi—1,;. Thus we can use

dynamic programming to compute p,—10,0n—1,1," " ,Pn—1n—1, as shown in Algorithm 2.1.

Algorithm 2.1 Compute p,—10, 0n-11," " ,Pn—1n-1
Let p1,0 = 11,011 = l1, 012 = 0.
fori=2ton—1do

forj=0toido
Pij = lipi—1,j-1 + 1iPi—1,j
Pii+1 =0
return 0,10,0n-1,1," " ,Pn—1,n—1-

Thus Algorithm 2.1 computes the weight Lw(p;,) = p,_; u1 for a single pj, € Phar. Next
we show, we can reuse much of the structure to compute the weight for another point; this

will ultimately shave a factor 7 off of running Algorithm 2.1 nk times.

24

Suppose for p;, € P;, we have obtained p,,_1,0,01-1,1,---,0n—1,n—1 by Algorithm 2.1, and
then we consider p; = min{p € Puat \ P}, | p > pjy }. We assume p;; € Py, and if iy < ip, we

construct a polynomial

(hax+r1) - (L ax + 7y) Ty x + 7) Ly + g 1) - - (X +7001) (2.6)
and if i, > ip, we construct a polynomial

(hx 1) (g ox +rg o) Ty ax + Ty) (lgx 4 7i0) -+ (loax +731) (2.7)

wherely =1y 1 =[{pe P, |p<py}landfy =7y 1=[{pePy|p=ps}l

Since (2.5) and (2.6) have only one different factor, we obtain the coefficients of (2.6) from
the coefficients of (2.5) in O(n) time. We recover the coefficients of (I1x +r1) -+ (ly_1x +
ri/_l)(li6+1x + rl'6+1) o (ly—1x +rp—1) from py—10,Pn-11, "+ * , Pu—1,n—1, and then use these
coefficients to compute the coefficients of (2.6). Similarly, if ij, > iy, we obtain the coefficients
of (2.7) from the coefficients of (2.5). Therefore, we can use O(nz) time to compute the weight
of the first point in Py, and then use O(n) time to compute the weight of each other point.

The whole time is O(n?) + nkO(n) = O(n%k). O

Corollary 2.2. We can assign @(x) to each x € T in R! in O(n?k) time.

24 A Randomized Algorithm to Construct a Covering Set

In this section we describe a much more general randomized algorithm for robust
estimators on uncertain data. It constructs an approximate covering set of the support of
the distribution of the estimator, and estimates the weight at the same time. The support
of the distribution is not as precise compared to the techniques in the previous section in
that the new technique may fail to cover regions with small probability of containing the
estimator.

Suppose P = {P;, P5,- - - , P, } is a set of uncertain data, where fori € [n], P, = {pi1, pi2,

-, pix} C X for some domain X. An estimator E: {Q | Q € P} — YmapsQ € Ptoa
metric space (Y, ¢). Let B(y,r) = {y' € Y| ¢(y,y') < r} be a ball of radius r in that metric
space. We denote v as the VC-dimension of the range space (Y, R) induced by these balls,
withR = {B(y,r) |[y € Y,r > 0}.

We now analyze the simple algorithm which randomly instantiates traversals Q € P,

and constructors their estimators z = E(Q). Repeating this N times builds a domain

25

T ={z1,22,...,2n} each with weight w(z;) = 1/N. Duplicates of domain points can have

their weights merged as described in Algorithm 2.2.

Algorithm 2.2 Approximate the weight of points in T
Initialize T = @
forj=1to N do
Randomly choose Q € P, and setz = E(Q).
if z = Z/ for some z’ € T, then increment ¢, = ¢,y + 1
elseadd zto T, and set ¢, = 1.

return F as the approximate value of w(z) forallz € T

Theorem 2.9. For ¢ > 0and 6 € (0,1), set N = O((1/€*)(v + log(1/5))). Then, with
probability at least 1 — J, for any B € R we have |Y_,cr~p w(z) — Proep[E(Q) € B]| < e.

Proof. Let T* be the true support of E(Q) where Q € P, and let w* : T* — R™ be the
true probability distribution defined on T*; e.g., for discrete T*, then for any z’ € T*,
w*(z') = Prgep[E(Q) = Z]. Then each random z generated is a random draw from w*.
Hence for a range space with bounded VC-dimension [85] v, we can apply the sampling

bound [65] for e-approximations of these range spaces to prove our claim. O

In Theorem 2.9, for z; € T, if we choose B = B(z;,r) € R with r small enough such that

T N B only contains z;, then we obtain the following.

Corollary 2.3. Fore > 0 and 6 € (0,1), set N = O((1/€%)(v + log(1/5))). Then, with
probability at least 1 — §, for any z € Y we have |w(z) — Prgep|E(Q) = z]| < &

Remark 2.3. We can typically define a metric space (Y, ¢) where v = O(1); for instance for point
estimators (e.g., the geometric median), define a projection into R so no z;s map to the same point,
then define distance ¢ as restricted to the distance along this line, so metric balls are intervals (or

slabs in R?); these have v = 2.

2.4.1 Application to Geometric Median
For each Q € P, the geometric median mg may take a distinct value. Thus even
calculating that set, let alone their weights in the case of duplicates, would require at least
Q(k") time. But it is straightforward to apply this randomized approach. For Py, € R, the

natural metric space (Y, ¢) is Y = R? and ¢ as the Euclidian distance.

26

However, there is no known closed form solution for the geometric median; it can be
computed within any additive error ¢ through various methods [12, 14,17, 88]. As such, we

can state a slightly more intricate corollary.

Corollary 2.4. Set ¢ > 0and § € (0,1) and N = O((1/€?)(d +log(1/6))). For an uncertain
point set P with Ppae C RY, let the estimator E be the geometric median, and let Ey be an algorithm
that finds an approximation to the geometric median within additive error ¢ > 0. Run the algorithm
using Ey. Then for any ball B = B(x,r) € R, there exists® another ball B' = B(x,r") with
|r — 1’| < ¢ such that with probability at least 1 — 6,

w(z) — Pr [E(Q) € B]| <e.

zeTNB’ Qe’

2.4.2 Application to Siegel Estimator

The Siegel (repeated median) estimator [81] is a robust estimator S for linear regression
in R? with optimal breakdown point 0.5. For a set of points Q, for each q; € Q it computes
slopes of all lines through g; and each other 4’ € Q, and takes their median 4;. Then it
takes the median a of the set {4;}; of all median slopes. The offset b of the estimated line
¢ :y = ax + D, is the median of (y; — ax;) for all points g; = (x;,y;). For uncertain data
Pyat C IR?, we can directly apply our general technique for this estimator.

We use the following metric space (Y, ¢). Let Y = {¢ | £is a line in R? with form y =

ax + b, wherea,b € R}. Then let ¢ be the Euclidean distance in the standard dual; for

twolines £ : y = ax+band ¢' : y = a'x + 1, define p({,¢') = /(a—a')2+ (b—)2
By examining the dual space, we see that (Y,R) with R = {B({,r) | £ € Y,r > 0} and
B(t,r)={l' €Y | ¢, {') <r} hasaVC-dimension 3.

From the definition of the Siegel estimator [81], there can be at most O(n°k®) distinct
linesin T = {S(Q) | Q € P}. By Corollary 2.3, setting N = O((1/¢?)log(1/5)), then with
probability at least 1 — 6 for all z € T we have |w(z) — Proep[S(Q) =z]| < e.

2To simplify the discussion on degenerate behavior, define ball B/, so any point 4 on its boundary can be
defined inside or outside of B, and this decision can be different for each g, even if they are co-located.

CHAPTER 3

THE ROBUSTNESS OF ESTIMATOR
COMPOSITION

3.1 Introduction

Robust statistical estimators [51,56] (in particular, resistant estimators), such as the
median, are an essential tool in data analysis since they are provably immune to outliers.
Given data with a large fraction of extreme outliers, a robust estimator guarantees the
returned value is still within the non-outlier part of the data. In particular, the role of
these estimators is quickly growing in importance as the scale and automation associated
with data collection and data processing becomes more commonplace. Artisanal data
(hand crafted and carefully curated), where potential outliers can be removed, is becoming
proportionally less common. Instead, important decisions are being made blindly based on
the output of analysis functions, often without looking at individual data points and their
effect on the outcome. Thus using estimators as part of this pipeline that are not robust are
susceptible to erroneous and dangerous decisions as the result of a few extreme and rogue
data points.

Although other approaches like regularization and pruning a constant number of obvious
outliers are common as well, they do not come with the important guarantees that ensure
these unwanted outcomes absolutely cannot occur.

In this chapter, we initiate the formal study of the robustness of composition of estimators
through the notion of breakdown points. These are especially important with the growth
of data analysis pipelines where the final result or prediction is the result of several layers
of data processing. When each layer in this pipeline is modeled as an estimator, then our
analysis provides the first general robustness analysis of these processes.

The breakdown point [32,52] is a basic measure of robustness of an estimator. Intuitively, it

28

describes how many outliers can be in the data without the estimator becoming unreliable.
However, the literature is full of slightly inconsistent and informal definitions of this concept.

For example:

e Aloupis [7] write “the breakdown point is the proportion of data which must be

moved to infinity so that the estimator will do the same.”

e Huber and Ronchetti [57] write “the breakdown point is the smallest fraction of bad

7

observations that may cause an estimator to take on arbitrarily large aberrant values.’

e Dasgupta, Kumar, and Srikumar [90] write “the breakdown point of an estimator is
the largest fraction of the data that can be moved arbitrarily without perturbing the

estimator to the boundary of the parameter space.”

All of these definitions have similar meanings, and they are typically sufficient for
the purpose of understanding a single estimator. However, they are not mathematically
rigorous, and it is difficult to use them to discuss the breakdown point of composite

estimators.

Composition of Estimators. In a bit more detail (we give formal definitions in Section
3.2.1), an estimator E maps a data set to single value in another space, sometimes the
same as a single data point. For instance the mean or the median are simple estimators
on one-dimensional data. A composite E;-E; estimator applies two estimators E; and E
on data stored in a hierarchy. Let P = {P;, P, ..., P, } be a set of subdata sets, where each
subdata set P, = {pi1, pi2, ..., pix} has individual data readings. Then the E;-E, estimator
reports Ey(E1(Py), E1(P2), ..., E1(Py)), that is the estimator E; applied to the output of

estimator E; on each subdata set.

3.1.1 Examples of Estimator Composition

Composite estimators arise in many scenarios in data analysis.

Uncertain Data. For instance, in the last decade there has been increased focus on the
study of uncertainty data [28, 60, 79] where instead of analyzing a data set, we are given
a model of the uncertainty of each data point. Consider tracking the summarization of a

group of n people based on noisy GPS measurements. For each person i we might get k

29

readings of their location P;, and use these k readings as a discrete probability distribution
of where that person might be. Then in order to represent the center of this set of people a
natural thing to do would be to estimate the location of each person as x; <— E1(P;), and
then use these estimates to summarize the entire group E»(x1, X2, ..., x,). Using the mean
as E; and E; would be easy, but would be susceptible to even a single outrageous outlier
(all people are in Manhattan, but a spurious reading was at (0,0) lat-long, off the coast
of Africa). An alternative is to use the Li-median for E; and E,, that is known to have an

optimal breakdown point of 0.5. But what is the breakdown point of the E;-E; estimator?

Robust Analysis of Bursty Behavior. Understanding the robustness of estimators can also
be critical towards how much one can “game” a system. For instance, consider a start-up
media website that gets bursts of traffic from memes they curate. They publish a statistic
showing the median of the top half of traffic days each month, and aggregate these by taking
the median of such values over the top half of all months. This is a composite estimator,
and they proudly claim, even through they have bursty traffic, it is robust (each estimator
has a breakdown point of 0.25). If this composite estimator shows large traffic, should a
potential buyer of this website be impressed? Is there a better, more robust estimator the
potential buyer could request? If the media website can stagger the release of its content,

how should they distribute it to maximize this composite estimator?

Part of the Data Analysis Pipeline. This process of estimator composition is very common
in broad data analysis literature. This arises from the idea of an “analysis pipeline” where
at several stages estimators or analysis is performed on data, and then further estimators
and analysis are performed downstream. In many cases a robust estimator like the median
is used, specifically for its robustness properties, but there is no analysis of how robust the

composition of these estimators is.

3.1.2 Main Results
This chapter initiates the formal and general study of the robustness of composite

estimators.

e In Subsection 3.2.1, we give two formal definitions of breakdown points which are

both required to prove composition theorem. One variant of the definition closely

30

aligns with other formalizations [32, 52], while another is fundamentally different.

e The main result provides general conditions under which an E;-E; estimator with
breakdown points 81 and B, has a breakdown point of 81, (Theorem 3.2 in Subsec-

tion 3.2.2).

e Moreover, by showing examples where our conditions do not strictly apply, we gain
an understanding of how to circumvent the above result. An example is in composite
percentile estimators (e.g., E; returns the 25th percentile, and E; the 75th percentile of

a ranked set). These composite estimators have larger breakdown point than f; - B».

e The main result can extended to multiple compositions, under suitable conditions, so
for instance an E;-E»-E3 estimator has a breakdown point of 31283 (Theorem 3.3 in
Subsection 3.2.3). This implies that long analysis chains can be very suspect to a few
carefully places outliers since the breakdown point decays exponentially in the length

of the analysis chain.

e In Section 3.3, we highlight several applications of this theory, including robust
regression, robustness of p-values, a depth-3 composition, and how to advantageously
manipulate the observation about percentile estimator composition. We demonstrate

a few more applications with simulations in Section 3.4.

3.2 Robustness of Estimator Composition
3.2.1 Formal Definitions of Breakdown Points

In this chapter, we give two definitions for the breakdown point: Asymptotic Breakdown
Point and Asymptotic Onto-Breakdown Point. The first definition, Asymptotic Breakdown
Point, is similar to the classic formal definitions in [52] and [32] (including their highly
technical nature), although their definitions of the estimator are slightly different leading
to some minor differences in special cases. However our second definition, Asymptotic
Onto-Breakdown Point, is a structurally new definition, and we illustrate how it can result
in significantly different values on some common and useful estimators. Our main theorem
will require both definitions, and the differences in performance will lead to several new

applications and insights.

31

We define an estimator E as a function from the collection of some finite subsets of a metric

space (27, d) to another metric space (Z”,d’):
E: 7 C{XCZ|0<|X|<oo}r—27, (3.1)

where X is a multiset. This means if x € X then x can appear more than once in X, and the

multiplicity of elements will be considered when we compute |X]|.

Finite Sample Breakdown Point. For estimator E defined in (3.1) and positive integer n we

define its finite sample breakdown point gg(n) over a set M as

(3.2)

M) ifM £
gE(”):{glaX() ;fM;I_—é@

where for p(x’, X) = maxyex d(x’, x) is the distance from x’ to the furthest point in X,

M={me[0,n] |VXeE L, |X|=nVYG >03G =Gy(X,G) s.t.
VX'e o, if | X'|=nand [{x' € X' | p(x/,X) > G1}| <m (3.3)

then d'(E(X), E(X')) < G, 1.

For an estimator E in (3.1) and X € <7, the finite sample breakdown point gr (1) means if
the number of unbounded points in X’ is at most g (1), then E(X”) will be bounded. Lets
break this definition down a bit more. The definition holds over all data sets X € .7 of size
n, and for all values G; > 0 and some value G, defined as a function G, (X, G) of the data
set X and value Gy. Then gg(n) is the maximum value m (over all X, Gy, and G, above)
such that for all X’ € o with |X'| = n then [{x’ € X' | p(¥/, X) > G1}| < m (that is at most
m points are further than G; from X) where the estimators are close, d’ (E(X), E(X')) < G,.

For example, consider a point set X = {0,0.15,0.2,0.25,0.4,0.55,0.6,0.65,0.72,0.8,1.0}
with n = 11 and median 0.55. If we set G; = 3, then we can consider sets X’ of size 11 with
fewer than m points that are either greater than 3 or less than —2. This means in X' there
are at most m points which are greater than 3 or less than —2, and all other n — m points are
in [—2,3]. Under these conditions, we can (conservatively) set G, = 4, and know that for
values of m as 1,2,3,4, or 5, then the median of X’ must be between —3.45 and 4.55; and
this holds no matter where we set those m points (e.g., at 20 or at 1000). This does not hold
form > 6,s0 ge(11) =5.

32

Asymptotic Breakdown Point. If the limit lim, . gEr(l") exists, then we define this limit
— lim SE()
p= r}l—]:)l}o n 34

as the asymptotic breakdown point, or breakdown point for short, of the estimator E.

Remark 3.1. It is not hard to see that many common estimators satisfy the conditions. For example,

the median, Li-median [7], and Siegel estimators [81] all have asymptotic breakdown points of 0.5.

Asymptotic Onto-Breakdown Point. For an estimator E given in (3.1) and positive integer
n, if
M:{Ogmgn]VXG%,|X]:n,Vy€%',
31X e st |X'|=n|XNX|=n-—mEX) =y}

is not empty, we define

fe(n) = min(M). (3.5)

The definition of fr(n) implies, if we change fr(n) elements in X, we can make E become
any value in 2': it is onto. In contrast ¢¢ (1) only requires E(X') to become far from E(X),
perhaps only in one direction. Then the asymptotic onto-breakdown point is defined as the

following limit if it exists

Jim 2. (3.6)

n—co N

Remark 3.2. For a quantile estimator E that returns a percentile other than the 50th, then

lim,; oo gElgn) # lim;, 0 i E,g"). For instance, if E returns the 25th percentile of a ranked set,

setting only 25% of the data points to —oo causes E to return —oo; hence limy,_,c g’ign) = 0.25.

And while any value less than the original 25th percentile can also be obtained; to return a value
larger than the largest element in the original set, at least 75% of the data must be modified, thus
limy, e 0 = 0.75,

As we will observe in Section 3.3, this nuance in definition regarding percentile estimators will

allow for some interesting composite estimator design.

3.2.2 Definition of E1-E2 Estimators, and their Robustness

We consider the following two estimators:

Ei: o4 C{XC271|0<|X| <00} — 25, (3.7)

33
Ery: o C{XC 2 |0<|X|<oo}— 27, (3.8)

where any finite subset of E; (<7), the range of E;, belongs to <. Suppose P; € 4, |Pi| =k
fori =1,2,--- ,n and Py, = W, P;, where & means if x appears n; times in X; and n,

times in X, then x appears 11 + np times in X; & X,. We define
E(Pat) = E2 (E1(P1), E1(P2), -+ ,E1(Py)) . (3.9)

Theorem 3.1. Suppose gr, (k) and gg,(n) are the finite sample breakdown points of estimators Eq
and Ey which are given by (3.7) and (3.8) respectively. If gp(nk) is the finite sample breakdown
point of E given by (3.9), then we have

gE, (n)ge, (k) < ge(nk). (3.10)
and if
() 8E2(n) ge(nk)
'B - 711%00 'B o nlklr—>noo nk
and all exist, then
B1B2 < B. (3.11)

Proof. For any fixed G; > 0, and any subsets P|, P}, - - - , P, € 4 satisfying |P{| = |Pj| =
= |P,| =k, and

[{p" € Phatl p(p', Priat) > G1}| < gk, (n)ge, (k) (3.12)

where Pj,, = W', P/, we introduce the notation
X ={Ei(P1),E1(P2), -+, E1(Pa)}, X' ={Ei(P)),E1(P3),- -, E1(Py)}.

So, in order to prove (3.10), we only need to bound E(P_,).
We define
L={1<i<n||{p"€Plp(p) P)> G} >gk(k)} (3.13)
and then have
|| < gk, (n). (3.14)
Otherwise, since p(p’, P;) > Gy implies p(p/, Piat) > G, from |I;| > gg,(n) and (3.13) we

can obtain
’{Pl € pf/|at‘ p(P// Pﬂat) > Gl}’ > gEz(”)gB (k)

which is contradictory to (3.12).

34

Forany i ¢ I;, we have |{p’ € P/| p(p/, Pi) > Gi1}| < g5, (k), so, from the definition of
g£, (k) we know

3 G2 Gz(PI,Gl) s.t. dz(El() El()) < GZ Vi é 11
where d; is the metric of space Z5. Let

G, = maxGh + max do(E;(P), E1(P}))
i¢h 1<i,j<n

then we have

Defining I, = {1 <i < n | p(E1(P!), X) > Gy} from (3.15) we have I, C I;, which implies
|| < || < gg,(n) by (3.14). Therefore, from the definition of g, (n), we have

3Gs = G3(X, Ga) sit. [|E(Phar) — E(Prar) | = [[E2(X) — E2(X)|| < G,

which implies (3.10), and (3.11) can be obtained from (3.10) directly. Thus, the proof is
completed. O

Remark 3.3. Under the condition of Theorem 3.1, we cannot guarantee p = B1P2. For example,

suppose E1 and E; take the 25th percentile and the 75th percentile of a ranked set of real numbers

13_3

respectively. So, we have By = B = L. However, = 1.3 = %

In fact, the limit o gﬂg’;k) as n,k — oo may even not exist. For example, suppose E; takes the
25th percentile of a ranked set of real numbers. When n is odd E, takes the the 25th percentile of a
ranked set of n real numbers, and when n is even E, takes the the 75th percentile of a ranked set of
n real numbers. Thus, By = Bo = 1, but gp(nk) ~ Ink if nis odd, and gg(nk) ~ § - 3nk if n is

E(n)
5 does not exist.

even, which implies lim,, ;o &

Therefore, to guarantee p exist and g = B2, we introduce the definition of asymptotic
onto-breakdown point in (3.6). As shown in Remark 3.2, the values of (3.4) and (3.6) may be
not equal. However, with the condition of the asymptotic breakdown point and asymptotic

onto-breakdown point of E; being the same, we can finally state our desired clean result.

35

Theorem 3.2. For estimators Eq, E; and E given by (3.7), (3.8) and (3.9) respectively, suppose
gk, (k), gE,(n) and gg(nk) are defined by (3.2), and fg, (k) is defined by (3.5). Moreover, E; is an

onto function and for any fixed positive integer n we have

31X € oh,|X| =n,G > 0,5tV Gy >0,3 X € o satisfying

(3.16)
1X'| = n, | X"\ X| = gg,(n) + 1, and dy(E2(X), E2(X")) > Ga.
where d) is the metric of space 2.
If
— 1 gEl(k) 1 fEl(k) T gEz(n)
po= Jim S5 = i P e g 55 617
both exist, then

= tim SEU) pists and B Bipo. (3.18)

nk—eo nk
Proof. For any fixed positive integer 1, we can find X = {x1,x2,- -+ ,x,} € @%,and G; > 0
satisfying (3.16). Since E; is an onto function, we can find Pq,; = W', P; such that P; € &7
and E;(P;) = x;foralll <i <mn.
From (3.16), we know for any G, > 0, we can find X' € @ such that | X'| = n, | X'\ X| =
gr,(n) +1and
d (Ex(X),E2(X")) > Go.

This implies the number of different elements between X and X' is g, (n) + 1. For any
x} € X'\ X, we can find P/ € @/ such that |P/| =k, E(P]) = x} and |P/ \ P;| = f, (k). So,
we only need to change fg, (k)(gg, (1) + 1) points of Py,¢, and then we can obtain Pj,, such

that |Pf,, \ Prat| = f£, (k) (g5, (1) + 1) and d’(E(Paat), E(Pq,,)) > Go. This implies

ge(nk) < fr, (k) (gE,(n) +1). (3.19)

Therefore, from Theorem 3.1 and (3.19) we have

gE]k(k) gEzn(”) < gE;iZk) < fElk(k) (gEz(T;l) +1) (3.20)

Letting n and k go to infinity in (3.20), we obtain (3.18) from (3.17). Thus, the proof of this

theorem is completed. O

Remark 3.4. Without the introduction of fg(n), we cannot even guarantee B < B1 or p < Bp only

under the condition of Theorem 3.1, even if E1 and Ey are both onto functions. For example, for any

36
P={pi,p2--,pr} CRand X = {x1,x2,--- ,x,} C R, we define E1(P) = 1/median(P) (if
median(P) # 0, otherwise define E1(P) = 0) and Ey(X) = median(y1,y2,- - ,Yn), where y; (1 <
y < mn)is given by y; = 1/x; (if x; # 0, otherwise define y; = 0). Since gg, (k) = gg,(n) = 0 for
all n, k, we have B1 = By = 0. However, in order to make E(E1(Py), E1(P2), -+, E1(Py)) — o0,
we need to make about & elements in {E(P;), E(P2),-- - ,E(Py)} go to 0+. To make E1(P;) — 0+,

we need to make about § points in P; go to +oo. Therefore, we have gp(nk) ~ % -5 and p = 1.

3.2.3 Multi-level Composition of Estimators
To study the breakdown point of composite estimators with more than two levels, we

introduce the following estimator:
Es: o5 C{XC 27|0<|X|<oo}— 27, (3.21)

where any finite subset of E>(.%%), the range of E;, belongs to <. Suppose P;; € 4,

|P1-,]-| =kfori=12,---,n,j=1,2,---,mand PfjIat =W P, Prat = Lﬂ;?q:ngIat. We define

E(Paa) = Es (Ea(Phar), E2(Pfao), -+ E2(Pfl)) (3:22)

where leat = {El (Pl,j>l El(PZ,j)l Tty El (Pn,j)}/ fOI'j = 1/ 2/ (S
From Theorem 3.2, we can obtain the following theorem about the breakdown point of E

in (3.22).

Theorem 3.3. For estimators Eq, Ey, Ez and E given by (3.7), (3.8), (3.21) and (3.22) respectively,
suppose g, (k), ge,(n), gg,(m) and gg(mnk) are defined by (3.2), and fg, (k), fg,(n) are defined

by (3.5). Moreover, Eq and Ej are both onto functions, and for any fixed positive integer m we have
IX e d,|X|=m,G >0,5t. VG >0,3X € o4
satisfying |X'| = m, | X'\ X| = gg,(m) + 1, and d5(E3(X), E3(X')) > Go.

where dY is the metric of space 27. If

1 = lim guk) _ ;o fr(K) B, = lim 8e(n) _ i S () (3.23)
k—s 00 k—oo k n—oo N n—co N
and B3 = limy, e gE3n5m) all exist, then
B= tim SEUK) it and B = Bifaps. (3.24)

m,n,k—o0 mnk

37

Proof. We define an estimator E:
E(Pla) = E2(E1(Py), Ex(Pa), -+, E(Pu))

forj=1,2,---,m, and first prove the breakdown point of Eis ,B = B1B2.

For any fixed y € 23 and X = {E;(Py), E1(P,),--- ,E1(Py)}, we can find X’ € 4% such
that | X'| = n, | XN X'| = n — fg,(n) and Ex(X’) = y. For any element y’ € X"\ (XN X'),
we can find E;(P;) € X\ (XN X’) and P/ € @ such that |P/| =k, |P; N P/| =k — gg, (k) and
E;(P]) = y'. This implies we can find a set Py, C 27 such that |Py_,| = nk, |Puse N P, | =
nk — fg,(n)fe, (k) and E(P}_,) = y, i.e. we only need to change f, (1) fg, (k) points in Py,

and E can become any value. So, we have

fe(nk) < fe,(n) fe, (k). (3.25)

Applying Theorem 3.1 to E; and E,, we obtain

gEZ(n)gEl (k) < gE(nk)' (3-26)
Since gz(nk) < fz(nk), from (3.25) and (3.26), we have

gEzn(n) gElk(k) < gﬁflzk> < ffslzk) < szrfn) fE1k(k). (3.27)

Letting 1, k go to infinity in (3.27), from (3.23) we obtain the breakdown point of E is

5 . gglnk) . fp(nk)

'B n,klinoo n n,klranoo nk 'BlﬁZ
Since E(Pqat) = E3(E(If5f1|at), E(ﬁzlat), cee, E(ﬁ’l’;t)), we apply Theorem 3.2 to E and E3, and
then obtain (3.24). O

3.3 Applications
We next discuss several applications of our main theorems and observations. Applications
2 and 4 are direct applications of the easy to use theorems. Applications 1 and 3 take
advantage of some of the nuances in definition, in particular the unexpected robustness of

composing quantile estimators.

3.3.1 Application 1: Balancing Percentiles
For n companies, for simplicity, assume each company has k employees. We are interested

in the income of the regular employees of all companies, not the executives who may have

38

exorbitant pay. Let p;; represents the income of the jth employee in the ith company.
Set Py = W' | P; where the ith company has a set P, = {pi1,pi2,- -, pix} C Rand for
notational convenience p;; < pi» < -+ < pjpfori € {1,2,---,n}. Suppose the income
data P; of each company is preprocessed by a 45-percentile estimator E; (median of lowest
90% of incomes), with breakdown point f; = 0.45. In theory E; (P;) can better reflect the
income of regular employees in a company, since there may be about 10% of employees
in the management of a company and their incomes are usually much higher than that of
common employees. So, the preprocessed data is X = {E1(Py), E1(P2), -+, E1(Pu) }-

If we define E»(X) = median(X) and E(Pyat) = E2(X), then the breakdown point of E;
is B2 = 0.5, and the breakdown points of E is f = B182 = 0.225.

However, if we use another Ej, then E can be more robust. For example, for X =
{x1,x2,- -+ ,x,} where x; < x < --- < x,, we can define E; as the 55-percentile estimator
(median of largest 90% of incomes). In order to make E(Phat) = E2(X) = Ez(E1(P1), E1(P2),
---,E1(Py)) go to infinity, we need to either move 55% points of X to —oo or move 45%
points of X to 4-co. In either case, we need to move about 0.45 - 0.55nk points of Py to
infinity. This means the breakdown point of E is f = 0.45 - 0.55 = 0.2475 which is greater
than 0.225.

This example implies if we know how the raw data is preprocessed by estimator E;, we

can choose a proper estimator E; to make the E{-E; estimator more robust.

3.3.2 Application 2 : Regression of L; Medians

Suppose we want to use linear regression to robustly predict the weight of a person from
his or her height, and we have multiple readings of each person’s height and weight. The
raw data is Pyay = W | P; where for the ith person we have a set P; = {p;1, pi2, - - , Pix} C
R? and p;j = (x;;,y;j) fori € {1,2,---,n},j € {1,2,--- ,k}. Here, x;; and y;; are the
height and weight respectively of the ith person in their jth measurement.

One “robust” way to process this data, is to first pre-process each P; with its Li-median [7]:
(%;,7i) < E1(P;), where E1(P;) = Li-median(P;) has breakdown point f; = 0.5. Then we
could generate a linear model to predict weight §; = ax + b from the Siegel Estimator [81]:
E>(Z) = (a,b), with breakdown point f, = 0.5. From Theorem 3.2 we immediately know
the breakdown point of E(Py,t) = E2(E1(P1), E1(P2),- -+ ,E1(Py)) is B = B1f2 =0.5-0.5 =

39

0.25.

Alternatively, taking the Siegel estimator of P (i.e., returning Ej(Prat)) would have a
much larger breakdown point of 0.5. So a seemingly harmless operation of normalizing the
data with a robust estimator (with optimal 0.5 breakdown point) drastically decreases the

robustness of the process.

3.3.3 Application 3 : Significance Thresholds

Suppose we are studying the distribution of the wingspread of fruit flies. There are
n = 500 flies, and the variance of the true wingspread among these flies is on the order of
0.1 units. Our goal is to estimate the 0.05 significance level of this distribution of wingspread
among normal flies.

To obtain a measured value of the wingspread of the ith fly, denoted F;,, we measure
the wingspread of ith fly k = 100 times independently, and obtain the measurement set
P; = {pi1, pi2, - -+ , Pik - The measurement is carried out by a machine automatically and
quickly, which implies the variance of each P; is typically very small, perhaps only 0.0001
units, but there are outliers in P; with small chance due to possible machine malfunction.
This malfunction may be correlated to individual flies because of anatomical issues, or it
may have autocorrelation (the machine jams for a series of consecutive measurements).

To perform hypothesis testing we desire the 0.05 significance level, so we are interested in
the 95th percentile of the set F = {Fy, F,,- - -, F,}. So a post processing estimator E; returns
the 95th percentile of F and has a breakdown point of g2 = 0.05 [54]. Now, we need to
design an estimator E; to process the raw data Ppas = W} | P; to obtain F = {F;, F,,- - -, F, }.
For example, we can define E; as F; = E;(P;) = median(P;) and estimator E as E(Pyat) =
E>(E1(Py), E1(P2),- -+ ,E1(Py)).

Then, the breakdown point of E; is 0.5. Since the breakdown point of E; is 0.05, the
breakdown point of the composite estimator E is B = B> = 0.5-0.05 = 0.025. This
means if the measurement machine malfunctioned only 2.5% of the time, we could have
an anomalous significant level, leading to false discovery. Can we make this process more
robust by adjusting E;?

Actually, yes!, we can use another pre-processing estimator to get a more robust E. Since

the variance of each P; is only 0.0001, we can let E; return the 5th percentile of a ranked

40

set of real numbers, then there is not much difference between E; (P;) and the median of
P;. (Note: this introduces a small amount of bias that can likely be accounted for in other
ways.) In order to make E(Pyat) = Ex(F) go to infinity we need to move 5% points of X to
—oo (causing E; to give an anomalous value) or 95% points of X to +oco (causing many, 95%,
of the E; values, to give anomalous values). In either case, we need to move about 5% - 95%
points of Py, to infinity. So, the breakdown points of E is f = 0.05 - 0.95 = 0.0475 which is
greater than 0.025. That is, we can now sustain up to 4.75% of the measurement machine’s
reading to be anomalous, almost double than before, without leading to an anomalous
significance threshold value.

This example implies if we know the post-processing estimator E, we can choose a

proper method to preprocess the raw data to make the E;-E, estimator more robust.

Remark 3.5. A further study would be required to use such a composite estimator in practice due
some bias it introduces. To replicate the normalization process on new experimental data (e.g., on
a new species with hypothesized long wingspread), we would probably need to make one of the
following adjustments to the standard process of measuring the wingspread of the new species
and directly comparing it to the significance threshold. (a) Also consider the 5th percentile of the
experimental measurements (with breakdown point 0.05 instead of 0.5). (b) Adjust the significance
level by roughly 0.0001 units (the variance over P;) making it conservative with respect to the 5th
percentile versus the 50th percentile decision of each fly's measurements, so the 50th percentile could
be used on the new experimental data. Or, (c) use a different percentile (say the (95 + €)th percentile
instead of 95th) to balance the bias in using the 5th percentile of measurements. In the specific
scenario we describe, we believe option (b) may be a very acceptable option with little lack in precision

(due to difference in variance 0.1 and 0.0001) but with large gain in robustness.

3.3.4 Application 4 : 3-Level Composition
Suppose we want to use a single value to represent the temperature of the US in a certain
day. There are m = 50 states in the country. Suppose each state has n = 100 meteorological
stations, and the station 7 in state j measures the local temperature k = 24 times to get the

data Pi,]' = {ti,j,lr ti,j,Z/ ey, ti,j,k}- We define Pfjlat = &J?:lpi,j/ Pﬂat = &J;ﬂ:lpfjlat and

41

E{(P;;) = median(P;;), EZ(Pﬂat) median (E1(Py;), Ey(P1j),- -+, E1(Py))
E(Prar) = Es(E2(Piiat), E2(Piat), -+, E2(Piiyy)) = median(Ea(Piy,), E2(Piae), - -+ E2(Piiy))-

So, the break down points of E;, E; and E3z are 1 = B> = B3 = 0.5. From Theorem 3.3,
we know the break down point of E is = B1283 = 0.125. Therefore, we know the
estimator E is not very robust, and it may be not a good choice to use E(Pyat) to represent
the temperature of the US in a certain day.

This example illustrates how the more times the raw data is aggregated, the more

unreliable the final result can become.

3.4 Simulations
We next describe a few more scenarios where our new theory on estimator composition
is relevant. For these we simulate a couple of data sets to demonstrate how one might

construct interesting algorithms from these ideas.

3.4.1 Simulation 1: Estimator Manipulation

In this simulation we actually construct a method to relocate an estimator by modifying
the smallest number of points possible. We specifically target the Li-median of L;-medians
since its somewhat non-trivial to solve for the new location of data points.

In particular, given a target point py € IR? and a set of nk points Pyae = W | P;, where P; =
{pi1,pio, -+, pix} C R? we use simulation to show that we only need to change ik points
of Pq,¢, then we can get a new set Do = &J?Zlﬁi such that median(median(ﬁl), median(ﬁz),

. ,median(P,)) = po. Here, the “median” means L;-median, and

~_{%n if n is even ~_{%k if k is even
3(n+1) ifnisodd B I(k+1) ifkisodd
To do this, we first show that, given k points S = {(x;,y;) | 1 <i < k} in R?, and a target
point (xo, o), we can change k points of S to make (xo, yo) as the L;-median of the new set.
As n and k grow, then 7ik/ (nk) = 0.25 is the asymptotic breakdown point of this estimator,
as a consequence of Theorem 3.2, and thus we may need to move this many points to get
the result.

If (x0,y0) is the Li-median of the set {(x;,y;) | 1 <i < k}, then we have [89]:
k -
y Y X0 Yi — yo _=0. (328)
SVt W-w? SV 20+ i)

e

42

We define X = (x1,x2,- -, x3), ¥ = (y1,¥2,- - - ,y;) and

oo k Xi — X0 : k Yi—Yo >2
"= <z—21 V(% —x0)2 + (yi—yo)2> " (z—zl Vxi =2+ Wi—w?)

Since (3.28) is the sufficient and necessary condition for Li-median, if we can find X and i/

such that h(X,) = 0, then (xo, yo) is the L1-median of the new set.

Since
k . 2
(3, 7) =2 e Wizl
<J; \/(xj —x0)? + (yj = ¥0)*" ((xi — x0)* + (yi — y0)?)*
_z(i Yi—Yo (xi — x0) (i — ¥o) 3,

i
-

(xj —x0)2 + (yj —y0)?” ((xi — x0)2 + (vi — Y0)?)
L k Xj — Xo (xi — x0) (yi — yo)

9y h(X,7) =—2 /

wi <J_21 \/(xj —x0)? + (yj_yO)Z) ((xi —x0)2 + (yi — ¥0)?)

Yi — Yo (xi — x0)*
+2 ’
@ V(=20 + (3 - yo>2> ((x = x0)% + (v — y0)?)

we can use gradient descent to compute X, i/ to minimize 4. For the input S = {(x;,y;)|1 <

NI

NI

i < k}, we choose the initial value Xo = {x1,x2, -+, x;}, Yo = {y1,¥2,- - - , ¥z}, and then
update ¥ and i/ along the negative gradient direction of /, until the Euclidean norm of
gradient is less than 0.00001.

The algorithm framework is then as follows, using the above gradient descent formulation
at each step. We first compute the Li-median m; for each P;, and then change 7 points in

{mlrm2/ v ,mn} tO Obtaln
/ !/ !
{ml’mZI'..Imﬁ/mfl+1/"'/mn}

such that median(m}, mj, - - - ,my, mz 41, - -+ ,my) = po. For each m!, we change k points in
P; to obtain

Do / / / - .

b= {pi,llpi,Zf' Pk Pikyrr ,Pik}

such that median(P;) = m!. Thus, we have
median (median(P;), - - - ,median(P;), median(P;41), - - - ,median(P,)) = po. (3.29)

To show a simulation of this process, we use a uniform distribution to randomly generate

nk points in the region [—10, 10] x [—10,10], and generate a target point py = (xo, yo) in the

43

Table 3.1: The running result of Simulation 1.

n k | a | k | (x0,) (x5, ¥o)

5 8 3 4 (0.9961, 1.0126) (0.9961, 1.0126)

5 8 3 4 (10.7631, 11.0663) (10.7025 11.0623)
10 5 5 3 (-13.8252, -4.7462) (-13.8330, -4.7482)

50 20 | 25 | 10 | (-14.7196,-13.6728) | (-14.7263, -13.6784)
100 | 50 | 50 | 25 | (-14.0778,18.3665) | (-14.0773,18.3658)
500 | 100 | 250 | 50 | (-15.8408, -6.4259) (-15.8385, -6.4250)
1000 | 200 | 500 | 100 | (18.6351,-12.1014) | (18.7886, -12.2011)

region [—20,20] x [—20,20], and then use our algorithm to change ik points in the given
set, to make the new set satisfy (3.29). Table 3.1 shows the result of running this experiment
for different n and k, where (x{, y;) is the median of medians for the new set obtained by
our algorithm. It lists the various values 1 and k, the corresponding values 7i and k of points
modified, and the target point and result of our algorithm. If we reduce the terminating
condition, which means increasing the number of iteration, we can obtain a more accurate
result, but only requiring the Euclidean norm of gradient to be less than 0.00001, we get
very accurate results, within about 0.01 in each coordinate.

We illustrate the results of this process graphically for a couple of examples in Table
3.1; for the cases n = 5, k = 8, (x0,y0) = (0.9961,1.0126) and n = 5, k = 8, (x0,y0) =
(10.7631,11.0663) These are shown in Figure 3.1 and Figure 3.2, respectively. In these two
tigures, the green star is the target point. Since n = 5, we use five different markers (circle,
square, upward-pointing triangle, downward-pointing triangle, and diamond) to represent
five kinds of points. The given data Py, are shown by black points and unfilled points.
Our algorithm changes those unfilled points to the blue ones, and the green points are the
medians of the new subsets. The red star is the median of medians for Py,¢, and other red
points are the median of old subsets. So, we only changed 12 points out of 40, and the

median of medians for the new data set is very close to the target point.

3.4.2 Simulation 2 : Router Monitoring
Suppose there are n = 100 routers in a network, and each router monitors a stream of
length k = 1000. A router can use streaming algorithm to monitor a single percentile, for

instance the frugal algorithm here [70] only needs a few bites per percentile maintained - it

25

20

Figure 3.1:
3.1.

The target paint is in the convex hull of Py,

s Havw ¢
[elnriy
* mA

sEHAY S

/7

The given points that are not changed

The given points that are changed

The new locations for those changed paints
The median of old subset

The median of new subsst

The median of medians for the given points

The target point

.A\

=

The running result for the case n = 5,k = 8, (xo, o) =

The target point is out of the convex hul of Py,

70— # W A v & The given points that are not changed
o oA The given points that are changed
- 2 ema The new locations for those changed points
or N ¢ mav e Themedian of old subset
The median of new subset
sl * The median of medians for the given points

30

20

The target point

»
»
. .
e []
e .
L&’ a_ &
A »
40 d
-7 e
=
4 hd | | | |
10 0 40 50 60

44

(0.9961,1.0126) in Table

Figure 3.2: The running result for the case n = 5, k = 8, (xo,y0) = (10.7631,11.0663) in

Table 3.1.

does not need to monitor all. We will consider monitoring the approximate median (50%

percentile), 10% percentile, and 90% percentile of the stream, and sending these to a single

command center. The command center will analyze these data to determine whether an

attack occurs. In practice, command centers monitor much larger streams (values of k) and

many more routers (values of n).

45

Table 3.2: The output for different combinations of estimators and outliers.

Proportion | locationof | ny | kg E1: 10% E1: 90% Eq1: 10% E1:90% | Ei: median
of outliers outliers E>: 10% E>: 90% E>: 90% E>: 10% | Ep: median
0% 0 0 -1.3327 1.3549 -1.2169 1.2254 -0.0085
1.21% [100,110] | 11 | 110 | -1.3539 100.5666 -1.2033 1.2093 0.0091
1.21% [-110,-100] | 11 | 110 | -100.6573 1.3291 -1.2065 1.2175 0.0021
10.01% [100,110] | 11 | 910 | -1.3364 108.6957 | 100.0553 1.2118 0.0082
10.01% [-110,-100] | 11 | 910 | -108.7768 1.3388 -1.2081 | -100.0721 -0.0119
26.01% [100,110] | 51 | 510 | -1.3388 108.1641 -0.7794 1.2347 100.1062
26.01% [-110,-100] | 51 | 510 | -108.2083 1.3163 -1.2313 0.7697 -100.1018
46.41% [100,110] | 51 | 910 | -1.3350 108.9832 | 100.1411 1.2280 104.2258
46.41% [-110,-100] | 51 | 910 | -109.0043 1.3350 -1.2423 | -100.1340 | -104.0705

We use standard normal distribution to generate an array S; with 1000 entries to simulate
the ith stream, and assume the routers use the estimator E; to process streams, i.e. Ej returns
the approximate 10% percentile, or 90% percentile, or the median of a stream. The command
center uses the estimator E, to process the gathered data S = (E1(S1), E1(S2),- -+, E1(Sn)),
and E; can return the 10% percentile, or 90% percentile, or the median of S. In our simulation,
we compute each of these quantities exactly. We use outliers in interval [100,110] or
[—110, —100] to simulate attacks.

These values may represent some statistic deemed worth monitoring, say the packet
length or header size after it has been appropriately normalized.

We choose 17 streams, and put k; outliers from the same interval (all positive, or all
negative) to each chosen stream. Table 3.2 shows the final output from command center for
different combinations of estimators and outliers. The first column in Table 3.2 shows the
proportion of outliers, which is equal to "}1—? For example, in the third row of the table, we
choose 11 streams randomly and put 110 outliers drawn from [100,110] into each chosen
stream, so the proportion of outliers is (11 x 110)/(100 x 1000) = 1.21%. When a value
being monitored as a composite of various percentiles becomes very large (above 100, so
not from the normal distribution) we mark it bold.

It is shown in Table 3.2 that for the case E; : 10%, E; : 10% and E; : 90%, E> : 90%, we
can use 1.21% of outliers to change the output of E;-E, estimator, since in this situation
the breakdown point of Ei-E; estimator is 0.01. For the case E; : 10%, Ex : 90% and
E; : 10%, E; : 90%, we can use 10.01% of outliers to change the output of E;-E; estimator,

since in this situation the breakdown point of E;-E; estimator is 0.09. When E; and E, both

46

return the median of a data set, we can use 26.01% of outliers to change the output of E{-E;
estimator, since in this situation the breakdown point of E;-E; estimator is 0.25.

This experiment illustrates how using various composite estimators with different
percentiles can highlight various levels of potential distributed denial of service attacks. For
instance, if only the E; : 10%, E; : 10% estimator is flagged, then we see a few routers have
a few anomalous packets, and even though it is distributed to only about 10% of routers
and 10% of data, we can observe it; but for the most part would be at most a warning. If
E; : 10%, Ez : 90% estimator or Ey : 50%, E; : 50% estimator is flagged, it means at least
9% or 25% of the packets across all routers much be anomalous, and we may see a real
DDS or an early sign of one. These are all conservative estimates. On the other hand, if
at least 10% of the packets are modified on 10% of routers (not too much, perhaps as little
as 1%), then the E; : 10%, E; : 10% estimator will definitely observe it. And if at least
10% of the packets are modified on 50% of the routers (over 5% of all packets), then an
E; : 10%, E> : 50% estimator will definitely observe it. Further work is required to discover
the best combination of percentiles to monitor, but using our observations about composite
estimators suggests this approach which can monitor against various distributions of DDS

attacks without only a few simple estimators, requiring a few bites each, at each router.

3.5 Discussion

In this chapter, we define the breakdown point of the composition of two or more
estimators. These definitions are technical but necessary to understand the robustness of
composite estimators; and they do not stray too far from prior formal definitions [32, 52].
Generally, the composition of two or more estimators is less robust than each individual
estimator. We highlight a few applications and believe many more exist. These results
already provide important insights for complex data analysis pipelines common to large-
scale automated data analysis. Moreover, these approaches provides worst case guarantees
that are concrete about when outliers can or cannot create a problem, as opposed to some
regularization-based approaches that just tend to work on most data.

Next we will highlight a few more insights from this work, or discuss challenges for

follow-on work.

On the dangers of composition. The common case of composing two estimators, each

47

with breakdown point of 0.5 yields a composite estimator of 0.25. This means if the result
is anomalous, at least 25% of the data must change, down from 50%. In other cases, the
resulting composite estimator might yield an even smaller breakdown point of say 0.05.
This seems like very bad news! But for large data sets, adversarially changing 5% of data
is still a lot. For instance with 1 million data points, then 5% is 50,000, which would still
be an ominously difficult task to modify. So even a 0.05 or 0.01 breakdown point on large
data is a useful barrier to manipulation (of the sort in our Simulation 1 below). On the other
hand, repeated composition can quickly (exponentially) decrease the breakdown point
until it is dangerously low; hence we believe this new theory will play an import role in

understanding the robustness and security of long data analysis pipelines.

Robustness and unbiasedness. In this chapter, we focus exclusively on the robustness of
estimators, but it is also important to aim for low-MSE or unbiasedness estimators. An
interesting future direction is to design estimators that are both robust (including have
large onto-breakdown points) as well as other properties. We lead this direction with a few

points:

e Composing two unbiased estimators will typically be unbiased (some care may be

needed in weighting).

e Robustness is a worst-case analysis (protecting against adversarial data) and its claims

are often orthogonal to those about low-MSE.

e Our analysis bounds the robustness of composition of any two (or more) estimators.
So if other work independently shows low-MSE or low-bias properties, then we can

immediately combine these works to show both.

Removing all subsets size k constraint. The restriction |P;| = k (all subsets at the first
level are the same size) is mainly for expositional convenience. Otherwise, there are some
technical issues with reweighing points in Py,; and defining the limits. In fact, suppose

|P;| =kjfori=1,2,---,n, Paay = W' P;, g5, (k1) < gk, (k2) < -+ < gE, (ky), and
E(Phat) = E2 (E1(P1), E1(Pa), - - ,E1(Py)).

Then using the method in the proof of Theorem 3.1, we can obtain a result similar :

48

gEz(n) n
gk, (ki) < ge() ki) (3.30)
i=1

i=1

which is a generalization of (3.10).

Finite sampling breakdown point for composite estimators. Theorem 3.2 provides an
asymptotic breakdown point for composite estimators. But for smaller data sets, a finite
sample version is also useful and important. Equation (3.10) already gives a lower bound of
the finite sample breakdown point of composite estimators. To get an upper bound on the
finite sample vesion, we can modify Theorem 3.2, by adding a condition fg, (k) = gg, (k) +C
where C is a positive constant. Then there is also an annoying off-by-one error on gg, (see

eq (3.20)), so the result would be something like

8k, (K)gE, (n) < ge(nk) < (gk, (k) + C)(gr, () +1),

and it is not completely tight. We leave providing a tight bound (up to these constants) as

an open question.

CHAPTER 4

SIMPLE DISTANCES FOR TRAJECTORIES VIA
LANDMARKS

4.1 Introduction

The choice of a distance is often the most important modeling decision in any data analysis
task. This choice is what determines which objects are close and which are far. However,
this task is often taken lightly or made just based on what provides the simplest or easiest
to compute option.

In this chapter, we explore what we believe to be a new and natural family of distances
between objects, focusing on two cases when the objects are hyperplanes (e.g., regressors
or separators), or when they are trajectories. Our proposed distance dg uses a set Q of
landmark points, which could be the dataset that regressors or separators are trained on,
or in the case of trajectories these may be points of interest for which a trajectory passing
nearby has specific meaning. However, in a general case, Q can be chosen as arbitrary
or random points placed to cover a domain of focus. Then the new distances, instead of
being directly between the objects themselves, are based on how they interact with the set
of landmarks. In the simplest variant, for n landmarks Q, for any object | we create an
n-dimensional vector v; = (v1,vy,...,v,) of the distance from g; € Q to], and the distance
between two objects J; and], is the Euclidean distance between the vectors ||v, — v, ||. In
other words, we vectorize the distance between complex objects.

In this chapter, we explore several variants of this formulation, derive convenient

mathematical properties, and demonstrate its efficacy in several data analysis scenarios.

Key properties of a distance. A definition of a distance d is the key building block in
most data analysis tasks. For instance, it is at the heart of any assignment-based clustering

(e.g., k-means) or for nearest-neighbor searching and analysis. We can also define a radial-

50

basis kernel K(p,q) = exp(—d(p,q)?) (or similarly), which is required for kernel SVM
classification, kernel regression, and kernel density estimation. A change in the distance,
directly affects the meaning and modeling inherent in each of these tasks. So the first
consideration in choosing a distance should always be, does it capture the properties
between the objects that matter?

As we will observe, by having a distance depend on a set of landmarks Q, then we can
tune it to focus on certain regions. In the case of regressors or separators (e.g., infinite
lines, hyperplanes) this makes sure the distance is determined by how these infinite objects
interact with the support of the data. In the case of trajectories, the distance can be adjusted
to focus on one or more locations of interest (e.g., a sporting event or school) or regions
of interest (e.g., how someone passes through an airport, but not how they get there), as
opposed to its full geometry.

A generic desired property of a distance is that it should be a metric: for instance this is
essential in the analysis for the Gonzalez algorithm [49] for k-center clustering, and many
other contexts such as nearest-neighbor searching.

Another generic goal is analyzing the distance’s metric balls. That is, given a set of objects
Jand adistanced: J x J — R,let B(J,r) ={J € 3| d(J,]') < r} be a metric ball around
J € J of radius r. Then we can define a range space (J, R) where R = {B(],r) | J € J,r > 0},
and consider its VC-dimension [85]. When the VC-dimension v is small, it implies that the
metric balls cannot interact with each other in a too complex way, indicating the distance
is roughly as well-behaved as a v-dimensional Euclidean ball. More directly, this implies,
decision boundaries to classify objects can be learned with only e-fraction generalization
error using O(v/e - log(1/¢)) samples if the data is separable, or O(v/e2) samples if the
data is not separable [65]. Similar bounds can be shown for other tasks such as preserving
kernel density estimates derived from such distances [61]. In other words, this ensures that

many tasks are stable with respect to the underlying family of objects J.

Main results. We define a new data dependent distance dg for trajectories and for linear
models (e.g., regressors, separators) built from a landmark data set Q. For the simpler cases
of linear models (in Section 4.2), we show it is a metric as long as Q is full rank. We also

show that its metric balls have VC-dimension bounded only by the ambient dimension

51

and not on the size of Q. We find this surprising because the distance corresponds to
an embedding in |Q|-dimensional Euclidean space where an immediate bound for the
VC-dimension is |Q| + 1; and indeed this will be the best bound we have for most of the
trajectory variants. We show how to directly extend all of these definitions of lines to
trajectories, with a somewhat unintuitive and restrictive distance measure dy .

For the pressing scenario of trajectories, in Section 4.3, we introduce two more intuitive
variants dp and dp. We describe simple conditions for Q under which they are metrics. We
can immediately see that both distances are pseudometrics (they satisfy triangle inequality,
and are symmetric, but might have distinct objects with distance 0). We show they satisfy the
final O-property of a metric as long as the waypoints are distinct and Q is sufficiently dense.
For all new variants we demonstrate that they are at the least as effective for classification
tasks (via KNN classifiers) as compared to the best of 9 other common metrics, and in some
cases significantly outperforms all of these measures. Moreover, the previous competing variants
are typically significantly more complicated or computationally intensive, and may require
parameter tuning.

In contrast to most of these trajectory distance alternatives, all of our proposed distances
are very simple to compute and work with. They map curves (or hyperplanes) to a
|Q|-dimensional parameter space where Euclidean distance (or similar) is used. In dg
for curves, each coordinate v; is the distance to the closest point on the curve from g; € Q.
In df) each “coordinate” is actually the d coordinates of the closest point on the curve (not
just the distance). In 4§ each “coordinate” v; is actually k values, to the distance to the
closest point on the k lines extending the k lines segments of the curve. These mappings are
effective with only 10 or 20 landmark points Q. And because they have a familiar Euclidean
structure, we can immediately invoke favorite algorithms in this space, from Lloyds for
k-means clustering, linear and kernel SVM, and highly-engineered approximate nearest
neighbor libraries. In comparison to recent trajectory similarity search systems [80,92], we
show using dg is much simpler and several orders of magnitude faster.

In summary, this chapter introduces a family of metrics for regressors, separators, and
piecewise-linear curves which are incredibly simple to use, provide a sketch vector in
Euclidean space, have many other desirable mathematical properties, and perform as well

as and often significantly better than any existing measure.

52

4.2 Distance Between Lines and Hyperplanes
As a warm up to the general case, we define a new landmark-based distance dg between
two lines, and give the condition under which it is a metric. Then we generalize to
hyperplanes, and provide the general metric proof, the VC-dimension of metric ball proof,

and some algorithmic implications. We conclude with a direct extension to trajectories.

4.2.1 Warm Up: Distance Between Lines
We begin by reviewing alternatives, starting with the default dual Euclidean distance.
Consider the least square regression problem in R?: given Q = {(x1,¥1)," ", (xn, yn)}
C R? return a line £ : y = ax + b such that (a,b) = arg min, ;) cge Yiq (ax; +b — y;)*.
If 41 : y = a;x + by is an alternate fit to this data, then to measure the difference in these
variants, we can define a distance between ¢ and ¢;. A simple and commonly used distance

(which we called the dual-Euclidean distance) is

dae(6,01) == /(@ — a1 + (b — by)2.

This can be viewed as dualizing the lines into a space defined by their parameters (slope a
and intercept b), and then taking the Euclidean distance between these parametric points.
However, as shown in Figure 4.1(Left), if both ¢; and ¢, have the same slope a; = a», and
are offset the same amount from ¢ (|b — by| = |b — by|), then dge (¢, ¢1) = dge (¢, £2), although
intuitively ¢; does a much more similar job to ¢ with respect to Q than does /5.

More generically, a geometric object is usually described by an (often compact) set in IRY.
There are many ways to define and compute distances between such objects [8,9,47,48].
These can be based on the minimum [47, 48] or maximum (e.g., Hausdorff) [8, 9] distance
between objects. We review more later in the context of trajectories in Section 4.4.1. For lines
or hyperplanes which extend infinitely and may intersect at single points, such measures

are not meaningful.

Our formulation. Suppose Q = {q1,92,- - ,qn} C R?> where g; has coordinates (x;,y;) for

1 <i < n,and /is a line in R?, then ¢ can be uniquely expressed as
¢={(x,y) € R*| uix + upy + uz = 0},

where (u1,up,u3) € U°. Here U® = {u = (u3,up,u3) € R* | u? +u3 = 1 and the first

nonzero entry of u is positive}, is a canonical way to normalize u where (11, 12) is unit

53

normal vector and u3 is an offset parameter. Let v, (¢) = u1x; + upy; + us; itis the signed dis-
tance from g; = (x;, ;) to the closest point on £. Then v (¢) = (v, (£),vo,(?),...,vq,(¢))

is the n-dimensional vector of these distances. For two lines ¢1, ¢ in R%, we can now define

N|—

—_

oty by) = Hf vg(fr) — vg(f2))]| = (Z* 00, (f1) = vg,(12))?) .

1=

3

As shown in Figure 4.1(Right), |vg,(¢)| is the distance from g; to £. With the help of
Q, we convert each line ¢ in IR? to point ﬁvQ(ﬁ) in R”, and use the Euclidean distance
between two points to define the distance between the original two lines. Via this Euclidean
embedding, it directly follows that dg is symmetric and follows the triangle inequality. The
following theorem shows, under reasonable assumptions of Q, no two different lines can be

mapped to the same point in IR", so dg is a metric.

Theorem 4.1. Suppose in Q = {(x1,y1), (x2,¥2), -+, (xn,yn)} C RZ there are three non-

collinear points, and L = {{ | £ is a line in R?}, then dq is a metric in L.

Proof. The function dg(-,-) is symmetric and by mapping to R" satisfies the triangle

inequality, and ¢; = /, implies dg(¢1,¢2) = 0; we now show if dg(¢1,¢2) = 0, then
b = {y.

qi

|@pi] = |vo.(1)]

. |U3|
/4»

Figure 4.1: Left: dqe(¥, {1) = dqe(¥, £2), but which of ¢; and /¢, is more similar to ¢ with
respect to Q? Right: Each p; is the projection of g; on £.

(=}
Ky

54

Without loss of generality, we assume (x1,y1), (x2,y2), (x3,3) € Q are not on the same

line, which implies

x1 y1 1
X2]/2 1
X3 y3 1

£0. (4.1)

Suppose /1 and ¢, are expressed in the form:

6 ={(xy) €eR| ugl)x + ugl)y + uél) =0},
6 ={(xy) e R|ux+ully+ul? = 0},

where (ugl),ugl),ugl)),(ugz),ugz),uéz)) € U represent lines ¢, and /;, respectively. If

do(€1,¢2) = 0, then we have

xiy! = uf®) - yiy =)+ (s —uf?) =0

fori =1,2,3. We can write this as the system

1 2

x1 oy 1 ”g) - ”g :

X2 Y2 1 ugl) — uéz) =0.
X3 Y3 1 ugl) _ ui(%Z)

Using (4.1), we know it has the unique solution [ugl) — ugz),ugl) — ugz),ugl) — uéz)]T =

0,0,0]T. So, we have u(l) = u(z), u(l) = u(z) and u(l) :(2), and thus /1 = /5. O
1 1 /Uy 2 3 T3

Remark 4.1. In the above formulation, the absolute value |vg.(¢)| is the distance from (x;,y;) to
the line £, i.e. [vg,(£)] = min(y o ((x — x;:)* + (y — y:)2)2. Moreover, if { is parallel to ', then
[vg,(£) —vg,(¢')| = miny yyeq, (v yyer ((x = X') 2+ (y — y')2)2 forany i € [n], which means dg

is a generalization of the natural offset distance between two parallel lines.

4.2.2 Distance Between Hyperplanes
Now let 3 = {h | hisahyperplane in R?} represent the space of all hyperplanes.
Suppose Q = {41,492, ,qn} C R?, where g; has the coordinate (x;1,X;2.- -+ ,X;4). Any

hyperplane h € H can be uniquely expressed in the form
d
h = {x: (xll"' /xd) S IRd | Ej:1u].x].+ud+l :O},

where (u1,- -+ ,u441) is a vector in U™ := {u = (ug, - -+ ,ug41) € R | Z;lzl u]Z =1

and the first nonzero entry of u is positive}, i.e. (ug,-- - ,u,) is the unit normal vector of

55

h, and 1,1 is the offset. We introduce the notation vg(h) = (vg,(h),- - ,vg,(h)) where
v, (h) is again the signed distance from g; to the closest point on /1. We can specify v, (h) =
Z}Ll u;jxjj + ugy1, which is a dot-product with the unit normal of , plus offset 1;, 1. Now

for two hyperplanes h1, h; in R? define

1
2

dQ(l’ll,]’lz) = |’7(UQ(1’11> —UQ hz H = <Z* sz h1 _UQ,(hz))) . 4.2)

2
H

For Q C RY, similar to dgin R?, we want to consider the case that there are d + 1 points
in Q which are not on the same hyperplane. We refer to such a point set Q as full rank since
if we treat the points as rows, and stack them to form a matrix, then that matrix is full rank.
Like lines in IR?, a hyperplane can also be mapped to a point in R”, and if Q is full rank,
then no two hyperplanes will be mapped to the same point in R". So, similar to Theorem

4.1, we can prove dg is a metric in H.
Theorem 4.2. If Q = {q1,92,- - - ,qn} C R%is full rank, then dg is a metric in 3.

Remark 4.2. The distance can be generalized to weighted point sets and continuous probability
distributions. Suppose Q = {q1, -+ ,q2} C RY, W = {wy,--- ,w,} C (0,00), and y is a

probability measure on RY. For two hyperplanes hy, hy in R, we define

1
2

wi(vg,(In) —vg, (h2))?)

=

Il
—

dow (i, hy) = (

NI—

dulin,) = ([, (@c() = 0x(l2) Pee(x)),
where vy (+) is defined in the same way as vg.(+) for x € RY.

4.2.3 VC-Dimension of Metric Balls for dg
The distance dg can induce a range space (3, Rg), where again K is the collection of all
hyperplanes in RY, and Rg = {Bo(h,7) | h € 3, r > 0} with metric ball Bo(h,7) = {I' €
H | dg(h,h') < r}. We prove that the VC dimension [85] of this range space only depends

on d, and is independent of the number of points in Q.

Theorem 4.3. Suppose Q C R? is full rank, then the VC-dimension of the range space (3, Rq) is
at most 3 (d? + 5d + 6).

56

Proof. For any Bg(ho,r) € Rg, suppose Q = {x1,---,x,} with x; = (xj1,---,x;4) and
h € Bg(ho,r). This implies dg(h,hg) < r, so if h is represented by a unique vector

(ug, -~ ,ugiq1) € U1 then we have

"1 d 2 5
) - (Y ujxi;+ gy — in(h0)> <r. (4.3)
i=1" =1
Since this can be viewed as a polynomial of uy, - - - , u;,1, we can use a standard lifting map
to convert it to a linear equation about new variables, and then use the VC-dimension of
the collection of halfspaces to prove the result.

To this end, we introduce the following data parameters 4; [for 0 < j < d + 1] and a; ;
[for 1 <j <j" <d+ 1] which only depend on Q, hy, and r. That is these only depend on

the metric dg and the choice of metric ball.

2 2
v, (ho)” —nre, agy = 2
i=1 i=1

ag = v, (ho),

n n

n
aj = —2) x;0q,(ho) [for 1 < j < d],
i

n
Agi1de1 =1, Gjgs1 =2) x;j[forl <j<d],
i—1
n

aj; = inz,]- [for1 <j<d]|, and
i—1

n
ajjp = 2 Z xi,jxi,j/[for 1<] < j/ < d]
i=1

We also introduce another set of new variables y; [for 1 <j<d +1]and y;; [for1 <j <
j' < d + 1] which only depend on the choice of h:

yi=u;j[for1 <j<d+1] and y;y = ujujy [forl <j<j <d+1].

Now (4.3) can be further rewritten as

d+1

Yoayi+), ajyp+ao <0
=1 1<j<j<d+1

Since the 4; and a; 7 only depend on dg, ho, and r, and the above equation holds for any
y;j and y; » implied by an h € Bg(ho,r), then it converts Bg(ho,r) into a halfspace in R
where d’ = 2(d + 1) + (*}1) = 1(d* +5d + 4). Since the VC-dimension of halfspaces in R
is d’ + 1, the VC dimension of (¥, Rq) isat most d’ + 1 = J(d*> + 5d + 6). O

Remark 4.3. This distance, metric property, and VC-dimension result extend to operate between

any objects, such as polynomial models of regression, when linearized to hyperplanes in RY.

57

4.2.4 Unsigned Variant for the Distance Between Lines and Hyperplans
There are several other nicely defined variants of this distance. For a line ¢ we could
define 9, (¢) = |vg, ()], as the unsigned distance from g; € Q to the line /. When we
consider the distance from g; to some bounded object (e.g., a trajectory in place of /), this
distance is more natural. We are able to show that under similar mild restrictions on Q that
this is a metric; the condition requires 5 points instead of 3. However, we are not able to

show constant-size VC-dimension for its metric balls (as we do for dg in Section 4.2.3).
Suppose Q = {q1,92, -+ ,qu} C R%, {1,l, € L = {{ | fisalinein R?}. Given { € L,
we write £ in the form as before and define 9g(¢) = (¢, (¢),00,(¢),...,00,(¢)) where
00,(0) = |u1x; + upy; + uz| and (x;,y;) is the coordinates of q; € Q, and then define the first

variant of dg as

oty 1) 1= || 7= (60(t1) = b0(E2)| = (11 (P (0 ~ 0 ().

i=1
For (4.4), we have the following theorem.

Theorem 4.4. Suppose in Q C R? there is a subset of five points, and any three points in this

subset are non-collinear, then &Q is a metric in C.

Proof. We only need to show if dg (41, £2) = 0, then ¢; = {,. Suppose Q={q1,--,q5} CQ,
and any three points in @ are not on the same line. If ¢; # /{5, then let ¢} and ¢/, be the two
bisectors of the angles formed by ¢1 and ¢>. From d (41, {>) = 0, we know ¢, (¢1) = 0o, (¢2)
for i € [5], which means the distances from g; € Q to ¢; and to ¢, are equal. So, any point
g; € Q must be either on ¢} or on ¢, which implies there must be three collinear points in

Q. This is contradictory to the fact that any three points in Q are not on the same line. [

Remark 4.4. Definition (4.4) can be generalized to hyperplanes in R%:

NI=

1
n

™=

dg (1, hy) == (Y =(dg,(h) —9g,(h2))?)?, (4.5)

I
—

i

where hy, hy € H, and g, (h;) is the distance from point q; in Q C R to h; (j = 1,2). Using the
similar method, we can show if there is a subset of 2d + 1 points in Q and any d + 1 points in this

subset are not on the same hyperplane, then (4.5) is a metric in 3.

58

Matrix Norm Variant. In another variant of do we define 7, (¢) as a vector from g;
to the closest point on ¢. More specifically, suppose / is in the same form as before,
then the projection of point g; = (x;,y;) on £ is (%;,7;) = (x;cos?(a) — y;sin(a) cos(a) —
csin(a), —x; cos(a) sin(a) + y; sin®(a) — ccos(a)), and we define 3, (¢) = (% — x;, ¥ — i)
for (x;,y;) € Q,and an n x 2 matrix Vo = [3q, (£);- - - ;99,(¢)] where 7, (£) is the ith row

of V. For {1, /> € £ we define the distance between these two lines as

do(f1,£2) := Vo = Vaullr, (4.6)
where || - || is the Frobenius norm of matrices. For (4.6), we have the following theorem.

Theorem 4.5. Suppose in Q C R? there are two different points q1 and qo, then dq is a metric in
L.

Proof. We only need to show if dg(¢1,¢») = 0, then {1 = ¢,. There are two cases.

(1) 3g, (1) = (0,0) and 7, (¢1) = (0,0). From d (41, ¢>) = 0 we know 3, (/) = 0 and
70,(¢2) = 0, which means g; and ¢, are on both ¢; and ¢5, so {1 = />.

(2) 9o, (¢1) # (0,0) or 7g,(¢1) # (0,0). In this case, without loss of generality we assume
90, (¢1) # (0,0). From dg(¢1,¢>) = 0 we have 9, (f2) = 9g,(¢1) # (0,0), so introducing
the notation (X; — x;, 7; — vi) = 90, (¢1), we know (;,¥;) is on {1 and ¢,, and 7, (¢1) is the
normal direction of ¢; and /,. Since a point and a normal direction can uniquely determine

a line, we have /1 = /5. O

Remark 4.5. Definition (4.6) can be generalized to hyperplanes in R%:

dg(h1,h2) :== [[Vou, — Vo llF 4.7)

where hy, hy € I}, and Vo, (j = 1,2) is an n x d matrix with each row being a projection vector
from a point in Q to h;. Using the similar method, we can show if there are d different points in Q,

then (4.7) is a metric in H.

4.2.5 Applications in Analysis
The new distance dg for hyperplanes has many applications in statistical and algorithmic
data analysis where hyperplanes map to linear models. For example, the vectorized

representation implies we can use Llloyd’s algorithm for k-means clustering on lines or

59

hyperplanes, and the metric property implies Gonzalez algorithm [49] for k-center clustering
will give a 2-approximation. Here we elaborate some algorithm applications of dg and its

stability.

Kernel Density Estimates. Given a large varieties of regression models H = {hy, hy,
.o, hy} (e.g., stemming from different algorithms or model parameters) we can define a
Gaussian-type kernel K(hy, hy) = exp(—dg(h1,h2)?)/ Z using dg as the underlying metric,
and with an appropriate normalization constant Z. Then for any regressor &, the kernel
density estimate is defined KDEy (h) = ﬁ Ynen K(h, hy).

The constant VC-dimension of the metric balls of dg from Theorem 4.3 indicates that
despite the complex nature of this distance and high-dimensional embedding, this may
indeed be feasible. For instance, Joshi et.al.[61] considered kernels where the range space
defined by superlevel sets of any kernel have bounded VC-dimension v. Then for a data
set X, a random sample Y C X of size O(S%(v + log %)) approximates the KDEx at any
evaluation point so that |[KDEx(x) — KDEy(x)| < ¢, with probability at least 1 — 4. In the
case of our dg based kernels, by Theorem 4.3 it indicates that a random sample | C H of size
O(El2 (d% +log 1) (with normalization factor Z = 1) is sufficient so that with probability at
least 1 — J, then for any evaluation regressor h that |[KDEy (h) — KDEj(h)| < e. Alternatively,
if H represents the set of all possible bootstrapped samples, then we only need to generate
m= O(gl2 (d*> +log 1)) point sets and hyperplanes | to get a e-approximate estimate of this

density. Then we can run a mode detection algorithm [21] to determine the modality.

Approximating the Siegel Estimator Distribution on Uncertain Data. The Siegel esti-
mator [81] as discussed in Section 2.4.2 is an example of a robust estimator S for linear
regression; given a set P = {p1,p2,- -+, pu} C R?, it returns a line S(P) : y = ax + b to fit
these n points.

Now consider a set of n uncertain points P = {Pj,---,P,}, where the ith point is
represented by a discrete set of k possible locations P; = {pi1,---,pix} C R% Define
Pyt = U!_,P;, and say A € P is a traversal of P if A = {ay,...a,} has each g; in the domain
of P;. A robust way to understand the uncertainty of the data [67] is to build a distribution
over the outcomes S(A) for A € P. To do this, we apply Algorithm 2.2, which can be

rewritten as Algorithm 4.1.

60

Algorithm 4.1 Approximate Siegel estimator on uncertain data

Initialize T = @, the set of possible Siegel estimators.
forj=1to N do

Randomly choose A € P;add z = S(A) to T.
return Multiset T

Suppose £ = {/ | £isaline in R?}, and we use the metric dg (-, -) in £, with Q = Pyt
From Theorem 4.3 the VC dimension of (£, Rp,,,) is a constant. Therefore, as corollary of

Theorem 2.9, we have the following result.

Corollary 4.1. For error parameters ¢ > 0 and 6 € (0,1), run Algorithm 4.1 with N =
O((1/€%)(log(1/5))), to obtain multiset T. Then, with probability at least 1 — 5, for any z € £
and radius r we have ||T N Bg(z,7)|/N —Praep[S(A) € Bgo(z,1)]| <e.

Multi-Modality Detection. There are many scenarios in which one may generate a large
set of possible regressions. One may run various algorithms, or use many parameters
for one algorithm, each generating a separate regression. Or to understand the variance
inherent in the data, bootstrapping is a common technique. In this setting, from a data set
Q C R? of size n, one randomly samples m data sets Xi, Xy, ..., X, each of size n from Q
with replacement. Then for each data set X;, we run a regression formulation to generate a
hyperplane k;. This induces a set H = {h;y, ..., hy} of hyperplanes.

Since the distance between two hyperplanes has been defined and is a metric, we can
run k-center clustering (for instance with Gonzalez algorithm [49]) on the set {hy,- - - , hy }.
Then we use “elbow method” to find the appropriate value of k: if the cost (in this case the
largest distance from some /; to the representative center regressor) drops dramatically up
until the kth center is found, and then it levels off as more centers are added, it implies there
are probably k natural clusters. If the appropriate value of k is greater than 1, it implies
multi-modality in Q with respect to linear models.

For example, in Figure 4.2, suppose Q is a set of 7 points in R?, and some points in Q are
around the line ¢, but others are around ¢'. For a set of bootstrapped samples Xj, Xy, . ..
from Q, we would expect some robust regression algorithms would fit ¢; to X; so ¢; is
close to £, and for other /; fit to X; so that £; would be closer to £'. Then likely running the

elbow technique on this set of {;};c[;,, would result in an estimate of k = 2, indicating

61

Figure 4.2: Multi-modality in regression.

multi-modality.
In this process, if Q is very large, we can use the methods in Section 5.2.1 to compute
dg approximately, and the clustering should still be accurate enough to distinguish multi-

modality (Gonzalez only provides a 2-approximation regardless).

Coreset Evaluation in Regression. Given a finite point set Q C IR?, the linear regression
problem can usually be formalized as: finding & € H = {h | h is a hyperplane in R¢} to
minimize cost(Q, 1), where the cost function depends on different regression models.

Using a coreset Q as a replacement of Q can simplify the computation when Q is
very large. A e-coreset [41,42] for Q is a set Q C R? such that (1 — &)cost(Q,h) <
cost(Q,h) < (1+e€)cost(Q,h), for all h € H. Suppose h* = arg minycy cost(Q, k), and
i = argminy,cq cost(Q, h). We can use cost(Q, 1) — cost(Q, *) to evaluate how well the
coreset Q approximates Q.

However, suppose Oy and Q, are two e-coresets of Q, and h; = arg minycgc COSt(Ql, h),
hy = arg miny,cq cost(Qa,). If cost(Q, hy) — cost(Q, h*) and cost(Q, hp) — cost(Q, h*) are
very close to each other, which one is a better coreset, Q1 or Qz? In this situation, we can
directly compare dg(h*, h1) and dg(h*, hy). If dg(h*, h1) < dg(h*, h2), then it means Oy
does a better job of inducing a model h; that fits the full data more similarly to how h*
would than h; resulting from Q». This provides a more fine-grained method to evaluate
coresets; it describes not just how well they fit the data, but also how similar it is to how
an optimal classifier would fit the same data. With other distance measures, this sort of

analysis was not available.

62

4.2.6 Direct Extension (literally) to Trajectories

In this section, we show how dg can be simply generalized to the distance between two
piecewise-linear curves, while retaining the many nice properties described above. Let
Tc = {7 | visacurve in R? defined by k ordered line segments} represent the space of all
k-piecewise linear curves.

For any curve v € T}, let its k segments be (sy, sy, ..., s¢), and let these map to k lines
l1,...,¢ where each E]- contains s; (literally an “extension” of s j to aline V4 j)- Next add two
more lines: ¢y which is perpendicular to ¢; and passes through the first end point of sy,
and /;,1 which is perpendicular to ¢, and passes through the last end point of s; (in high
dimensions, some canonical choice of ¢y and /i is needed). We now represent <y as the
ordered set of k 4 2 lines (g, 01, . .., Uk, lx+1). This mapping is 1 to 1, since segments s; and
si+1 share a common end point, and this defines the intersection between ¢; and ¢;1. The
intersections with the added lines ¢y and #; 1 define first and last endpoints of s; and s,
and these endpoints are sufficient to define .

Now for two curves y(1),v(2) € T}, we define the distance using their line representations

(g(()l), ., gl(<1+)1> and (6(()2), e, é,gr)l), respectively, as

1 k+1 1) ,2)
dS(’Y(l)r’Y(2)) = m(Zizo dQ(gi 4))

Metric. If dg(’y(l),’y(z)) =0, thendg (651),652)) = 0forall i € [k], which implies glﬁl) = 652)
if Q is full rank. Combined with the 1tol nature of the mapping from y = (s1,...,5¢) to

(o, ..., lky1), we have that if Q is full rank, then d8 is a metric over ;.

VC dimension. The distance d;j (-, -) can induce a range space (Ty, Sg), where again Ty is
the collection of all k-piecewise linear curves in R?, and 8o, = {Bq(7,7) | v € Tk, v > 0}
with metric ball Bo(y,7) = {7 € T | dg (7,7") < r}. Using the straightforward extensions
of the method in the proof of Theorem 4.3, we can show the VC dimension of this range
space only depends on k, and is independent of the number of points in Q. Specifically, for
full rank Q C R?, the VC-dimension of (T}, Sg) is at most 9k + 19.

While retaining all above mathematical properties, this distance is unintuitive, and as
we show in Section 4.4, can perform less than optimally. We next develop other trajectory

distances which are more intuitive, but have weaker mathematical properties.

63

96

Figure 4.3: [llustrating g; and p; on a trajectory for dg and d.

4.3 Landmark Distances Between Trajectories

In this section, we define two variants of dg for trajectories, focused on their modeling as
piecewise-linear curves on R?. We let T define the set of such curves, and they are specified
by a series of critical points (co,c1,...,c). The curve ¢y € T is the subset of R? defined
by the k segments s1,s»,...,sr where s; = ¢;_1¢; is the continuous set of points between
critical points ¢;_; and ¢;. For notational convenience, we will describe all curves as having
k segments, but the distance will not require this. Moreover, since we model the trajectory as
a continuous subset of R?, it will not distinguish trajectories of different speeds or moving
in opposite directions but following the same paths.

Now for a curve y € T and size n point set Q C IR?, define v; = minye, ||g; — p|| and
pi = argmin,e, ||q; — p||; see Figure 4.3. If arg min,c ||g; — p|| is not unique, then we take
the point with smallest x-cordinate (or smallest y-coordinate when more than two points
have the same smallest x-coordinate) as p;. For two curves 71 and 7@ denote these values

(1) 2 ()

(1) . . . ,
asv; ', p; ' and v;”’, p;”’ respectively. Our distances are then defined as:

1 & 2\ 2 -
do (v, 7®) = (E Y (o) = o))2’ ag(y\V,7?) =

n
i=1 i=1

S| =

(" = 2.

The standard variant dg is the analog of the version for halfspaces, where as the second
variant dfj (the projected landmark distance) projects Q onto the closest points of the curves,

and then computes the average distances with respect to these projected points.

64

4.3.1 Maetric Properties

In this section, we show a reasonable condition for the trajectories and Q so that both
variants are metrics. As with lines and halfspaces, these distances are always pseudometrics:
the symmetry and triangle inequality are direct consequences of the embedding to Euclidean
space. The only restriction of the trajectories is to ensure that two distinct curves do not
have a distance 0, and in our arguments this requires that the critical points have some
non-zero separation from other parts of the curve. These restrictions may not be necessary,
but it makes the proofs simple enough. Then we basically just require that Q is sufficiently
dense; if we decide many of these points are irrelevant, we can reduce the weights on those
points (keeping them non-zero) and the metric properties still hold.

We define a family of curves T C T so each v € T has two restrictions: (R1) Each angle
Zle; 1 ci0i1,) @bOUt an internal critical point ¢; is non-zero (i.e., in (0, 7r)). (R2) Each critical
point ¢; is T-separated, that is the ball B(c;,) = {x € R? | ||x — ¢;|| < T} only intersects the
two adjacent segments s;_; and s; of 7, or one adjacent segment for end points (i.e., only
the s for co and s for ¢y, if 7y has k line segments). The T-separated property, for instance,
enforces that critical points are at least a distance T apart.

We next restrict that all curves (and Q) lie in a sufficiently large bounded region () C R?.
Let T¢(Q)) be the subset of T where all curves 7 have all critical points within), and in
particular, no ¢; € ¢y € T(Q)) is within a distance 7 of the boundary of Q). Now for 77 > 0,
define an infinite grid G, = {g» € R?| g, = noforv = (v1,v;) € Z?}, where Z is all

integers.
Theorem 4.6. For Q = G, N Qyand < {¢, both dg and dg are metrics in Tr(Q)).

Proof. We prove this theorem for d7, and the proof for dg is similar and given in Appendix
B.1. Suppose 7(1),7(2) € T:(Q)) have critical points co, ¢y, ...c, and cp, ¢}, ...c}, respectively.
We only need to show if dg('y(l), 7(2)) = 0 then 7)) =). Here, if two piecewise-linear
curves have the same critical points and their orders are the same or reverse of each other,
then these two curves are regarded as the same curve.

The argument follows 4 steps assuming dg('y(l), 7(2)) = 0: (Step 1) Around each critical
point ¢; of 7(1), we can identify at least 4 points g1, 42, 43, 44 that map to p1, p2, p3, pa, two

each on the two segments adjacent to c;. (Step 2) The segments between defined by p1p2

65

Figure 4.4: ¢; is a critical point of (1)

and P3p; must also be part of 1(?). (Step 3) The line extension of those two line segment
must intersect at ¢;, and this must also be critical point on 72 (Step 4) Because these Steps
1-3 can be repeated for all critical points on (1) and on (?), they must share critical points
and connecting line segments, and be the same curves.

We formalize these steps based on three observations: (O1) If v € T, then in any ball
with radius 7, there is at most one critical point of «. (O2) If a point moves along y € T,
then it can only stop or change direction at critical points. (O3) Forg € Q,v € T, p = arg
min, e, ||p" — q||, suppose [is the tangent line of the circle C(g, ||§ — p||) where g is center
and ||g — p|| its radius, at point p. If I N B(p, d) is not apart of y for all § > 0, then p must
be a critical point of .

w Suppose ¢; = (x;,y;) (1 <i <k —1)is a critical point of ’y(l), and consider a ball
B(ci, 37), as shown in Figure 4.4. Since the side length of each grid cell is 7 < 11—6T, from
the T-separated property (R2) we know forany g € QN B(cj, 3), p = argmin ., [|p" — 4|
isin B(c;, %) So, there exist two points g1, > that are mapped to points pi, p> on one line
segment of (1) and another two points g3, g4 are mapped to points p3, ps on the other line
segment of 71 in B(ci, 3). Since dg(’y(l), ’y(z)) = 0, we know p1, p2, p3, pa are also on 72,

Step 2: We assert the line segment p1p; must be a part of 7). From (O1), we know p; and

p> cannot both be the critical point of 7(?) at the same time, so we assume p; is not a critical

66

point. Thus, from (O3) we know a small part of tangent line / of circle C(q1, ||q1 — p1]|) at p1
is a part of v 1f p2 is a critical point of 72, then from (O1) and (O2) we know the line
segment 71, must be a part of y(2). If p, is not a critical point of 4(?), then from (O3) we
know a small part of tangent line [of circle C(q1, ||q1 — p1|) at p2 is a part of y(2). So, in this
case, (O1) and (O2) implies the line segment p1p; is a part of 7(?). Using a similar argument,
we know the line segment p3p; is also a part of (%)

Step 3: We extend the line p1p; from p; to p; and the line p3ps from ps3 to ps. Suppose
they intersect with the boundary of B(c;, £) at p, and p); respectively. Since () cannot go
into the interior of any ball with centers in Q N B(c;, %), from (O2) we know there must be
one critical point in line segment p,p},. For the same reason, there must be one critical point
in line segment prﬁL. Thus, (O1) implies c; is a critical points of 72,

Step 4: Considering that 7(?) has to pass through p1, pa, p3, p4 and c;, from T-separated
property (R2), we know 1) and 7?) must overlap with each other in B(c;, 7). For two
endpoints ¢y and c; we can make the same argument, which means in a neighborhood of
each critical point of 'y(l), 'y(l) overlaps with 7(2). This means {cop,c1,- - ,cx} is a subset
of {c(,c}, -+, ¢, }. Using the same argument {cj, ¢}, - - -, ¢}, } is a subset of {co,c1,- - -, ci }.
Therefore, k = k' and we know (1) and 7 must have the same critical points and their

orders must be the same or reverse of each other. O

Remark 4.6. We did not try to optimize constants. The point is that for most families of trajectories,
with Q sufficiently dense our distances are metrics, not just pseudometrics. In practice these

distances will work for small sets Q (see below).

4.4 Trajectories Analysis via New Distances
We demonstrate that dg and dg (and to lesser extent dg) work effectively on real world
problems. These approaches achieve state-of-the-art performance, are incredibly simple to
use, and their sketched representation plugs directly into k-means clustering, KNN or SVM
classifiers, or ANN libraries. We show that only a small number of landmarks are needed
for good accuracy, and when certain landmarks are especially meaningful, our approaches

can be easily tuned to achieve very high accuracy.

67

4.4.1 Related Trajectory Distances, and Landmarks

There are by now numerous definitions of trajectories, with a variety of different aspects
they can model and take into account.

We compare the classification errors found using dS, dg and dg with a series of repre-
sentative distances for trajectories. These are: Euclidean distance among the critical points
(Eu) [95], discrete Frechet distance (dF) [38], dynamic time warping distance (DTW) [93],
discrete Hausdorff distance (dH) [71], longest common subsequence distance (LCSS) [87],
edit distance for real sequences (EDR) [23]. We also compare against the recently proposed
locality sensitive hashing distance (LSH1p), and the ordered version of locality sensitive
hashing distance (LSH2¢) [13], which consider the intersection of the trajectories with a set
of disks. This is conceptually similar to our methods, where we can think of the landmarks
Q as the centers of disks (as we do in experiments), and their approach requires a radius
parameter r for all disks, and is not a metric. The definitions of these distances are given in
Appendix B.2.

To find the best parameters to minimized the error, for LCSS we tested € € {0.001, 0.005,
0.01,0.015,---,0.055},6 € {1,2,3,-- -, 10}, and for EDR we tested € € {0.001,0.005,0.01,
0.015,-- -, 0.055}, and for LSH1p and LSH2(we tested r € {0.005,0.01,0.02, - -- ,0.11}.
Since in all experiments (except Section 4.4.6), each trajectory is represented by a sequence
of 10 critical points, it is enough to take the largest value of J as 10 for LCSS. We only
show the best results in this section, but provide the results of other parameter settings in
Appendix B.3.

Zhang et.al. [95] conducted a large comparison of trajectory distances and showed that
in most cases Eu is general enough, efficient, and a superior or nearly as good model as
any other ; we include dF and DTW as examples which search over all possible alignments
and thus do not require the same number of or aligned critical points on both curves. The
restriction that trajectories have the same number of critical points is also not required for
dH, EDR, LSH1(, and LSH2, but in comparisons we always first reduce all trajectories to
10 critical points (with Douglas-Peucker), except in Section 4.4.6, so a fair comparison to
all metrics can be made. In Appendix B.4, we give the results of reducing all trajectories
to at most 40 critical points for Beijing drivers experiment of Section 4.4.3. We do this to

see if there is a large effect from trajectory simplification. In general, there is no large effect.

68

Figure 4.5: 2 or 3 clusters (color-coded) under k-means on dg, with 20 landmarks Q; shown
overlaid on Beijing.

The performances of most distances are slightly improved, except LCSS. The mean error of
LCSS is improved about 8.8%, but to find the best pair of parameters for LCSS needs a lot
of computation. More details are discussed in Appendix B.4.

Even beyond the recent trajectory LSH paper [13], the use of waypoints to provide a
distance between trajectories is not new. However, they are typically used in other contexts,
such as annotating with geolocated social media [91]. Or for instance, in the context of a
line of work [46, 50, 66] seeking to find the k nearest time-encoded trajectories to a given
point at a specific time, Lin et.al. [66] use a set of landmarks Q to map trajectories and query

points into the Voronoi cells of Q to quickly help in pruning.

4.4.2 Warm-up: k-means Clustering
As a warm up, we consider clustering the 42 trajectories from user id;s5 in the Geolife GPS
trajectory dataset [96]. We randomly choose 20 spread-out Beijing POIs as the landmark
set Q1, shown as orange dots in Figure 4.5. Using d,, this maps each trajectory -y to R%,
and we directly run Lloyd’s algorithm for k-means clustering with k = 2,3, and color-code
the corresponding trajectories in Figure 4.5. We observe that although the trajectories are
intertwined, there is a central-city cluster found in both cases, and either 1 or 2 clusters

found on the north side.

69

4.4.3 Classifying Trajectories 1: Beijing Drivers

We also consider classifying trajectories from users in the Geolife dataset [96] with the
same 20 POI landmarks Q as in the clustering example. There are 182 users, and each user
has several trajectories in Beijing. We only consider those trajectories with more than 10
critical points, and if a user has less than 10 such trajectories, then we remove this user.
Thus, 54 users are removed, and in the remaining 128 users, 20 of them have more than
200 trajectories. For each of these users, we just randomly sample 200 trajectories (without
replacement), to avoid severe imbalance in classification — dealing with the imbalance
challenge is not the focus of this work.

Suppose two users with id; and id, have two sets of trajectories T(1) and T(?) respectively.

Letting |T()| = m; and |T?)| = m,, we randomly sample | %% | trajectories from T() and
L31—"62J trajectories from T2 respectively to form a test set, and use the other trajectories in

T U T as the training data. Then we choose an algorithm and metric to do classification,
and compute the error. For users with id; and id, we do this 10 times and take the mean
error as error(idy, idy). We compute error(idy, idy) for all 8128 pairs of 128 uses, and then
output the mean, median, and standard deviation (SD) of these 8128 errors.

For all of these 10 distances, we use the KNN classification (K = 5); see Table 4.1. The
lowest error rates of about 7% error is achieved by dgl, DTW and LCSS. Then dg, Eu, and
EDR achieve error about 8%. Other metrics perform worse with for example, dF at 10%,
LSH1g, at 13%, dgl at 17%, and LSH2(, at 24% error. Using the standard deviation, by
Chebyshev’s inequality, over 8128 pairs, these tiers are significant on this data set.

For dg,, df, and Eu, since they map a trajectory to a vector in Euclidean space, we can
also directly use SVM to classify these vectors. We use fitcsvm in matlab R2018b and set
‘TterationLimit’ (the maximum iteration number) as 200,000 for all kernel functions, and
set ‘KernelScale’ as ‘auto’ for Gaussian kernel. From Table 4.2, we can see for SVM with
three kinds of kernel functions, both dg, and d’él are better than Eu. In the case of Gaussian
SVM, both dgp, and dgl achieve an error rate of about 7% which is less than the about 8%
achieved by Eu. Again in this SVM setting d5, performs much worse (for Gaussian kernels)
or comparable to other measures, about the same as Eu, (linear quadratic kernels).

As we increase the size of Q to 200 (chosen at random), then both dg, and dgl slightly

improve in performance, but not drastically, and da performs about the same. The error

70

Table 4.1: Classification error on Beijing Drivers with KNN.

da dg, dgl Eu dF DTW dH LCSS EDR LSHlg, LSH2p,
best param - - - - - - - £=0.005,6=10 £=0.005 r=0.06 r=0.1
mean | 0.1703 0.0817 0.0724 0.0811 0.1045 0.0722 0.0883 0.0714 0.0802 0.1290 0.2409
median | 0.1458 0.0667 0.0581 0.0654 0.0873 0.0571 0.0722 0.0500 0.0554 0.0949 0.2182
SD | 0.1038 0.0624 0.0576 0.0634 0.0732 0.0600 0.0656 0.0738 0.0835 0.1130 0.1450

Table 4.2: Classification error on Beijing Drivers with SVM.

kernel statistics da dg, d61 Eu
mean | 0.2170 0.2066 0.2046 0.2173
linear median | 0.1987 0.1851 0.1892 0.2000
SD | 0.1185 0.1256 0.1221 0.1282
mean | 0.2327 0.2190 0.2000 0.2377
quadratic median | 0.2000 0.1778 0.1455 0.1949
SD | 0.1414 0.1678 0.1684 0.1668
mean | 0.1725 0.0727 0.0733 0.0845
Gaussian median | 0.1509 0.0587 0.0588 0.0690
SD | 0.1047 0.0594 0.0599 0.0670

Table 4.3: Classification error on Beijing with |Q;| = 200.

statistics | KNN linear-SVM quad-SVM Gauss-SVM

mean | 0.0801 0.1419 0.1398 0.0722

dy, median | 0.0650 0.1125 0.0909 0.0581
SD | 0.0616 0.1058 0.1425 0.0591

mean | 0.0708 0.1432 0.2606 0.0726

dg1 median | 0.0558 0.1179 0.2222 0.0583
SD | 0.0578 0.1022 0.1932 0.0597

mean | 0.1711 0.2362 0.2673 0.1735

dgl median | 0.1471 0.2200 0.2460 0.1529
SD | 0.1041 0.1173 0.1455 0.1051

statistics is shown in Table 4.3, from which we can see for KNN, the performance of dg,
is better than Euclidean distance, and dg1 provides the smallest error (mean error 0.0708,
smaller than 0.0714 of LCSS). Moreover, we can see as |Q| increases, the error of dg, and
dgl with three kernel functions all decrease, except dgl with quadratic kernel. When we
use quadratic kernel, the algorithm takes a long time to converge, and for |Q| = 200, the
dimension of vectors used in dg1 is 400, so the algorithm may not converge within 200000
iterations. The relatively small improvement also demonstrates that even with a small size,
random Q, the distances still perform at or near the state-of-the-art.

To show different Q sampled from the region can yield a similar result, we sample another

71

Figure 4.6: Left: the data set Q; (orange points), Right: the data set Q3 (orange points).

four sets Qy, Q3 and Q», O3 according to uniform distribution, where Q,, Q3 are shown in
Figure 4.6, and |Q,| = |Q3| = 20, |Q2| = |Qs| = 200.

The running result of different algorithms with different distances on Q,, Q3 and 0O,
Qs are shown in Table 4.4 and Table 4.5 respectively. From these two tables we can see

different Q uniformly sampled from the region does not cause a large difference in statistics

of classification errors, and for the case |Q| = 200 the result almost does not change.

4.4.4 Classifying Trajectories 2: Bus versus Car

As another example, we consider the GPS Trajectories Data Set [29] in UCI machine
learning repository. There are 87 car trajectories, and 76 bus trajectories in Aracaju, a city
of Brazil. We remove those trajectories having less than 10 critical points, and then 78 car
trajectories and 45 bus trajectories are left. For these 123 trajectories are shown in Figure
4.7(Left), where pink curves are car trajectories and blue curves are bus trajectories. We
hand-pick 10 points as Q; such that each point is close to one class of trajectories, and
randomly generate 20 points as Q>. Each time we randomly choose 23 car trajectories
and 13 bus trajectories as test data, and use other trajectories as training data to perform
classification experiments, and compute the error. We do this 1000 times and then compute
the mean, median and standard deviation (SD) of the error for each algorithm.

The results are shown in Table 4.6, and we see the KNN classification results using all
14 distance, using either Q; (10 chosen near data) or Q> (20 randomly chosen). The results

are slightly better for Q5 in almost all distances dg, df), LSH1¢, and LSH2 — except d5'. In

72

Table 4.4: Classification error on Beijing Drivers with different Q (|Q| = 20)

distance | mean median SD

dgz 0.1724 0.1493 0.1039
dSS 0.1670 0.1424 0.1029

dg, | 0.0816 0.0667 0.0620

dp, | 0.0802 0.0652 0.0625

KNN dgz 0.0721 0.0574 0.0573
d63 0.0697 0.0556 0.0566

LSH1g, (r=0.1) | 0.1122 0.0860 0.0964

LSH1g, (r=0.1) | 0.1190 0.0861 0.1110

LSH2g, (r=0.1) | 0.2278 0.2027 0.1408

LSH2y, (r=0.07) | 0.2070 0.1858 0.1256

dgz 0.2176 0.2000 0.1186
d83 0.2145 0.1965 0.1173

dg, | 02039 01815 0.1250
linear SVM do, | 02041 0.1818 0.1246
02005 0.1824 0.1213
02018 0.1836 0.1215
02362 02034 0.1421
02277 0.1912 0.1438

. dg, | 02155 0.1694 0.1698
quadratic SVM do, | 02152 0.1718 0.1678

dgz 0.2009 0.1469 0.1694
d63 0.1932 0.1364 0.1682
dSz 0.1751 0.1542 0.1057
d83 0.1688 0.1470 0.1038

. dg, | 00739 0.0595 0.0595
Gaussian SVM do, | 0.0730 0.0583 0.0594

dgz 0.0737 0.0595 0.0597
d63 0.0725 0.0580 0.0592

these experiments on Q,, the best mean error (about 21% to 22%) is achieved by dg, do,
and LSH1 (which required a parameter search). The best error is about 20% by dy using
Q2. While d7, LCSS, EDR, and LSH2(, achieve error between 25% and 27%. Noticeably,
the methods which were competitive with dg and d7j on the Beijing Drivers data are EDR,
which required a parameter tuned, as well as DTW and Eu, which now have error rate
above 31%. As a baseline, always predicting “car” obtains 36% error.

We show the results of applying SVM in Table 4.6. Again the difference is small between
Q> and Q;. And while the linear and quadratic SVM do not perform that well; for the
Gaussian kernel on d and df) the mean error is only 16% to 20%, and 19% to 21% for d5.
The overall best is dgT achieving a mean error of 16.59%, a significant improvement over

the KNN results.

73

Table 4.5: Classification error on Beijing Drivers with different Q (|Q| = 200)

distance | mean median SD
d% | 0.1708 0.1469 0.1040

d%j 01708 0.1471 0.1038

KNN dg, | 0.0805 0.0652 0.0619
dg, | 0.0798 0.0645 0.0618

47 | 0.0707 0.0560 00571

af | 00699 0.055 00569

a5 | 02353 02186 01173

a5 | 02357 0219 01173

d~ | 01425 01130 0.1061

linear SVM dgz 01414 0.1121 0.1055
af | 01437 01189 01022

a7 | 01429 01176 01019

a5 | 02671 02447 01468

a5 | 02666 02455 0.1465

. ds | 01410 0.0909 0.1440
quadratic SVM dgz 01389 0.0895 0.1432
df | 02615 02219 01937

af | 02611 02215 0.1936

a5 [01730 01521 0.1051

a5 | 01734 01526 01052

, ds | 00725 0.0582 0.0592
Gaussian SVM dgi 00719 0.0576 0.0589
a7 | 0.0726 00583 0059

47 | 0.0721 00578 00592

4.4.5 Classifying Trajectories 3: Landmark-Sensitivity

To show the further advantage of dg and 47, we create a synthetic data set that appears
random, except one set of trajectories pass nearby a POI and the others do not. We randomly
generate two classes of trajectories on the map of Beijing, and each class has 30 trajectories.
Each trajectory has 10 critical points, and all blue trajectories passes through some point
close to the city center, and all pink trajectories do not. We hand-pick a point at the Palace
Museum, the center of the city, and randomly choose other 9 points to form the set Q.
As shown in Figure 4.7(Right), these trajectories are a mess and largely indistinguishable,
except that the blue set passes near the landmark: Palace Museum. We next show that
dg and dg which are landmark-aware (e.g., POl-aware) have significantly more power in

distinguishing these classes.

74

We randomly choose 21 trajectories from each class to form a training data set of size 42,
and use the other trajectories as test data. Each time, we record the error, and repeat this
1000 times to output the mean, median and standard deviation (SD) of these errors.

Table 4.7 shows the KNN classification results. Distances Eu and dF provide no advantage

over a random classifier (which would report error 0.5). 47, do, 455, DTW, and Hausdorff

Table 4.6: Classification error on Bus vs. Car.

distance | mean median SD

da 0.2027 0.1944 0.0647
dgz 02148 0.2222 0.0624

dg, | 02331 02222 0.0669
do, | 02229 02222 0.0637
0.2608 0.2500 0.0625
0.2505 0.2500 0.0627
Eu | 03323 03333 0.0661

KNN dF | 0.3431 03333 0.0667
DIW | 0.3118 0.3056 0.0679

dH | 0.3284 03333 0.0627

LCSS (=0.015,6=3) | 0.2448 0.2500 0.0605

EDR (£=0.015) | 02640 0.2500 0.0622

LSH1p, (r=0.02) | 02673 02778 0.0448

LSH2(, (r=0.08) | 0.2516 0.2500 0.0467

LSH1g, (r=0.03) | 02209 02222 0.0622

LSH2, (r=0.05) | 0.2690 0.2778 0.0464

Eu | 03624 03611 0.0085

dS} 0.3652 0.3611 0.0145
d5 | 03655 0.3611 0.0151

linear SVM do, | 03611 03611 0
dg, | 03611 03611 0

dgl 03611 0.3611 O
dgz 0.3612 0.3611 0.0018

Eu | 03609 03611 0.0660
03645 03611 0.0200
03140 0.3056 0.0415
quadratic SVM do, | 0.3617 0.3611 0.0055

do, | 0.3625 03611 0.0087

dgl 0.2644 0.2500 0.0645
dgz 0.2828 0.2778 0.0670

Eu | 02239 02222 0.0587
01940 0.1944 0.0554
02120 02222 0.0564
Gaussian SVM do, | 0.1894 01944 0.0543

dg, | 01968 01944 0.0573

d61 0.1659 0.1667 0.0572
4% | 0.1731 0.1667 0.0572

75

achieve only slight advantage over random classifiers, with error rates about 43% to 48%,

with the best achieved by dg. This extends to the SVM approaches in Table 4.8. The best

/

Figure 4.7: Left: Bus (blue) and car (pink) trajectories with landmark sets Q; (green points), Q>
(red points). Right: Two classes of trajectories and Q (orange points).

Table 4.7: Landmark-sensitive classification error with KNN.

distance | mean median SD
Eu | 05226 0.5000 0.0999
dF | 0.5056 0.5000 0.0977
DTW | 04777 0.5000 0.1033
dH | 0.4627 0.4444 0.1025
LCSS (e = 0.001,6 = 8) | 0.3437 0.3333 0.0812
EDR(e = 0.02) | 0.3916 0.3889 0.0823
LSH1g (r=0.01) | 0.2524 0.2222 0.0990
LSH2, (r=0.02) | 0.3248 0.3333 0.0916
do | 0.4729 0.5000 0.1005
dow (wq = 0.3) | 04133 0.3889 0.1052
dow (w1 = 0.6) | 0.2687 02778 0.0969
dow (wy =0.9) | 0.0592 0.0556 0.0611
dg 0.4385 0.4444 0.0961
dS,w (wy =0.3) | 0.3846 0.3889 0.0921
dg,w (wy =0.6) | 02396 0.2222 0.0804
d6,w (wy =0.9) | 0.1002 0.0556 0.0817
d8 0.4711 0.4444 0.1027
dS,W (wy =0.3) | 04468 0.4444 0.1062
dS,W (wy =0.6) | 04377 0.4444 0.1060
dS,W (wy =0.9) | 04466 0.4444 0.1002

76

parameter free approach is d at 43.85% error. The parameterized distances LCSS, EDR,
LSH1p, and LSH2g perform better with error rates 25% to 40%; but these can be sensitive
to the parameter choices — we only show the best results.

Next we can consider re-weighting the importance of the landmarks Q, for instance in
the case where one particular POI (in this case q;) is known to have a specific meaning in
the classification task (e.g., did someone stop by the sporting event, or a military point of
interest). Suppose w; > 0is a weightof q; € Q,and W = (w1, wy, ..., wy). Then we can

generalize the definitions to:

NI—

aow (v, 7®) = (L wi(d” - a)?), aguw(v®, @) = T wi(|lp - p7)).

Let wy € (0,1) be the weight of 1, and w; = %(1 —wy) (for 2 < i < 10) be the weight of all
other points in Q.
Now observe in Table 4.7 that the landmark-based distance using a KNN classifier can

achieve very low error (6% for dg,w and 10% for d7 /) as we gradually increase the weight

Table 4.8: Landmark-sensitive classification error with SVM.

kernel statistics d8 dg dg Eu
mean | 0.5000 0.4586 0.4941 0.5887
linear median | 0.5000 0.4444 0.5000 0.6111
SD | 0.0976 0.0983 0.0997 0.0925
mean | 0.5403 0.4617 05574 0.4795
quadratic = median | 0.5556 0.4444 0.5556 0.5000
SD | 0.0957 0.0967 0.1007 0.1059
mean | 0.5059 0.4567 0.4556 0.5906
Gaussian median | 0.5000 0.4444 0.4444 0.6111
SD | 0.0959 0.0944 0.0997 0.0939

Table 4.9: Landmark-sensitive classification error with weighted Gaussian SVM.

metrics mean median SD
dow (w1 = 0.3) | 0.1487 0.1667 0.0809
dow (wy = 0.6) | 0.0303 0 0.0369
dow (w1 = 0.9) | 0.0159 0 0.0256
dg,w (wq =0.3) | 02997 0.2778 0.0937
dg,w (wq = 0.6) | 0.1053 0.1111 0.0702
dg,w (w7 =0.9) | 0.0316 0 0.0386
daw (w7 =0.3) | 04942 0.5000 0.0977
daw (w1 =0.6) | 04726 0.5000 0.0976
daw (wq =0.9) | 04687 0.4444 0.0974

77

Table 4.10: Landmark-sensitive classification error with weighted linear SVM.

metrics mean median SD
dow (wq =0.3) | 0.3309 0.3333 0.0836
dow (w1 = 0.6) | 0.3083 0.3333 0.1019
dow (w1 =0.9) | 0.3051 0.3333 0.1089
dE,w (wy =0.3) | 04936 0.5000 0.0903
a7y (w1 =0.6) | 04191 04444 0.0700
dg,w (wy =0.9) | 04104 0.3889 0.0694
daw (wy =0.3) | 04372 0.4444 0.0901
daw (wy =0.6) | 04340 0.4444 0.0893
dS,W (wy =0.9) | 04329 0.4444 0.0895

Table 4.11: Landmark-sensitive classification error with weighted quadratic SVM.

metrics mean median SD
dow (w1 =0.3) | 0.3309 0.3333 0.0836
dow (wy; = 0.6) | 0.3084 0.3333 0.1019
dow (w1 =0.9) | 0.3051 0.3333 0.1089
dg,w (wq =0.3) | 05302 0.5000 0.0992
dg,w (wq =0.6) | 0.5270 0.5000 0.1023
dg,w (w7 =0.9) | 0.3909 0.3889 0.0773
daw (wq =0.3) | 04367 0.4444 0.0902
daw (wq =0.6) | 04333 0.4444 0.0892
dS,W (wq =0.9) | 04322 0.4444 0.0889

of the point 4; from w; = 0.1 (i.e., dg or df)) to w1 = 0.9 to emphasize a desired POIL The
result is even more pronounced for the Gaussian SVM, as shown in Table 4.9; similar plots
are shown for linear and quadratic kernels in Table 4.10 and Table 4.11. As w; is increased
from (uniform) 0.1 to 0.9, the mean error decreases from 45% to 1.5% for dg w and from
45% to 3% for d7j . Thus, while all other distances we tried are only slightly better than
random unless their parameters are tuned, by emphasizing a particular POI (a very intuitive

adjustment), we achieve almost no error in classifying these trajectories.

4.4.6 Using dg in Nearest Neighbor Search
We demonstrate that dg’s sketched representation of the trajectories in RI9l allows for
extremely efficient k-nearest neighbor search. We consider two representative methods [80, 92]
for comparison; but do all, e.g., [39]) which require timing information.
As a first comparison, consider a recent heavily-optimized kNN search algorithm focusing

on Hausdorff and dF distances [92]; this system, DFT, is optimized for distributed algorithms

78

on a cluster, but show results on 1 node which we compare against. We obtained a random
sample of the GEN-TRA]J data set containing m = 3 million trajectories, using 36GB of
storage (larger than their 30.9GB dataset [92]). From their Figure 10, their indexes take 2000
to 6000 sec to build, and kNN queries require 50 to 200 seconds for k = 10.

Another distributed system DITA [80] for trajectory similarity search focuses on DTW,
returning all trajectories within a threshold. In their [80] Figures 7(a) and 8(a), using 256
cores they achieve query time between 0.001 and 0.01 seconds on Beijing (10.4GB) and
Chengdu (28GB) datasets.

To perform kNN queries using dg we can sketch trajectories as |Q|-dimensional vectors
and use Euclidean distance. Hence, once we create the sketches, we can use any of the highly
optimized packages for kNN Euclidean queries (c.f., http://ann-benchmarks.com); we
choose a consistent top performer K-Graph (https://github.com/aaalgo/kgraph) with
settings: recall=0.99 and max_iteration=50. We run on a desktop with a 6-core Intel Xeon
CPU ES-1650 v3 @3.5GHz processor, and 128GB RAM,; the same processor as in DFT [92].

For experiments, we randomly choose a set of landmarks among the trajectories with
|Q| = {12,20,28,36,44,52}. From these Q we preprocess the data to derive m x |Q)
sketches, a txt file we pass to K-Graph. Then K-Graph builds an index, and allows queries.
The preprocessing time (to build sketch), sketch file size, time to build K-Graph’s index,
that index size, and the average query time are shown in Table 4.12. For all these different

values of |Q|, the K-Graph algorithm reaches recall=0.99 within 7 iterations.

Table 4.12: The running time experiment of KNN search.

Q[12 20 28 36 44 52

preprocessing time (s) | 38 62 83 114 138 160
sketch size (MB) | 337 560 785 1012 1331 1536
index time (s) | 106 109 114 119 124 129

index file size (MB) | 999 999 10051002 1007 1001
query time (107%s) | 42 3.7 42 32 3.5 3.7

The preprocessing and index building times take 38 to 160 seconds and 106 to 129
seconds, respectively. By comparison, it takes 673 seconds to load the raw data into memory.
Combined they are an order of magnitude faster than the index build time for Hausdorff

in DFT [92]. The sketch size is only 300 to 1500 MB, and the index sizes are 1000 MB;

79

reducing the size by 1 or 2 orders of magnitude from the original size. Finally, the query
times are only 0.00032 to 0.00042 seconds; that is 5 orders of magnitude faster than the
DFT index optimized for Hausdorff distance! and 1 to 2 orders of magnitude faster than
DITA optimized for DTW and using 256 cores on smaller data. Thus, using dg (and existing

libraries) allows for small data sketches, and extremely efficient KNN queries.

4.4.7 Online Data and Code
The experiments in Section 4.4.2, Section 4.4.3, Section 4.4.4 and Section 4.4.5 are similar to
the experiments in [76], where a link of data and code is given. The raw data, intermediate
data and code to reproduce the result of experiments in Appendix B.4 are available here:

https://drive.google.com/open?id=10AubyoSH6MM1aBCkhgl143THxRpUb7Qm

4.5 Discussion
On trajectories, new metrics dg and d are the most general and best or competitive
against all other distances in all analysis tasks; see Table 4.13. LCSS performs better under
some other conditions for Beijing drivers experiment, see Appendix B.4. However from
Table 4.13 we can see dg and d(are either the best or nearly best at each task, especially
when the computation cost is considered for each distance. The main point that dg and d
are the consistently among the best should hold under any reasonable subjective way to

alter how this summary is presented.

Table 4.13: Distances on analysis tasks as: best @, competitive e, near competitive o; possible
v or possible but slower ..

task | dg dj d5 Eu dF DTW dH LCSS EDR LSHg
easy clustering | vv v v VvV - - - - - _
learn1 | o o - e o0 o o -
learn2 | ¢ e o o - o - o . o
learn3 | o o - - - - - - - -
fast NN | v+ v v - v - - - v
anyk | v v - - v v Vv V v v

The landmark set Q can be randomly chosen and small, or its points can hold specific
meaning in which case, the interpretation and discriminatory ability of the distances are

greatly enhanced. Chapter 5 provides an in depth theoretical study of how many landmarks

80

are required to preserve certain errors, how to chose them, and when curves can be explicitly
recovered from them. In this work, we simply empirically show that in most cases 20
random landmarks are sufficient.

These provide meaningful vectorized representations. They are general and simple to
compute and work with. We believe many applications of these sorts of vectorized distances
will be discovered. And there are more mathematical questions to ask about the geometric

and statistical power of these landmark-based distances.

CHAPTER 5

SKETCHED MINDIST

5.1 Introduction
In this chapter we generalize dg in Chapter 4 to general geometric objects. For an object
J € 3, where | C R, this depends on a set of landmarks Q C RY; for now let n = |Q|. These
landmarks induce a sketched representation vo(J) € R" where the ith coordinate v;(]) is

defined via a MinDist operation
vi(J) = dist(q;, J) = inf ||p — q;ll,
pej

using the ith landmark q; € Q. When the object | is implicit, we simply use v;. Then
our new distance dg between two objects J1, J> € J is simply the (normalized) Euclidean

distance between the sketched representations

do(J1, J2) = ||og(h) — 9g(J2)

7

where 7g = \/ﬁvg

Chapter 4 introduces other variants of this distance (using other norms or using the
arg min,¢; points on each | € J). We focus on this version as it is the simplest, cleanest,
easiest to use, and was the best or competitive with the best on all empirical tasks. Indeed,
for the pressing case of measuring a distance between trajectories, this new distance measure
dominates a dozen other distance measures (including dynamic time warping, discrete
Frechet distance, edit distance for real sequences) in terms of classification performance,
and is considerably more efficient in clustering and nearest neighbor tasks.

The goal of this chapter is to formally understand how many landmarks in Q are needed
for various error guarantees, and how to chose the locations of these points Q.

Our aims in the choice of Q are two-fold: first, we would like to approximate dg with dg,

and second we would like to recover | € J exactly only using v(J). The specific results

82

vary depending on the initial set Q and the object class J. More precisely, the approximation
goal aims to preserve dg for all objects | in some class J with a subset Q C Q of landmarks.
Or possibly a weighted set of landmarks W, Q with |Q| = N, so each g; is associated with a

weight w; and the weighted distance is defined

dow(1 J2) = szl. (i(J1) — vi(J2))? :H%(h)—%(h)”.

where 05 = (31, -, On) with §; = \/w;v;. Specifically, our aim is an (p, ¢, §)-approximation
of Q over J so when W, Q is selected by a random process that succeeds with probability at
least 1 — ¢, then for a pair J1, J, € Jwithdg(J1,]2) > p

(1 _g)dQ(h/IZ) (]1/]2) (1 +€)dQ(]1I]2)

When this holds for all pairs in J, we say it is a strong (p, €, §)-approximation of Q over J. In
some cases we can set to 0 either ¢ (the process is deterministic) or p (this preserves even

for all selected

arbitrarily small distances), and may be able to use uniform weights w; =

=

points.

5.1.1 Our Results

We begin with a special signed variant of the distance associated with the class J of
(d — 1)-dimensional hyperplanes (which for instance could model linear separators or
linear regression models). The signed variant provides v;(]) a negative value on one side
of the separator. In this variant, we show that if Q is full rank, then we can recover |
from vg(J), and a variant of sensitivity sampling can be used to select O(d/(6¢2)) points to
provide a (0, ¢,§)-approximation W, Q. Or by selecting O(%(dlogd + log })) results in a
strong O(0, ¢, §)-approximation (Theorem 5.4).

Next we consider the more general case where the objects are bounded geometric objects
8. For such objects it is useful to consider a bounded domain Q) = [0, L] (for d a fixed
constant), and consider the case where each S € § and landmarks satisfy S, Q C ;. In this

case, the number of samples required for a (p, ¢, §)-approximation is GQé where

2 2\ 737
L\ 2+ L L
Spo=0 — min | log —,logn, <> , 5.1
© ((p) (&8 \p)) G

where 77 = min, yco (|7 — q'||o. A few special cases are worth expanding upon. When

Q is continuous and uniform over Q); then o = O((L/ p)zszd), and this is tight in R? at

83

Sg = O(L/p). That is, we can show that S = O(L/p) may be needed in general. When
d = 2 but not necessarily uniform on), then S5 = O(% min{,/logn,L/p}). And when
Qs on a grid over Q) in R? of resolution ®(p), then &g = O(% \/lo?%), justa /logL/p
factor more than the lower bound.

We conclude with some specific results for trajectories. When considering the class
Tk with at most k segments, then O(46¢(k*log &g + log })) samples is sufficient for a
strong (p, ¢,6)-approximation. Then when considering trajectories T where the critical
points are at distance at least T apart from any non-adjacent part of the curve, we can
exactly reconstruct the trajectory from vg as long as Q is a grid of side length Q(7). It is
much cleaner to describe the results for trajectories and Q precisely on a grid, but these
results should extend for any object with k piecewise-linear boundaries, and critical points
sufficiently separated, or Q as having any point in each sufficiently dense grid cell, as

opposed to being exactly on the grid lattice.

5.1.2 Connections to other Domains, and Core Challenges
Before deriving these results, it is useful to lay out the connection to related techniques,

including ones that our results will build on, and the challenges in applying them.

Sensitivity sampling. Sensitivity sampling [40, 44, 63, 86] is an important technique for our
results. This typically considers a dataset X (a subset of a metric space), endowed with a
measure y : X — RT, and a family of cost functions F. These cost functions are usually
related to the fitting of a data model or a shape S to X, and for instance on a single point
x € X, for f € F, where

f(x) = dist(x, 5)? = inf x — pl?

is the squared distance from x to the closest point p on the shape S. And then f =
Jx f(x)dpu(x). The sensitivity [63] of x € X w.rt. (F, X,) is defined as:
0, x,u(X) := sup M,
feF f
and the total sensitivity of F is defined as: &(F) = [, 0fx(x)dpu(x). This concept is
quite general, and has been widely used in applications ranging from various forms of
clustering [40, 44] to dimensionality reduction [43] to shape-fitting [86]. In particular, this

will allow us to draw N samples X iid from X proportional to o x,(x), and weighted

84

o~ S(F
w(x) - N‘UF,(X,:(X)

with probability 1 — 6 for each f € F

; we call this oF x ,-sensitive sampling. Then Xis a (0, ¢,6)-coreset; that is,

(-of < [f@dn() < 1+,

using N = O(6(F)) [63]. The same error bound holds for all f € F (thenitis called a (0,¢,6)-

€20
S(F)
2

strong coreset) with N = O((srlog &(F) + log })) where s is the shattering dimension

of the range space (X, ranges(F)) [16]. Specifically, each range r € (X, ranges(F)) is defined

as those points in a sublevel set of a specific cost function r = {x € X | é((?) % < ¢} for
some f € Fand ¢ € R.

It seems natural that a form of our results would follow directly from these approaches.
However, two significant and intertwined challenges remain. First, our goal is to ap-
proximate the distance between a pair of sketches ||[vg(J1) — vg(J2)|, where these results
effectively only preserve the norm of a single sketch ||vg(J1)||; this prohibits many of the
geometric arguments in the prior work on this subject. Second, the total sensitivity &(F)
associated with unrestricted Q and pairs Ji, J> € J is in general unbounded (as we prove
in Lemma 5.4). Indeed, if the total sensitivity was bounded, it would imply a mapping
to bounded vector space [63], wherein the subtraction of the two sketches v (J1) — vo(J2)
would still be an element of this space, and the norm bound would be sufficient.

We circumvent these challenges in two ways. First, we identify a special case in Section
5.2 (with negative distances, for hyperplanes) under which there is a mapping of the sketch
vo(J1) to metric space independent of the size and structure of Q. This induces a bound for
total sensitivity related to a single object, and allows the subtraction of two sketches to be
handled within the same framework.

Second, we enforce a lower bound on the distance do(J1, 2) > p and an upper bound
on the domain Q; = [0, L}¥. This induces a restricted class of pairs J; /p Where L/p is a
scaleless parameter, and it shows up in bounds we are then able to produce for the total

sensitivity with respect to J; /, and Q C Q.

Leverage scores, and large scales. Let (-)* denotes the Moore-Penrose pseudoinverse of
a matrix, so (AAT)* = (AAT)~! when AAT is full rank. The leverage score [36] of the ith

column a; of matrix A is defined as: 7;(A) := al (AAT)Ta;. This definition is more specific

85

and linear-algebraic than sensitivity, but has received more attention for scalable algorithm
development and approximation [15, 25, 26, 35, 36, 74].

However, Theorem 5.2 (in the Appendix 5.2.3) shows that if F is the collection of some
functions defined on a set Q of 1 points (1(g;) = 1 for all g; € Q), where each f € F is the
square of some function v in a finite dimensional space V spanned by a basis {0(!), - - - ,v(*)},
then we can build a k¥ x n matrix A where the ith column is ﬁ (oW (g:), -+, 0% (q;)) ! and
have 1. 0r,0,(qi) is precisely the leverage score of the ith column of the matrix A. A similar
observation has been made by Varadarajan and Xiao [86].

A concrete implication of this connection is that we can invoke an online row sampling
algorithm of Cohen et.al. [26]. In our context, this algorithm would stream over Q, main-
taining (ridge) estimates of the sensitivity of each g; from a sample Q; 1, and retaining each
gi in that sample based on this estimate. Even in this streaming setting, this provides an
approximation bound not much weaker than the sampling or gridding bounds we present;

see Appendix 5.2.3.

Connection from MinDist to shape reconstruction. The fields of computational topology
and surface modeling have extensively explored [18,19,77] the distance function to a

compact set] C R*

dj(x) = dist(x, J) = inf ||x — p|],
pe]

their approximations, and the offsets |" = d]’1 ([0,]). For instance the Hausdorff distance
between two compact sets], ' is dy(J, ') = ||dj — dj||«. The gradient of d; implies stability
properties about the medial axis [20]. And most notably, this stability of d; with respect to
asample P ~ J or P ~ 9] is closely tied to the development of shape reconstruction (aka
geometric and topological inference) through a-shapes [37], power crust [10], and the like.
The intuitive formulation of this problem through d; (as opposed to Voronoi diagrams of P)
has led to more statistically robust variants [19,77] which also provide guarantees in shape
recovery up to small feature size [45], essentially depending on the maximum curvature of
aJ.

Our formulation flips this around. Instead of considering samples P from] (or d]) we
consider samples Q from some domain Q) C R?. This leads to new but similar sampling

theory, still depending on some feature size (represented by various scale parameters p, T,

86

and 7), and still allowing recovery properties of the underlying objects. While the samples P
from] can be used to estimate Hausdorff distance via an all-pairs O(|P|?)-time comparison,
our formulation requires only a O(|Q|)-time comparison to compute dg. We leave as open

questions the recovering of topological information about an object | € J from vg(J).

Function space sketching. While most geometric inference sampling bounds focus on
low-level geometric parameters (e.g., weak local feature size, etc), a variant based on
the kernel distance dg (P, x) [77] can be approximated (including useful level sets) using

a uniform sample P’ ~ P. The kernel distance in this setting is defined dx(P,x) =

\/1+ uk(P) — 2KDEp(x) where the kernel density estimate is defined KDEp(x) = ﬁ Ypep
K(p,x) with K(p,x) = exp(—|lx — p|[*) and ux(P) = 4 ¥ ep KDEp(p). This sampling
mechanism can be used to analyze KDEp (and thus also dk) [73] by considering a repro-
ducing kernel Hilbert space (RKHS) Hk associated with K; this is a function space so each
element ¢k (p) = K(p, -) € Hg is a function. And averages Px(P) = %Zpep ¢x(p) = KDEp
are kernel density estimates. Ultimately, O(El2 log 1) samples P yields [68] with probability
1 — 4 that || ®x(P) — ®x(P)|ls, < & which implies ||[KDEp — KDEp|l < ¢ and hence
also ||dk (P,) — dk(P,)|l < ®(y/€). Notably, the natural Hg-norm is an ¢,-norm when
restricted to any finite dimensional subspace (e.g., the basis defined by {¢x(p)}pep)-
Similarly, our approximations of dg(-,-) using a sample Q ~ Q result in a similar
function space approximation. Again the main difference is that dg is bivariate (so it
takes in a pair J1, J> € J, which is hard to interpret geometrically), and we seek a relative
error (not an additive error). This connection leads us to realize that there are JL-type
approximations [59] of this feature space. That is, given a set of ¢ objects O = J1, J2,...,Ji C
J, and their representations vg(J1),v0(J2),...,v0(J;) € R", there is a mapping h to RY
with N = O((1/€?)log %), so with probability at least 1 — & so for any pair J,J' € O
(1—¢)dn(],]) < ||h(vo(]) —h(va(I)|l < (1+4+¢€)do(J,]'). However, for such a result to
hold for all pairs in J, there likely requires a lower bound on the distance p and/or upper
bound on the underlying space L, as with the kernels [22, 75]. Moreover, such an approach

would not provide an explicit coreset Q that is interpretably in the original space R.

87

5.2 The Distance Between Two Hyperplanes
In this section, we assume for two hyperplanes hy,h, € 3, dg is defined by (4.2) and
study how to efficiently compute dy approximately, when the data set Q is very large.
The basic idea is to use the sensitivity sampling method [63], and an online row sampling

algorithm designed for leverage sampling [36].

5.2.1 Estimation of dg by Sensitivity Sampling on Q
Suppose Q = {41,92,- - ,qn} C R? where g; has the coordinate (Xi1, Xin- -+, Xig).
Without specification, in this chapter Q is a multiset, which means two points in Q can be
at the same location, and || - || represents /2 norm.

Any hyperplane /1 € J{ can be uniquely expressed in the form
d
h={x=(x;, - ,xg) ER 2].:1 uixj + gy =0},

where (uq,- -+ ,ug41) is a vector in U%*! defined in Section 4.2.2. A sketched halfspace h
has n-dimensional vector vg(h) = (v1(h),...,v,(h)) where each coordinate v; is defined
as the signed distance from g; to the closest points on &, which can be calculated v;(h) =
2?21 ujx;; + tg11; the dot-product with the unit normal of £, plus offset 1, 1. As before, the
distance is defined as dg(h1,h2) = || ﬁ(vg(hl) —vg(h2))|l-

When Q C R%is full rank — that is, there are d + 1 points in Q which are not on a common
hyperplane — then Chapter 4 shows d is a metric on J{.

We use sensitivity sampling to estimate d with respect to a tuple (F, X,). First suppose
Q={q1,,q.} C R¥isfulltankand n > d+ 1. Then we canlet X = Qand y = i;
what remains is to define the appropriate F. Roughly, F is defined with respect to a
(d + 1)-dimensional vector space V, where for each f € F, f = v? for some v € V;and V is
the set of all linear functions on x € Q.

We now define F in more detail. Recall each h € H can be represented as a vector
u € U, This u defines a function v,(q) = Y%, u;x; + 4,1, and these functions are

elements of V. The vector space is however larger and defined

d
V={vs: QR |v(q) =) aixj + ag1 where g = (x1,--- ,x3) € Q,
i=1

a=(a--,a4:1) € R,

88

so that there can be v, € V for which a ¢ U%t!; rather it can more generally be in R+,

Then the desired family of real-valued functions is defined

F={f:Q+[0,00) | 3ve Vst f(q) =v(q)% Vq € Q}.

To see how this can be applied to estimate d, consider two hyperplanes 1, i in R? and
the two unique vectors u1), u?) € U4*! which represent them. Now introduce the vector
u="(uy, -, Ugi1) = uM) — 4@); note that u € R4, but not necessarily in U%*!. Now for

g € Q define a function fy,, 5, € F as

d 2
fhl,hz (q) = fh1,h2 (Xl, e /xd) = (Zizl uix; + udJrl) ’

so do(hy, hy) = (2 Y4 fiine(9))2. And thus an estimation of %quQ fi1n2(q) provides
an estimation of dg (1, hy). From [63][Theorem 2.2] (see Lemma 5.1), the total sensitivity

of Fis d + 1. In particular, given the sensitivity score c(g) for each g € Q, we can invoke

[63][Lemma 2.1] to reach the following theorem.

Theorem 5.1. Consider full rank Q C R? and halfspaces H with e,6 € (0,1). A o-sensitive
sampling Q of (Q,F) of size |Q| = ‘fsigzl results in a (0,¢,0)-coreset. And thus an (0,¢,6)-

approximation so with probability at least 1 — 6, for each pair hy, hy € H
(1 — E)dQ(hl,hz) < dQ/w(hlth) < (1 + E)dQ(l’ll,hz).

5.2.2 Sensitivity Computation and its Relationship with Leverage Score
In this section, we describe how to compute the sensitivity score o (x;) for each x; € Q.

To this end, we can invoke a theorem about vector norms by Langberg and Shulman [63]:

Lemma 5.1 (Theorem 2.2 in [63], expanding definitions). Suppose y is a probability measure on
a metric space X, and V = {v : X — R} is a real vector space of dimension k. Let F = {f : X —
[0,00) | Jv € Vst f(x) = v(x)?, Vx € X}, and {0V, - -, 0} be an orthonormal basis for V
under the inner product (u,v) == [, u(x)v(x)du(x), Vu,v € V. Then, of x,,(x) = iy 01 (x)?
and &(F) = k.

We have already set X = Q and y = 1, and have defined V and F. To apply the above

theorem need to define an orthonormal basis {v(l), 0(2), el U(d“)} for V. A straightforward

basis (although not necessarily an orthonormal one) exists as v**1)(q) = v,u1)(q) =

89

1and v)(q) = v,5(q) = x; foralli € [d] and g = (x1,---,%;) € RY where el) =
(0,---,0,1,0,---,0) is an indicator vector with all zeros except 1 in ith coordinate. That
is the ith basis element v(?) is simply the ith coordinate of the input. Since Q is full rank,
{o®,... 0@} is a basis of V.

We are now ready to state our theorem on computing sensitivity scores on a general

(F,Q,), where we typically set u = 1.

Theorem 5.2. Suppose y is a probability measure on a metric space Q = {q1,- -+ ,qn} such that
1(qi) = pi > Oforalli € [n], V= {v: Q — R} is a real vector space of dimension x with a basis
{foM, ... oY and F = {f : Q+ [0,00) | Fv € Vs.t. f(q) = v(q)?, Vq € Q}. If we intro-
duce a x x n matrix A whose ith column a; is defined as: a; = (v(l)(qi)\/ﬁ,- x ,v(K)(q,-)\/ﬁ)T,
then we have

UF,Q,y(Qi) “pi = aiT(AAT)_laZ-, A qi € Q (52)

Proof. Suppose the QR decomposition of AT is AT = QR, where Q is an n x « orthogonal
matrix (QTQ = I), and R is an 1 x n upper triangular matrix. Since {U(l), S, v(")} is a basis
of V, the columns of AT are linear independent, which implies the matrix R is invertible.

Using the fact that QTQisan identity matrix, we have

(5.3)
From Lemma 5.1, we have 0r,.(q:) = ¥4 (Qi)?, which is the i-th entry on the diagonal
of QQT, so from (5.3), we obtain (5.2). O

This theorem not only shows how to compute the sensitivity of a point, but also gives the

relationship between sensitivity and the leverage score.

Leverage score. Let (-)* denotes the Moore-Penrose pseudoinverse of a matrix, so (AAT)* =
(AAT)~! when AAT is full rank. The leverage score [36] of the ith column a; of matrix A is
defined as: 7;(A) := al (AAT)"a;.

This definition is more specific and linear-algebraic than sensitivity. However, Theorem
5.2 shows that value oF o, (x;) - p; is just the leverage score of the ith column of the matrix A.
Compared to sensitivity, leverage scores have received more attention for scalable algorithm

development and approximation [15,25, 26, 35, 36, 74]

90

5.2.3 Estimate the Distance by Online Row Sampling
If the dimensionality is too high and the number of points is too large to be stored and
processed in memory, we can apply online row sampling [26] to estimate d. Note that as
more rows are witnessed the leverage score of older rows change. While other approaches
(c.f. [25,35,74]) can obtain similar (and maybe slightly stronger) bounds, they rely on more
complex procedures to manage these updating scores. The following Algorithm 5.1 by
Cohen et.al. [26], on the other hand, simply samples columns as they come proportional to

their estimated ridge leverage score [25]; thus it seems like the “right” approach.

Algorithm 5.1 ONLINE-SAMPLE(A, ¢,)

Set A := %, c:= 810g(§2), and let A be empty (a 0 x d matrix).
forrows a; € A do

Let p; := min(c- (1+e)al (ATA + AI)"'a;, 1).

With probability p;, append row 4;/,/p; to A; otherwise do nothing.
return A.

According to the Theorem 3 in [26], Algorithm 5.1 returns a matrix A, with high probabil-
ity, such that (1 —) ATA — 61 < ATA < (14 ¢)ATA + 61, and the number of rows in A is
O(dlog(d)log(e||Al3/5)/€?). (Recall A < B means xT Ax < xTBx for every vector x.)

Given a set of points Q = {q1,- -+ ,gx} C IRY, where g; has the coordinates (x;1,- -, X;),

we introduce an n x (d + 1) matrix Ag whose ith row g; is defined as:

a; = (xi,ll s Xid, 1)/

For any two hyperplanes &y, 1, they can be uniquely expressed by vectors u(!), u(?) € U1,
and define u = u") — u(?) € R, then we have dg(hy, hy) = ﬁHAQ“H- So, if n is very
large we can apply Algorithm 5.1 to efficiently sample rows from Ag, and use Ay to

estimate dg(hy, h2). From Theorem 3 in [26], we have the following result.

Theorem 5.3. Suppose a set Q and matrix Ag are defined as above. Let A5 = Online-Sample(Aq,

g, 0) be the matrix returned by Algorithm 5.1. Then, with probability at least 1 — dlﬁ, for any two

2)

hyperplanes hy, hy expressed by u),u® € W, suppose uy,, 4, = uV) — u®?, we have

S
1+e'n

1 1 1
|‘AQ~uhlrh2H2 - ;5||”h1,h2||2) * < dQ(hl,hz) <

1 , 1 o\ 1
= 1_8(EHAQ~uh1,h2H +E(S||uh1,hz||)2/

91

where || - || is the Euclidean norm, and with probability at least 1 — dl? — e~ @) the number of

rows in A is O(dlog(d) log(el| Agll5/0) /€?).

To make the above bound hold with arbitrarily high probability, we can use the standard
median trick: run Algorithm 5.1 k times in parallel to obtain AQ1 Lo A O then for any two
||2’ ..

hyperplanes hy, hp, we take the median of || Ag, up, 1, 1 Ag, iy 2.

Remark 5.1. Since uy, y, = u'V) — u®, we have

ot 17 = (U = u@) < (D)+ @) < 20)2 + Ju®)?)

=224 () + (P))?) = 4+ 242(0, 1) +2d%(0, hn),

where d(0, h) is the distance from a choice of origin 0 to h. If we assume that any hyperplanes
we consider must pass within a distance A to the choice of origin, then let A' = 4(1 + A?) and
w1, |I> < A Now dQ/W(hl,hz))2 = %HAQuthz |? where Q is the set of points corresponding
to rows in A, and the weighting W is defined so w; = |Q|/n. Then the conclusion of Theorem 5.3
can be rewritten as

1 A

1
Tre(erw(hl'hZ)z — =) < do(h) <

1
1—¢

%
n

1
(dow(h h2)* +—)2,
which means dg(h1, hy) can be estimated by dQ,W(hl, hy) and the bound A on the distance to the

origin. Recall the distance and the bound in Theorem 5.3 is invariant to the choice of 0, so for this

interpretation it can always be considered so A is small.

5.2.4 A Strong O(0,¢,6)-Approximation for Q over K.

Now, we use the framework in Braverman et.al. [16] to construct a strong O(0,¢,0)-
approximation for Q over J{. In the remaining part of this subsection, we assume Q is a
set (not a multiset), each g € Q has a weight w(q) € (0,1], and Yo w(q) = 1. Recall that
for a range space (Q, R) the shattering dimension s = dim(Q, R) is the smallest integer s
so that [{SNR | R € R}| < |S|* forall S C Q. We introduce ranges X where each range
Xy hpy € X is defined by two halfspaces hy, h; € H and a threshold # > 0. This is defined

with respect to Q and a weighting w : Q — R, specifically

X oy =19 € Q | w(q) fu, 1, (9) < 17}

92

Next we use the sensitivity ¢ : Q — R4 to define an adjusted range space (Q,X')

with adjusted weights w'(q) = %w(q) and adjusted ranges X, , . € X' defined using

Jr
fnyny (4)
ghl,hz (’7) = ﬁ hjlzh?hzq as

Xy oy = 19 € Q| W' (9) &y iy (q) < 171}

Recall that fy, , = Yqc0 @(q) fu,,n,(9)- To apply [16][Theorem 5.5] we only need to bound
the shattering dimension of the adjusted range space (Q, X').
Here is a lemma about the computation of the dimension of a range space, which is useful

in bounding the dimension of a query space.

Lemma 5.2. Suppose Q C R%,X; C R", X, € R%, and Ry = {{q € Q| g1(g,x) < 0} x €
X1}, R = {{q € R?| £2(q,x) < 0}| x € Xp} where g1, can be any fixed real functions. Define
Rs = {{q € R*[g1(q,x1) <0} N {7 € R?| g2(q,x2) < O} x1 € X1, x2 € Xo}, Ry = {{g €
R?| g1(g,x1) < 0}U{g € R?| g2(q,x2) < 0}| x1 € X1, x2 € Xo}. Ifdim(R?,Ry) = s1 and
dim(R?,Ry) = s, then dim(R?, R3) < s1 + sp and dim(R?, Ry) < s1 + s5.

Proof. Suppose G C R? and |G| < oo, then we have
{GQR| R e :Rg} = {(GﬂRl) N (GﬂR2)| Ry € R,Ry € Rz}. (5.4)

So, we have

‘{GQR|R€:R3}|:’{(GﬁRl)ﬁ(GﬂRz)’RlERl,RQEfRzﬂ ()
5.5
<|{GNRi| Ry € Ri}| x {G N Ra| Ry € Ro}| < |G1|G|? = |G+,

which implies dim(R?, R3) < s1 + 55, and similarly we have dim(R?, Ry) < 51+ $o. O

Now, we can bound the shattering dimension of the adjusted range space (Q, X’).
Lemma 5.3. The shattering dimension of adjusted range space (Q, X') is bounded by O(d).
Proof. We start by rewriting any element X;zl,hz,:y of the adjusted range space as

Xy iy = 10 € Q1 0 (9) 811, (x) < 17}
={9€ Q1 w(@)fun(7) <n(d+1)fun}
= {g€ Q| o) (T wxi+us1) < (7 + 1) fin)*}
N{geQ] —W(Zﬁ:l wixi +tgy1)) < (7(d +1) fuy)

NI—=

|7

93

where (x1,- -+, ;) is the coordinates of g € Q. This means each set X} y € X' can be

decomposed as the intersection of sets in two ranges over Q from:

R = {{q €Q| \/W(Q)(Zj:1”ixi+“d+1)) < (n(d+1) fhlhz) F i ho € 3,0 > 0}
= {{q €Q| _M(Zle uixi +ugq1)) < (W(d+1)fh1,hz)§}| h,hy € H, 5 > 0}-

By Lemma 5.2, we only need to bound the dimension of each associated range space (Q, R1)

and (Q, Ry). We introduce new variables ¢y € R,z = (z1,- -+ ,z441),¢ = (¢1, -+ ,c411) €

zi =\/w(q)x; fori € [d], zg1 = +/w(q),

_ 1
c; =u; fori e [d+ 1], o = —(T(d+ 1)fh1/h2)2'

le-H:

Since Q is a fixed set, we know z only depends on g, and cy, c only depend on hy, hy
and 5. By introducing new variables we construct an injective map ¢ : Q + R, s.t.
¢(q) = z. So, there is also an injective map from R to {{z € ¢(Q)| co + (z,¢) < 0}| co €
R,c €]Rd“}. Since the shattering dimension of the range space (]Rd“,ﬂ-fd“), where
H4*1 = {his a halfspace in R9"1}, is O(d), we have dim(Q,R;) = O(d), and similarly
dim(Q,R2) = O(d). Thus, we obtain an O(d) bound for the shattering dimension of
(Q,X). O

From Lemma 5.3 and [16][Theorem 5.5] we directly obtain a strong O(0, ¢, §)-approximation
for Q over H.

Theorem 5.4. Consider full rank Q C R? and halfspaces H with e,6 € (0,1). A o-sensitive
sampling Q of (Q, F) of size |Q| = O(%(dlogd +log 1)) results in a strong (0, ¢, &)-coreset. And
thus a strong (0, €, &)-approximation so with probability at least 1 — 6, for all hy, hy € H

(1—e)dg(l, h2) < dg (i, h2) < (1+e€)dg(h, h2).

5.3 Distance Between Two Geometric Objects
In this section, we mildly restrict dg to the distance between any two geometric objects,
in particularly bounded closed sets. Let § = {S C R | S is a bounded closed set} be the
space of objects J we consider.
As before define v;(S) = inf,cs||p — qil|, and then for 51,5, € 8 define fs s,(q:) =
(vi(S1) — v;(S2))?. The associated function space is F(8) = {fs, s, | S1,S2 € 8}. Setting

94

u(q) = Lforallg € Q, then (do(S1,52))% = fs,,5, := i1 1(qi) fs,,5,(i). Using sensitivity
sampling to estimate d (51, Sz) requires a bound on the total sensitivity of F(8).

In this section we show that while unfortunately the total sensitivity G(F(8)) is un-
bounded in general, it can be tied closely to the ratio L/p between the diameter of the
domain L, and the minimum allowed dg distance between objects p. In particular, it can be
at least proportional to this, and in R? in most cases (e.g., for near-uniform Q) is at most

proportional to L/p or not much larger for any Q.

5.3.1 Lower Bound on Total Sensitivity

Figure 5.1: Q is the set of blue points, 1 is the red curve, 7, is the green curve, and they coincide
with each other on the boundary of the square.

Suppose Q is a set of n points in R? and no two points are at the same location, then for
any qo € Q we can draw two curves ‘1, 72 as shown in Figure 5.1, where 1 is composed
by five line segments and 7, is composed by four line segments. The four line segments
of the 7, forms a square, on its boundary 71 and 7, coincide with each other, and inside
this square, g9 is the endpoint of 1. We can make this square small enough, such that all
points g # qo are outside this square. So, we have dist(go,v1) = 0 and dist(qo, 72) # 0, and
dist(g, y1) = dist(g,v2) = 0 for all g # qo. Thus, we have f,, ,(q0) > 0and f,, 1,(9) =0
for all g # go, which implies

ey onlao) > T Frm(i) _ nfup()
Qi Z —= '

f’hﬂz %quQf’h/Yz(Q) - f'Yl/'YZ(qO)

Since this construction of two curves 71, 2 can be repeated around any point g € Q,

S(E(S) = ¥ 1(0)rs)0u() > L cn=n

7€Q qeQ

95

We can refine this bound by introducing two parameters L, p for 8. Given L > p > 0 and
aset Q C R? of n points, we define (L) = {S € 8 | S C [0,L]?} and F(S(L),) = {fs,s, €
F(8) | 51,52 € 8(L), dp(S1,52) > p}. The following lemma gives a lower bound for the
total sensitivity of F(8(L), p) in the case d = 2, which directly holds for larger d.

Lemma 5.4. Suppose d = 2, then can construct a set Q C [0, L] such that &(F(8(L),p)) =

Q(3).

Proof. We uniformly partition [0, L]? into 7 grid cells, such that C1% <n< CZ% for constants
C1,Cy € (0,1). The side length of each grid is = ﬁ We take Q as the n grid points,
and for each point g4 € Q we can choose two curves 71 and ; (similar to curves in Figure
5.1) such that dist(g,y1) = 0, dist(g, 72) > Cay, and dist(q’, 1) = dist(q’, 72) = 0 for all
g € Q\ {q} . Thus, we have dg(71,72) > C2% = Gkt > p. So, f1,1, € F(S(L),p))
and we have 0(q) > n for all g € Q and S(F(S8(L),p)) > n > Cl%, which implies
S(F(S(L),p)) = (L), s
5.3.2 Upper Bound on the Total Sensitivity

A simple upper bound of G(F(8(L),p) is O() follows from the L/p constraint. The
sensitivity of each point 4 € Q is defined as sup fs,5,EF(S(L).0) %ﬁz), where fg 5,(9) =
O(L?) for all S1,S; € 8(L) and g € Q C [0,L]%, and the denominator fs, 5, > p? by
assumption for all fs, s, € F(8(L),p). Hence, the sensitivity of each point in Q is O(E—;),
and thus their average, the total sensitivity is O (5—;) . In this section we will improve and

refine this bound.

We introduce two variables only depends on Q = {g1,--- , 4.} C [0, L]:

rd n 2+d
where Bwo(q,7) := {x € R? | ||x — gl < 7} Intultlvely, M is proportional to the

point density in region B (g, 7), and the value of 7] can be maximized, when the

Ld \QﬁB (4,

region B (g, r) has smallest point density, which means r should be as large as possible but
the number of points contained in B« (g, 7) should be as small as possible. A trivial bound
of C, is n, but if we make C,; = n for one point qo, then it implies the value of C, for other

points will be small, so for Cg it is possible to obtain a bound better than nwz,

96

Importantly, these quantities C; and Cg will be directly related to the sensitivity of a
single point ¢(q) and the total sensitivity of the point set &, respectively. We formalize
this connection in the next lemma, which for instance implies that for d constant then

&g =0(Cq - (L/p)F7).

Lemma 5.5. For function family F(S(L), p) the sensitivity for any g € Q € [0, L)* is bounded

) < coctn (L)
U(q_dq (p) ’

where Cq = 47+ (8\/51)% and C; given by (5.6).
fsy,5,(q)

7 Lqreq fo1.5, (@)

fs,,s, € F(S8(L),p) satisfies this supremum o(q) = 0 e define dist(g,S) =

 alyeafus @)
inf,cs || — pl| (so for g; € Q then dist(q;,S) = ©v;(S)), and then use the parameter M :=

|dist(g, S1) — dist(g, S2)|, where M? = fs s,(q). If M = 0, then obviously fs, s,(7) = M? =

Proof. Recall (q) = sup fs,5, F(S(L),0) . For any fixed g € Q, for now suppose

0, and o(gq) = 0. So, without loss of generality, we assume M > 0 and dist(g,S1) = T and

dist(g, S2) = T+ M. We first prove 0(gq) < CquA%. There are two cases for the relationship

between T and M, as shown in Figure 5.2.

Figure 5.2: Left: Case 1, r = % < 7,and q' € B(g,r). Right: Case 2, r = % > 7, and
g € B(g,T+7).

Case 1: > X, Forany g € B(q,) :={q e R" | [|g — qi|| < ¥}, wehave T+ M =
dist(g, S) < dist(q,¢") + dist(q/, S2) < & + dist(q’, S»), which implies for all ¢’ € B(g, §)

dist(q’,S2) > T+ M — % =T+ gM.

97

Similarly dist(q’, S1) < dist(q’,q) + dist(q,S1) < & + T forall ¢’ € B(q,%). Thus for all

q €B(q,%)

7 M 3
|dist(q’, S2) — dist(q’, S1)| > dist(q, S) — dist(q’,S1) > T+ gM —(t+ §) = ZM'

Case 2: 0 <7< ¥.Foranyq' € B(q, 7+ &) :={q' € R? | dist(q,q) < T+ ¥}, we have
T+ M =dist(q/,S;) < dist(q,q’) + dist(q’,S2) < T+ ¥ +dist(q', S2), which implies for all
q €B(g, T+ %)
7
dist(q’, S2) > §M‘

Combined with T < # and dist(q/, S1) < dist(q',q) + dist(q,51) < 1+ ¥ + 7=

LS

+

S
+

M <3Mforallq € B(q,T+), we have

SE

|dist(q’, S2) — dist(q’, S1)| > dist(q, S) — dist(q’,S1) > =M — gM =

[e NN

Combining these two cases on 7, for all ¢’ € B(g, %)

dist /,52 — dist /,Sl ZM
q q 5

Then since B« (g, ﬁ) C B(g,r) forall ¥ > 0, from

rd n 1 M n

C, = max — > - ,
17 0<r<L L9 |Q N Boo(q, 1) —(gﬁ) L4 |Qmb(q,%)|

we can bound the denominator in ¢ (g) as

S| =

LY fs@zy L fas@) =, L (st S) —dist(q))

qu q'€QNB(q 8f) q'€QNB(q 8f)

M 1, 1 M2MT 1,1 1 M2+
**MZ B > Z(— dsys _ = d - ,
= ‘Q 8\/51)‘ = 4(8\/3) C, L4 4(8\/3) C, L4
which implies
M?2 L4
o(q) = < 4(8Vd)'M*C 4(8Vd)C,

— ’1
% Zq’eQ f51,52 q/) M2+d Md

(

Combining this with o(g) < ZXI—; we have o(g) < mm((S\f)qu 7). If M2H <
4(8v/d)Cyp?LY, then]\pﬂ—; < 4(8 d)‘C, I\L/Id,which means 0(g) < mm((SW)quALAdd) =
M < gt (8va)Facy (L)

2 2

we also have U(q) < mln((S\f)dchL/Idd) — 4(8f)quAL4dd < 42+d (8[)2+dC d(>z+d.
O

‘ Pl
l

T M > 4(8Vd)IC,p°LY, then 4(8vd)Cyiy < 2%, s0

98

2

Hence, to bound the total sensitivity of F(S(L), p), we need a bound of Cg = 1 Yae C7'
Lemma 5.6. Suppose Q C [0, L]? of size n, 1 = ming greq, g2q |19 — 9|0, and Cq is given by

(5.6). Then we have

. L,2 /1 2
Co < Cymin ((log2 ;)2”, (Hlog2 n) 2+d),

where Cy = 2411,

Proof. We define GQ = % Y ye Cy, and using Holder inequality we have
21 da a1 T2
Co=3 LGi" < n(qEZQCq) ne = (anZQCq) = (Co)=.
So, we only need to bound GQ.

We define r, := argmaxo<,<r I%WW forallg € Q,Q;:={q€ Q| 2,% <rg < %},
and A := {i > 0| i is an integer and |Q;| > 0}.

For any fixed i € A, we use [; := 21% as the side length of grid cell to partition the
region [0, L] into s; = (l%)d = 20HD4 grid cells: Q.- -+, Q) where each) is a closed
set, and define Q;; := Q; N Q). Then, |Q; N Bw(q,l;)] > |Q;;| for all 4 € Q;; where
Beo(q,1) :={q' € RY ||¢’ — ql|e < I;}, and we have

d
¥ 1 L 1 . X
q
4 < . 1 1
qéi L1Qi N Bs(g,mq)] q;Q 21414 |Q; M Boo (g, 7q)| — 27 qgi |Qi N Bws(g, ;)|
1 1 1 .
< ¥ y_ ! 1 ¥ 3
< 57 ' < }
z j€lsil1Qij1>09€Qi; Qi N Beo(g, 1) — 2 j€lsi]|Qij|>0€Qi; Qi
= _ il s 20
2id j€lsil,|QiI>0 |Q1,]’ 21 i
Then using the definitions of EQ and r; we have
d i]
~ r 1 r 1 . :
Co = max — ————__ — o 1 no1
Q q§30<rg L9 |Q N Beo(q,7)| qgng|QﬂBoo(q,rq)| lgq;gi 410N Bua(g,7)]
 icAqeQ, L?[QiNBw(q,7)| ~ S N '

We assert r; > Ln—i for all g € Q. This is because for any r € (0, Ln*%) we have

rl n L4 n L4 n

o A . —
L4 |QN Beo(q,7)| ~ nLé1 ~ L1|QNBw(q,L)|

which implies the optimal 7, € [Ln_%, L]. Moreover, since r; > mingcg, g4 19 — q'[|c >

7, we have r, > max(Ln~4,7) for all ¢ € Q. If i > min (log, %,%logz n), then £ <

99

max(Ln*%, n) < rq, and from the definition of Q; and A we know i ¢ A, which implies
|A| < 1+ min (log, %, Llog, n). Hence we obtain Co < 2! min (log, %, Llog,n) and

using Co = (ég)ﬁ we prove the lemma. O

Since fs, s, € F(S(L),p), weknow fs, s,(q) < dL*forallg € Qand + Yocq fs,,5,(q9") = 0%

soo(q) < 4

out Cp using Lemma 5.6 to immediately obtain the following theorem about the total

for all g € Q. Thus, we can expand] Yqe07(q) using Lemma 5.5 and factor

sensitivity of F(8(L), p).

Theorem 5.5. Suppose L > p >0, Q = {q1,- -+ ,qu} C [0,L]? and = minggeq, g2q |7 —

q'||co. Then, we have

S(F(8(L),p)) < G6o=0 ((i) o min (log i,logn, <£>2> ﬁd) .

From Lemma 5.5 and Theorem 5.5, using [63][Lemma 2.1] we can obtain the following

theorem.

Theorem 5.6. Let L > p >0,Q = {q1,- -+ ,qu} C [0,L], S1,S> € 8(L) and dn(S1,S2) > p.
Suppose 0(q) and Sq are defined in Lemma 5.5 and Theorem 5.5 respectively. Then for §,¢ € (0,1)
a o-sensitive sampling of size N > %’ provides Q, a (p, ¢,8)-coreset; that is with probability at

least 1 — 6, we have

(1 —E)dQ(Sl, 52) (Sl, Sz) (1 +8)dQ(51,52)

If Q describes a continuous uniform distribution in [0, L]* (or sufficiently close to one, like
points on a grid), then there exists an absolute constant C > 0 such that C; < C for all q €Q,
then in Lemma 5.5 0(q) < C4 ()“" forall g € Q, and in Theorem 5.5 & < C, ()Z*d So,
for uniform distribution, the sample size of Q in Theorem 5.6 is independent from the size

of Q, and for d = 2 the bound &g = O(L/p) matches the lower bound in Lemma 5.4.

Corollary 5.1. If Q describes the continuous umform distribution over [0, L)%, then the sample size

in Theorem 5.6 can be reduced to N = O (()2+d 1)

o6e2

Remark 5.2. To compute the upper bound of o(q) in Lemma 5.5, we need to compute C, which can

be obtained in O(nlogn) time. For any fixed q € Q, we sort Q\ {q} = {q1,- - , gn-1} according

100

to their 1 distance from q, so that ||q — qillc < || — gjleo for any i < j. Then for i € [n] we
oy
(e

d
rin
of 177 as Cq.

compute where r; = ||q — qi||e for =i € [n — 1] and r,, = L, and choose the maximum value

5.4 Strong Coresets for the Distance Between Trajectories
In this section, we study the distance dg defined on a subset of 8§(L): the collection of
k-piecewise linear curves, and use the framework in [16] to construct a strong approximation
for Q. We assume the multiset Q contains m distinct points 4y, - - - , ¢, where each point g;

appears m; times and Y /" ; m; = n. So, in this section Q will be viewed asaaset {q1,- - -, gm }

(not a multiset) and each point g € Q has a weight w(g;) = 7.
Suppose Ty := {v = (co, -+ ,c) | c; € R%} is the collection of all piecewise-linear
curves with k line segments in R?. For v = (co,--,cx) € Tk, {co,--,cx) is the se-

quence of k + 1 critical points of . The value dist(q,y) = inf,c, ||p — g/, and function
Frma(q) = (dist(g, y1) — dist(g, 72))? are defined as before. We now use weights w(g;) = "
1
(quQ w(q) = 1) and the resulting distance is dg (1, 72) = (quQ w(q) fru1.(q)) 2
ForL>p>0,Q={q1, - ,q9u} CR?, we define

XL,) = {(71,72) € Te X Ti | 71,72 € 8(L), dg(71,72) > p}-

We next consider the sensitivity adjusted weights w'(q) = %g)w(q) and cost function

Sy (q) = ﬁ%z(q) These use the general bounds for sensitivity in Lemma 5.5 and
1172

Theorem 5.5, with as usual f,, 7, = Y5c0 W(q) fy1,7,(q)- These induce an adjusted range

space (Q, T} ;) where each element is defined

Tyien = 19 € Q| 0 (9)8y17,(9) <1, 71,72 € Xf(L,p)}.

Now to apply the strong coreset construction of Braverman et.al. [16][Theorem 5.5] we only
need to bound the shattering dimension of (Q, 7 ;).

Two recent results provide bounds on the VC-dimension of range spaces related to
trajectories. Given a range space (X, R) with VC-dimension v and shattering dimension
s, it is known that s = O(vlogv) and v = O(s). So up to logarithmic factors these terms
are bounded by each other. First Driemel et.al. [34] shows VC-dimension for a ground
set of curves X, of length m, with respect to metric balls around curves of length k, for

various distance between curves. The most relevant case is where m = 1 (so the ground

101

set are points like Q), and the Hausdorff distance is considered, where the VC-dimension
in d = 2 is bounded O(k* log(km)) = O(k* logk) and is at least Q(max{k,logm}) = Q(k).
Second, Matheny et.al. [72] considered ground sets X of trajectories of length k, and ranges
defined by geometric shapes which may intersect those trajectories anywhere to include
them in a subset. The most relevant cases is when they consider disks, and show the
VC-dimension is at most O(d log k), and have a proof that implies it is at least Q(log k); but
this puts the complexity k on the ground set not the query. More specifically, neither of
these cases directly imply the results for our intended range space, since ours involves a

pair of trajectories.
Lemma 5.7. The shattering dimension of range space (Q, Ty, ;) is O(k®), for constant d.

Proof. Suppose (71,72) € X,f(L,p) and 7 > 0, where v1 = (c10,---,Cc14) and 72 =

(c20,...,Cok), then we can define the range T,, ,, ; as

Ty =10 € Q| 0 (9)8,7.(9) < 11}
:{q €Q ‘ w(q)f’h/h((n < GQf_’h/hn}
={q € Q| w(q)(dist(q,71) — dist(q,72))* < Sqfy, 11}

q q q
5j 5 5j

Figure 5.3: Illustration of the dist(g, s;) from point g to segment s;.

For a trajectory -y defined by critical points co, 1, ..., ¢k for j € [k] define s; as the segment
between ¢; 1, ¢j and /; as the line extension of that segment. The distance between g and a
segment s; is illustrated in Figure 5.3 and defined

dist(q,¢j-1), if (¢j—cj-1, 9—¢j-1) <0

gj = dist(g,s;) = { dist(g, ci), if (¢j-1—cj, g—cj) <0
dist(q,¢;), otherwise

Then dist(q,y) = minje |y ¢;. For trajectories 1 and 72, specify these segment distances as

(,‘fl) and ¢ i(z) , respectively. Then the expression for T,, ,, , can be rewritten as

102

) <1}
)

mn‘:) < & fym}

T71,72,?7 = {‘7 €Q | w/()gh ’Yz(
1
] jclk

={7€Q|w(q)(mmé‘
jElk]

Uppei{a e Qe <&V, e® < e forallj e [k, w(g) (@) — &) < Safynn}
(Njem,jzin (1€ Q] 5]1) = ‘:(1)})
_y | ° (Niel iz {qu|1¢]2 szc)]
juj€lk] n{geQlvw]] 5](2 < (&g fy17M)
Nn{geQfvw]2 1 (GQf% 721)

Ni= Nl=

}
}
This means set T, ,,, can be decomposed as the union and intersection of O(k?) simply-
defined subsets of Q. Specifically looking at the last line, this can be seen as the union over
O(k?) sets (the outer union), and the first two lines are the intersection of O(k) sets, and the
last two lines inside the union are the intersection with one set each.

Next we argue that each of these O(k®) simply defined subsets of Q can be characterized
as an element of a range space. By standard combinatorics [11,53] (and spelled out in
Lemma 5.2), the bound of the shattering dimension of the entire range space is O(k®) times
the shattering dimension of any of these simple ranges spaces.

To get this simple range space shattering dimension bound, we can use a similar lineariza-
tion method as presented in the proof of Lemma 5.3. For any simple range space R deter-
mined by the set decomposition of T, /y2» We can introduce new variablescy € R, z,c €]Rd/,
where z depends only on g, and ¢y, ¢; depend only on 71,7, and r, and d’ only depends
on d. Here, Q is a fixed set and thus &g is a constant. By introducing new variables we
can construct an injective map ¢ : Q RY, s.t. ¢(q) = z. There is also an injective map
from Rto {{z € ¢(Q) | co +2z"c <0} | co € R,c € R?}. Since the shattering dimension
of the range space (R?, H?), where H? = {h is a halfspace in R? }, is O(d’), we have the
shattering dimension of(Q, R) is O(d") < C; where C; is a positive constant depending
only on d. Piecing this all together we obtain C;k*> bound for the shattering dimension of

(Q Tya). O

Now, we can directly apply Lemma 5.7 and [16][Theorem 5.5] to get a (p, ¢, §)-strong

coreset for X¢(L, p).

Theorem 5.7. Let L > p > 0, Q C [0, L]%, and consider trajectory pairs X (L, p). Suppose o(q)
and &g are defined in Lemma 5.5 and Theorem 5.5 respectively. Then for 6,e € (0,1) a o-sensitive

103

sampling of size N = O(%(k3 log & + log 1)) provides Q, a strong (p, €, 8)-coreset; that is with

probability at least 1 — 6, for all pairs y1,v2 € X{(L, p) we have
(1—¢)dg(r1,712) < dgw(r1,712) < (L+€)dg(r1,72)-

5.5 Trajectory Reconstruction
In Section 5.4, we use Q to convert a piecewise-linear curve -y to a vector v (7y) in RIQI,
and in this section we study how to recover 7 from Q and vg(7), and we only consider 7y
in R?.
Suppose T := {7 = (co,- - - ,cx)| ¢ € R? k > 1} is the set of all piecewise-linear curves
in R?. Let T, 7 (Q)) and G, be define in the same way as in Section 4.3. For completeness,

we relist two restrictions for trajectories in T:

(R1) Eachangle 2, | ., ..., about an internal critical point ¢; is non-zero (i.e., in (0,).

(R2) Each critical point c; is T-separated, that is the ball B(c;, 7) = {x € R? | ||x — ¢;|| < T}
only intersects the two adjacent segments s;_; and s; of , or one adjacent segment for

end points (i.e., only the s; for ¢y and sy for cx).

Suppose 1 < 5, Q = G, NQ = {q1,-- ,qn}, v € T(Q), v; = minye, ||g; — p| and
vo(y) = (v1,...,v,). We define some notations that are used in this section for the implied
circle C; := {x € R?| ||x — g;|| = v;}, the closed disk B; := {x € R?| ||x — g;|| < v;}, and the
open disk B; := {x € R?| ||x — g;|| < v;} around each g; or radius v;. When the radius is
specified as r (with perhaps r # v;), then we, as follows, denote the associated circle C; ,,
closed disk B;,, and open disk B;, around g;.

For Q, v € T:(Q) and vg(y) we relist three observations in the proof of Theorem 4.6:

(O1) In any ball with radius less than 7, there is at most one critical point of ; by (R2).
(O2) If a point moves along 1, then it can only stop or change direction at critical points.

(O3) For any g; € Q, y cannot go into B;. Moreover, C; must contain at least one point of 7,

and if this point is not a critical point, then y must be tangent to C; at this point.

The restriction (R2) only implies if there is a critical point of <y, then in its neighborhood -y

has at most two line segments. However, if there is no critical point in a region, then the

104

shape of 7y can be very complicated in this region, so we need to first identify the regions
that contain a critical point.

The entire algorithm is overviewed in Algorithm 5.2. For each critical point ¢ € v, there
exists 4 € Q such that dist(g,¢) < 7. So to recover vy, we first traverse {q; € Q | v; < 1}
and use ISCRITICAL(g;) (Algorithm 5.3) to solve the decision problem of if there is a critical
point in B;3,. Whenever there is a critical point in B; 3, we then use FINDCRITICAL(g;)
(Algorithm 5.4) to find it — collectively, this finds all critical points of . Finally, we use
DETERMINEORDER (Algorithm 5.5) to determine the order of all critical points of -, which

recovers ‘.

Algorithm 5.2 Recover v € T(L) from Q and vg(7)
Initialize Q, := {g; € Q | v; < i1}, close set Q; := @, endpoints E = @ and critical points
A:=00.
for each q; € Q, do
if g; € Q; or ISCRITICAL(g;)=FALSE then
continue
Let (¢, S) := FINDCRITICAL(g;).
if |S| = 1 then
E:=EU{(c,S)}. //cisanendpointof ¢
Let A:= AU{(c,S)} and Qr := Q: U (Qy N Bc1ey). // aggregate critical points
return <y := DETERMINEORDER(E, A)

Existence of critical points.

In Algorithm 5.3, we consider the common tangent line of C; and C; for all 4; in a
neighborhood of g;. If no common tangent line can go through B; 3, without going into the
interior of any other circle centered in B; 3,,, then it implies there is a critical point of 7 in

Biay-

Algorithm 5.3 ISCRITICAL(g;): Determine the existence of critical point in B; 3,

for each g; € Q;3, \ {g:} do
Let /;j be a common tangent line of C; and C;.
if £; j does not intersect with By for all g € Q;3, \ {gi, q;} then
return FALSE
return TRUE // there must be a critical point in B; 3,

105

| |
! / \ , \

Db (e / \ , . Qfs1,2)
‘ \

Figure 5.4: Left: [is tangent to C;. Rotate around C; until it is tangent to some C;. Center:
c is an endpoint of 7. Right: ¢ is an internal critical point of . In center and right figures,
no tangent line of C; can go through B, 3, without intersecting with the pink curve.

Lemma 5.8. Suppose q; € Q and v; < n. If ISCRITICAL(q;) (Algorithm 5.3) returns TRUE, then
there must be a critical point of y in B;3,. Moreover, for any critical point ¢ € vy there exists some

q; € Q such that v; < y and ISCRITICAL(q;) (Algorithm 5.3) returns TRUE for the input g;.

Proof. 1f Algorithm 5.3 returns TRUE, then no common tangent of C; and C; (4; € Q;3;) can
go through B; 3, without intersecting with some By for g; € Q;3,. This implies no tangent
line of C; can go through B, 3, without intersecting with some B for g € Qi3y- Otherwise,
as shown in Figure 5.4(Left), suppose tangent line £ can go through B, 3,,, then we can rotate
¢ around C; to line ¢’ s.t. £’ is tangent to some C; (9; € Q;3,;) but does not intersect with any
B (gx € Qi3y), which leads to a contradiction. So, if there is no critical point on C; then
(O3) implies one line segment of y must be tangent to C;, but Algorithm 5.3 checks that no
tangent line of C; can go through B, 3, and thus from (O2) we know 7 must have a critical
pointin B; 3.

If ¢ € <y is a critical point, then there are two possibilities: ¢ is an endpoint of 7, or c is an
internal critical point of .

If ¢ is an endpoint, let g; = (x;,y;) be the closest point in Q to ¢. Obviously we have
v; < 177, and there is only one line segment s of 7y in B;3,. We consider the points set
Sioy = {(xi + ki, yi +kon) | [|(k1,k2) || = 2}, i.e. the pink points in Figure 5.4(Center).
Without loss of generality, we assume q;; = (x; +21,y;) and q;, = (x; +2#,y; + 1) are the
two closest points in S; 5, to s, and their projection on s are p;; and p;, respectively (two

green points in Figure 5.4(Center)). Let q;, = (x; +21,yi +27), q;, = (xi — 21,yi +27),

106

9i, = (xi —2n,y; —2n) and q;, = (x; + 2%, y; — 217) be the four pink corners. Since the radius
of C; is v; < 1, we know any tangent line of C; must intersect with the piecewise-linear
curve (pig, Gis, 9i Girs Gis» Gias Giss Pis) before it passes completely through B 3,. However, the
curve (Pi, G, Giy» Gins Giss Giar Gis» Pis) i covered (except points p;, and p;.) by open disks By
whose centers are in g € S;2; C Q;3;. So, no tangent line of C; can go through B, 3, without
intersecting with some By for g € Qj 3.

If ¢ is an internal critical point, then there are two line segments sy, s> in B;3,;. From
(R1) we know the angle between s; and s, is less than 77, and we define () (s1,s2) := {p €
B3, | pis outside the interior angle region formed by s; and so}. Let g; = (x;,y;) be the
closest point in QO(sy,87) to ¢, and Si,2,7 be defined in the same way as before. We have
v; < 1. We consider the points set S;2, N Q)(s1,52), i.e. those pink points in Figure 5.4(Right).
Without loss of generality, we assume g;, = (x;,y; +27) and q;, = (x;,y; — 21) are two
closest points in S;5, N Q)(s1,52) to 51 and s, respectively, and their projection on s; and
sy are p;, and p;, respectively (two green points in Figure 5.4(Right)). In this setting, let
i, = (xi —21,y; +21) and q;, = (x; — 277, y; — 217) be the corner points of S;5,. Since the
radius of C; is v; < 1 and the angle formed by s; and s; is less than 77, we know any tangent
line of C; must intersect with the piecewise-linear curve (p;,, qi,, 9i,, 9i,, Jis, Pi;) before go
through B 3,. However, the curve (pj,, qi,, qi,, 4y, qis, Piy) is covered by open disks B; whose
centers are g € S;2, NQ(s1,52) C Q;3,. So, we know no tangent line of C; can pass entirely
through B, 3, without intersecting with some By for gk € Qizy-

Thus, if c is a critical point of y, Algorithm 5.3 will return TRUE for some q; € Q with

v < 1. L]

Finding a critical point.
If there is a critical point ¢ in B; 3;, then using (R2) we know in the neighborhood of ¢, ¢
has a particular pattern: it either has one line segment, or two line segments. We will need

two straightforward subfunctions:

e FCT (Find Common Tangents) takes in three grid points g;, g;, g, and returns the all
common tangent lines of Cj and C; which do not intersect the interior of disks B; of an
disk associated with a point q; € Q; ;. This generates a feasible superset of possible

nearby line segments which may be part of .

107

o MOS (Merge-Overlapping-Segments) takes a set of line segments, and returns a smaller
set, merging overlapping segments. This combines the just generated potential line

segments of 7.

Now in Algorithm 5.4, for each pair gq;, gx € Big;, we first use FCS to find the common
tangent line of C;, Cy that could be segments of 7, and then use MOS to reduce this set
down to a minimal set of possibilities S;,. By definition, there must be a critical point ¢, and
thus can be at most 2 actual segments of y within B; g, so we can then refine S,,,. We first
check if c is an endpoint, in which case there must be only one valid segment. If not, then
there must be 2, and we need to consider all pairs in S,,. This check can be done by verifying
that every Cy for qx € Q;, is tangent to the associated ray ray(s) (for an endpoint) or for the
associated rays ray(s) and ray(s’) for their associated segment pairs (for an internal critical

point).

Algorithm 5.4 FINDCRITICAL(q;): Find a critical point in B; 3,
Let Qig; := QN B;g, and S := @.
for each pair g;, qx € Qi g, do
St := StUFCT(qg;, i, q)
Sm := MOS(S,).
foreachs € S, do
Extend s to ray ray(s) with endpoint ¢ where it first enters By for some gy € Qigy-
if for all g; € Q; g, either c € C; or C; is tangent to ray(s) (ENDPOINT) then
return (c, {s}) // cisanendpoint of y
for each pair s,s’ € S, do
Extend to lines £(s), ¢(s').
if £(s) and /(s") do not intersect in B; g, continue
Set ¢ = £(s) N ¢(s’), and define rays from c containing s and s’ as ray(s) and ray(s’).
if for all gx € Qjgy, either c € C or Cy is tangent to ray(s) or ray(s’) (INTERNALPOINT)
then
return (c, {s,s'}) // cisan internal critical point of 7y

Lemma 5.9. Suppose ¢’ € B, 3, is a critical point of v, and (c, S) is the output of FINDCRITICAL(q;)

(Algorithm 5.4), then ¢ = ¢’. Moreover, |S| = 1 if and only if c is an endpoint of +y.

Proof. Since ¢’ € B;3, and 7 < 55, we have B;g, C B(c/, 7). So, from (R2) we know in B;g,,
7 either has one line segment which means ¢’ is an endpoint, or has two line segments

which means ¢’ is an internal critical point.

108

o o
K, ~

1 . ! .
Gk, L i
\

Figure 5.5: Left: {c} = C;; N C;, N C;, and B;, C B;, U B;,. Center: the angle between s and
s'is at most § and {c} = C; N C;, N C;, and B;, C B;, U B,. Right: C;,, C;, are tangent to s,
and C;,, Cj, are tangent to s’, For each one of these four circles, any tangent line segment,
except s, s’, cannot be extended outside B; g, without intersecting with any other circle.

If ¢’ is an endpoint, then the line segment of v must satisfy Condition ENDPOINT in
Algorithm 5.4. Moreover, if in Algorithm 5.4 s satisfies Condition ENDPOINT, then ¢ must
be a critical point of y. This is because, as show in Figure 5.5(Left), there exists three points
irs 9irs 9is € Qigy such that {c} = C; NC;, NC;, and B;, C B;, U B;, and the tangent of
Cj, at ¢ intersects with B;, U B;,. This can be seen by observing there must exists points
i, qi; € Qigy which are (i) on the opposite side from s of the perpendicular to s through c,
(ii) are a distance at least 37 from ¢, and (iii) within a distance of 35 from each other. This
implies there exists another point q;, € Q N B;, N B;, and with v; < 27. Hence B;, must be
contained in B;, U B;,. Thus, (O3) implies c is a critical point of 7, and from (O1) we know
c=c.

If ¢’ is an interior point, then as show in Figure 5.5(Center and Right), no line segment
can satisfy Condition ENDPOINT in Algorithm 5.4, so the algorithm will not stop before
the third loop. Then the two line segments of v with ¢’ as the common endpoint can satisfy
Condition INTERNALPOINT. Moreover, if s and s’ satisfy Condition INTERNALPOINT, then
we will show ¢ must be a critical point of vy. There are two possibilities: the angle between s
and s at most 7, or greater than 7.

If the angle is less than or equal to 7, then as shown in Figure 5.5(Center), there exists
three points g;,q;,,9i, € Qigy such that {c} = C;; NC;, NC;; and B; C B;, U B;; and the
tangent of C;, at ¢ intersects with B;, U B;,. This follows by the same argument as when c is

an endpoint. So, (O3) implies ¢ is a critical point of 7, and from (O1) we know ¢ = ¢’.

109

If the angle is greater than 7, then as shown in Figure 5.5(Right), there exists four points
i1, i, 9i5, 9i, € Qigy outside the interior angular region, and such that C;, C;, are tangent
to s’, and C;,, C;, are tangent to s. Moreover, these four circles can be chosen to not intersect
with each other. Next we can argue that because the angle is sufficiently large, we can
block a path from ¢’ to outside of B; g, both inside the interior angular region, and outside
it. Outside this region, we can choose three points in gy, gk,, qx, € Qigy of which Cy is
incident to ray(s), Cy, is incident to ¢/, and Cy, is incident to ray(s’); and that By, and By,
intersect and By, and By, intersect. Similarly, inside the interior angular region, we can
chose two points gq;,,9j, € Q;g, so Cj, and C;, are incident to ray(s) and ray(s’), respectively,
and that B j, and B j, intersect. These two sets of points blocks any other straight path from
¢’ (required by (02)) from existing Big; (required by (O1)) without entering the interior of
some By. And the first four points g;,, 4i,, qi,, 4;, ensures that this ¢’ is unique (by (O1)) and

¢’ = c must be a critical point on 1. O

Using Algorithm 5.3 and 5.4 we can find all critical points (E, A) with associated line
segments of -y, so the final step is to use function DETERMINEORDER(E, A) (Algorithm 5.5)

to determine their order, as we argue it will completely recover +.

Algorithm 5.5 DETERMINEORDER(E, A): Determine the order of critical points
Choose any (co, So) € E, letk = |A| —1, A:= A\ {(co,S0)}, 51 € Soand 7y := (cp).
fori =1tokdo
Find closest ¢ from (c,S) € A to ¢;_1 such that cis on ray(s;), and let A := A\ {(c,S)}.
Append ¢c; = cto 7y, and if i < k then lets;;; = s where s € S is not parallel with s;.
return vy

Theorem 5.8. Suppose Q = G, NQ), 1 < 55, and vg(7y) is generated by Q and v € T(Q),
then Algorithm 5.2 can recover <y from vg(7y) in O(|Q| + k?) time, where k is the number of line
segments of .

Proof. From Lemmas 5.3 and 5.4 we know Algorithms 5.3 and 5.4 identify all critical points
of ¢, and the line segments of y associated with each critical point. So we only need to show
Algorithm 5.5 determines the correct order of critical points. This is because if a point moves

along <y it cannot stop or change direction until it hits a critical point (Observation (02)),

110

and when it hits a critical point it has to stop or change direction, otherwise it will violate
(R1) or (R2). So, Algorithm 5.5 starts from an endpoint and moves along the direction of line
segment associated with it, and changes the direction only after arriving at the next critical
point, until all critical points are visited. This gives the correct order of critical points of 7.

Moreover, the running time of Algorithm 5.3 and 5.4 are constant, since they both only
examine a constant number of points, circles, etc in each Bizy or Big,. And these can be
retrieved using the implicit grid structure in constant time. Thus the for loop in Algorithm
5.2 takes O(|Q|) time. The final Algorithm 5.5 to recover the order takes O(k?) time, since a
constant fraction of steps need to check a constant fraction of all critical points in A. So, the

total running time of this algorithm is O(|Q| + k?). O

CHAPTER 6

CONCLUSION

In this dissertation, we mainly study how to analyze and summarize the uncertain data
points, how to sketch lines, trajectories and other geometric shapes, and the application
of this sketched representation. We analyze the uncertain data by studying the robust
estimators, especially the median, on the data set. We design an efficient deterministic
algorithm to construct e-approximate coreset for Tukey median and geometric median on
a set of uncertain data points in high dimensional space. Moreover, for robust estimators
associated with bounded VC-dimension range spaces in a general metric space, we design a
random algorithm to approximate them on uncertain data. We also argue that although we
can use such distributions to calculate a single-point representation of these distributions, it
is not very stable to the input distributions, and serves as a poor representation when the
true scenario is multi-modal; hence further motivating our distributional approach.

Moreover, for robust estimators, we give a formal definition for break down point and
study the robustness of composite estimators. We show the composition of two or more
estimators is usually less robust than each individual estimator, and give the condition under
which the breakdown point of the composite estimator is the product of the breakdown
points of the individual estimators. This result can be applied in understanding complicated
data analysis pipelines and provide worst case guarantees.

Another contribution of this work is a vectorized representations based on landmarks for
geometric objects. Using this representation, we introduce a new family of landmark-based
distances dg for lines, hyperplanes and general shapes. These distances have nice math-
ematical properties, are easily to compute, and can be applied in trajectory clustering
and classification, where they demonstrate a strong competitiveness and advantages
against other distances. Moreover, when the landmark set Q is very large, we can use

sensitivity sampling method to sample a small subset from Q to approximate dg for pairs

112

of general geometric objects, and for hyperplanes and trajectories we can construct a strong
approximation of Q and bound the sample size. For trajectories from a mildly restricted
family, we design an algorithm to exactly recover them from landmarks and their vectorized
representations. We believe more interesting properties and applications of this vectorized

representation and landmark-based distance are worthy of study.

APPENDIX A

THE APPENDIX OF CHAPTER 2

A.1 The Size of T Based on cdst

For a given positive number ¢ and a set of uncertain points P = {Py,---,P,} where

P ={pi1, -, pix} CR, i€ [n],if we define cdst(x) = 1 Yila ming <<y |x — p; ;| and try to

“n
find a set T such that for any Q € P, there exists x € T's.t. |x — mg| < ecdst(mg), then for

some fixed & > 0, the size of T may satisfy |T| = Q(nk).

1

In fact, for this data set: ¢ = %, k=2,pi1=1- and p;, = 1foralli € [n], we have

-1
R 1 i—1 n
cost(pin) = (pjz—prin)+ Y (pjix —pin)
j=1 j=i+1
1 (it 1 " 1 1
= AI-0-5)+ X (-5 - 1-52))>
n (]1 2i 1 j:i+1 2j 1 2i 1
1 1 1 1 1
=51 T ;(2n—1 _221‘71) < 51

which implies
N A 11 11 1
ecost(pi1) + ecost(pit11) < 151 + 1% < o = Pit11 = i

Sowehave [p;1 —ecost(p;1), pi1 +ecost(pi1)] N [pir11 —ecost(piv11), Pit11 +ecost(piv11)] =
@ for i € [n], which implies |T| > n.

Now, if we consider n = 1,2,3,---, k = 2,4,6,--- and p;; = %(3] —-1) — 2,%], Pijr1 =
%(3] —1)forj=1,3,5---k—1andi € [n], then is easy to check |T] > %kn. Therefore, we
have |T| = Q(nk).

A.2 A Property of Geometric Median
To prove the result of Lemma 2.1, we need the following property of geometric median.
Although this result is stated on Wikipedia, we have not found a proof in the literature, so

we present it here for completeness.

114

Lemma A.1. Suppose p is the geometric median of Q = {q1, - ,qn} C RY, and (x1,--- ,x)

and (x;1,- -+, x;,4) are the coordinates of p and q; respectively, then we have | Yo c o\ (p} ‘Tq 3;7’“ | <

QN {p}|forany j € |d].

Proof. We introduce the notation f(y) = f1(y) + f2(y) where f1(y) = Y,c0\(p) 14 — yll and
fo(y) = Lyeanipy lg — yll. Suppose v; € R? is a vector such that its j-th component is one
and all other components are zero. Since p is the global minimum point of f, for any j € [d]

there exists 5j > 0 such that

f(p+evj) > f(p) and f(p —evj) > f(p), Ve€|0,6)),

which implies

filp +evj) + falp +evj) > fi(p) + f2(p), Ye€0,9)), (A1)
and
filp —evj) + fa(p — evj) > fi(p) + f2(p), Ve€[0,5). (A2)
Since f>(p) = 0, from (A.1) we have 1 (f1(p+80]) fi(p)) = —1fa(p+evj) = —]QN
{p}|. Letting ¢ — 0+, we obtain af](—1Q N {p}| which implies
X~
Lo H > —|Qn{p}l. (A3)
Qi) 117F
Similarly, using (A.2) we can obtain
YT Xij
Z I H <|1Qn{p} (A4)
geQ\ipy 117 P
Thus, conclusion of this lemma is obtained from (A.3) and (A.4). O

The bound in Lemma A.1 is tight. For example, we consider Q = {(—2,0),(—1,0),
(0,0),(1,0),(=1,1),(=1,-1)} C R?, then p = (—1,0) is the geometric median of Q and

—1-x
| Ei=pumerin) oyl =1=1QNpl-

APPENDIX B

THE APPENDIX OF CHAPTER 4

B.1 Metric Properties for dp on Trajectories

In this section, we prove Theorem 4.6 for dg. We first introduce the following lemma.

Lemma B.1. As shown in Figure B.1, suppose the line {5 passes through q1 and c, {1 is perpendicular
to Uy at q1, and c is on the right side of 1. If qa is outside the circle C(qy, ||q1 — c||), on the left
side of ¢, and above {, (the yellow-shaded region)), and g3 is outside the circle C(q1, ||q1 — c||),
on the left side of ¢, and below {, (the pink-shaded region), then we have B(qy,||q1 —¢||) C

B(42, [l92 = ¢ll) U B(q2, [lg2 = cl})-

Proof. We use ¢; as the origin, ¢, as the x-axis and ¢; as the y-axis to build a coordinate
system, and assume the coordinates of ¢, 4, and g3 are (7,0), (x2,y2) and (x3, y3) respectively.
So, we have x3 +y3 > 12, x5 +y5 > r> and x3,x3 < 0,2 > 0 and y3 < 0. Our goal is to

prove if x? + y? < r? then either

(x—x2)*+(y—p2)* < (2 —1)° +3, (B.1)
or

(x—x3)° + (y —13)* < (x5 = 1)* +45. (B.2)

If y > 0, then from x < r,x, < 0,2 > 0 we have (r — x)x2 < yy», which is equivalent to
—2xx7 — 2yyz < —2rx. Since x% + y? < 12, we obtain x2 — 2xx + y? — 2yyy < —2rxy + 12,
which implies (B.1) is true. Similarly, if y < 0 then we can show (B.2) is true. Thus, the

proof is completed.

Now, we can give the proof of Theorem 4.6 for d.

116

4

G2e

q1 ¢ Uy

q3e

Figure B.1: Left: {1 L ¢, and B(q1, ||g1 —¢||) C B(q2, ||92 — c||) U B(g3, ||g3 — c||)- Right: ¢;
is a critical point of 'y(l) and B(q1, |g1 — ¢ill) € B(g2, |92 — <il]) U B(g3, |lg3 — cil|)-

Figure B.2: Left: ¢; is a critical point of v and B(qy,|lq1 — cil|) < B(qa, ||lq2 —
cilJUB(qs, llg3 — cill). Right: B(q1, [[91 — pall), B(g2,[[92 — p2||) are tangent to s, and
B(gs, 1193 — p3ll), B(qa, ||qa — pal|) are tangent to s’. For each one of these four circles, any

tangent line segment, except s, s’ cannot be extended outside B(c;, 5) without intersecting
with any other circle.

Proof. Suppose do(7),7?)) = 0, we only need to prove 1(!) = v(). We draw a ball
B(c;, %T) at a critical point¢; (1 <i <k —1) of 'y(l). There are three possibilities.

Case 1. As shown in Figure B.1(Right), ¢; is an endpoint of ’y(l), and B(c;, %) contains

117

one line segment s of ')/(1). In this case, we assume s is part of line /, and draw a line
¢ through c; which is perpendicular to £. Then, we choose a point g; from Q N B(c;, 5),
which is on the left side of ¢, close to ¢ and satisfies ||q; — ¢|| < 27. Suppose ¢; is the line
through g; and c;, and /; is perpendicular to ¢, at q;. We choose a point g, € Q N B(c;, 5)
from the region that is outside B(q1, ||q1 — ci||), on the left side of ¢; and ¢, , and above /;
(the yellow-shaded region), and choose a point g3 € Q N B(c;, 5) from the region that is
outside B(q1, ||[q1 — ci||), on the left side of /1 and ¢, , and below /; (the pink-shaded region).
Obviously, {c¢;} = C(q1, ||g1 — cil]) N C(g2, |92 — cill) N C(g3, |93 — cil|), and from Lemma
B.1, we know B(q1, ||g1 — cill) € B(g2, |92 — cill) U B(g3, ||93 — cil]). So, c; must be on 7(2),
Since the tangent line of C(q1, ||q1 — ¢i||) at ¢; goes into the interior of B(q2, ||g2 — ¢i||) and
B(gs, |95 — ¢i||), from (O3) we know ¢; must be a critical point of (%), There also exists
qs € B(ci, 5) and p4 € s such that B(qs, ||g4 — pa||) is tangent to s at point p4. From (O3) and
(O1) we know the tangent line segment of C(qy, ||g4 — p4||) through c; must be a part of 72,
and this tangent line segment must be s because the other tangent line segment through c;
intersects with other circles. Thus, s is a part of 7(2).

Case 2. As shown in Figure B.2(Left), c; is an internal of 'y(l), B(c;, %) contains two line
segments s, s’ of 'y(l), and the angle between s, s’ is at most %. In this case, we assume 7
is the line bisecting the angle formed by s and s’, and draw two lines ¢, and ¢/, which is
perpendicular to s and s’ at ¢; respectively. Then, we choose a point g; from Q N B(c;, %),
which is on the left side of #; and ¢, close to 7 and satisfies ||[q1 — c|| < 21. Suppose /5 is the
line through g, and ¢;, and / is perpendicular to /> at q;. We choose a point g € QN B(c;, 5)
from the region that is outside B(q1, ||g1 — ¢;||), on the left side of ¢1, ¢, and ¢, and above
{5 (the yellow-shaded region), and choose a point g3 € Q N B(c;,) from the region that
is outside B(qy, ||q1 — ci||), on the left side of 1, £, and ¢/, and below ¢, (the pink-shaded
region). Obviously, {c;} = C(q1, ||[q1 — cill) N C (92, |g2 — cil]) N C(g3, ||95 — ¢i||), and from
Lemma B.1, we know B(q1, ||q1 — cill) € B(q2, ||92 — cill) U B(g3, |93 — ¢il|)- So, ¢; must be
on (). Since the tangent line of C(g1, ||q1 — ¢i||) at ¢; goes into the interior of B(qy, ||g2 — c;||)
and B(qs, ||g3 — ci|), from (O3) we know c; must be a critical point of (%), There also exists
44,95 € B(ci, 5) and py € s, ps € s’ such that B(qy, ||94 — pa4||) is tangent to s at point p4, and
B(gs, |95 — ps]|) is tangent to s” at point ps. Using the similar argument in Case 1,we can

show s and s’ both belong to (%)

118

Case 3. As shown in Figure B.2(Right), ¢; is an internal of 7, B(c;, 3) contains two
line segments s, s’ of ’y(l), and the angle between s, s is greater than 7. In this case, we
choose four points q1, 42, 43,94 from Q N B(c;, %) such that the circles with center g1, g are
tangent to s at py, p2, and the circles with center g3, 44 are tangent to s at p3, ps. Moreover,
we can require ||g; — ¢j|| < 5 for 1 < j < 4 and these four circles do not intersect with
each other. Then, we can choose three points gs, g¢, g7 outside the angle region formed
by s and §’, and two points gs, g9 inside this angle region. Using Cy (56 < j' < 9) to
represent the circles corresponding to these five points, we can choose these points close
to the boundary of B(c;, %), and require Cg contains c;, Cs, Cg are tangent to s, C7,Cg are
tangent to s’, and Cs N Cs # @, CeNCy; # @, and Cs N Co # @. Thus, any tangent line
segment of C(qj, [|q; — pjll) (1 < j < 4), except s,s’, can not be extended outside B(c;, 5)
without intersecting with Us<j<9Cy. From (O3) and (O1) we know 1) must be tangent
to C(q1, llg1 — p1l]) or C(g2, |92 — p2||), and without loss of generality we assume a tangent
line segment of C(gy, ||g1 — p1||) is a part of 4(?). Since (O1), (O2) imply this tangent line
segment must be extended outside B(c;, 5) without going into the interior of any other
circle, we know s N B(gy,6) is a part of () for some 6 > 0. Similarly, we have s N B(g3, §)
is a part of () for some 6 > 0. Since there is at most one critical point of v(?) in B(c;, 5),
from (O2) we know ¢; must be a critical point of 7). Thus, s and s’ both belong to 2,

From the discussion of above three cases, we know (2 overlaps with 71 in the ball

B(ci,), and a similar argument leads to ’y(l) = 7(2).

B.2 Common Distance Measurements for Trajectories
In this section, we briefly introduce the definition of Euclidian distance, discrete Frechet
distance and dynamic time warping distance. Suppose (1) and (%) are two trajectories in

R? with critical points c(()l), cgl), ...clg) and c(()z), cgz), ...c,(é) respectively.

Euclidean Distance. It requires ki = k, and takes the average Euclidean distance between
corresponding critical points.
Lyk @)
1) 2
Eu(’y()r'Y()) = Eziio Hci — ¢ H

Discrete Frechet Distance. It measures the similarity between two piecewise-linear curves

119

by taking into account their location and time ordering. Here, we introduce its definition in
[38]. Suppose A = {ag,a1,--- ,am} C {0,1,--- ,k1}, B={bo,b1,..., b} C {0,1,--- ,k2},
and ap = bp = 0, ay, = k1, byy = ky. If foreachi € {0,--- ,ky — 1} we have a;;1 = a; or
a;i.1 = a;+ 1, and for each i € {0, -,k — 1}, we have b;; 1 = b; or b;;1 = b; + 1, then

we say A and B can determine a coupling £ between (1) and 7(?), which is a sequence

(cgé),cé?), (c§}>,c,f)),- . (cgfn),cl()i)). We define the length of L as || L] = maxp<i<m Hc,(lll) —
(2)‘

¢, ||- The discrete Frechet distance is defined as:

dF(yM,v®)) = min{||£||| £ is a a coupling between 7! and 7?)}.

Dynamic Time Warping (DTW) Distance. DTW [93] is an algorithm to find the optimal
matching between the critical points of two trajectories, and it does not require k1 = k.
It is defined and computed by the recursion formula: D(i,j) = Hcgl) - c](-Z) | +min (D(i —
1,/), D(i —1,j—1), D(i,j — 1)), where D(0,7) = ||c§” — ¢?'[, D(5,0) = ||c{"’ — ¢§”'||, and
DTW distance between (1) and 72 is defined as DTW (71, v(?)) = D(ky, ky).

Discrete Hausdorff Distance. It measure the spatial similarity between two trajectories

[71]:
dH(y, 4?) = max(d(yM,7@)),d(y?),41))

where d(y!), 7)) = maxo<i<i, ming<je, [lcf” — C]('Z) I

Longest Common Subsequence Distance. It finds the alignment between two sequences
that maximize the length of common subsequence. Let Head (")) be the first k; — 1 critical
points of ’y(l), and Head(’y(z)) be the first kp — 1 critical points of 'y(z). Given g, o > 0, the
less 5 (v, 71?)) is defined as follows [95]:

0, ify™M or 4 is empty

lesse s (7, 1)) = 1+ Iesse s (7D, 1 ?), if Hcg) — c,(;) | <eand |[k; —kp| <6
max (lcss, s(Head (7)), 7)), lcss, s(v(V), Head (7)), otherwise

LCSS distance is defined as LCSS, s(y1), y?) =1 — lessea(y Wy)

max(kq,k2)

Edit Distance for Real Sequences. It is similar to the edit distance on strings, and seeking

the minimum number of edit operations required to change one trajectory to another

120

[23]. For EDR with ¢ > 0, v() and 7(? are considered to be the same if k; = k; and

||c<1) - cfz)H < e

1

Locality Sensitive Hashing Distance. Given a point set Q C R?, and r > 0, It considers the
disks with centers in Q and radius equal to r. For LSH1,, each trajectory is converted to a
bit vector of length |Q|, and each bit represents the intersection of the trajectory with a disk.
and uses Hamming distance of two bit vectors to define the distance between two curves.
For LSH2(,, each trajectories is converted to a sequence representing the order in which the
trajectory enters and exits the disks, and uses edit distance of two sequence to define the

distance between two curves [13].

B.3 The error of LCSS, EDR and LSH with Other Parameters in
Section 4.4

In the experiment of Section 4.4, the computation of LCSS, EDR, LSH15 and LSH2g
involves some parameters, and we only give the result of best parameter for these distances.
In this section, we describe the change of error statistics for these distances with different
parameters, and show how we obtain the best parameter in each experiment. We use bold
font to mark the smallest mean error and the corresponding median and standard deviation
(SD). In practice, a user would either guess a set of parameters which may be suboptimal,
or they need to do an expensive parameter search (on a held out set) to choose parameters,
which could greatly increase the runtime. In machine learning, the best parameter is usually
chosen through cross-validation only on training data. However, for simplicity, in this work

we directly choose the parameter that can yield the best final result of the experiment, which

Table B.1: Mean error of LCSS in Table 4.1 with different parameters.

mean\ €
0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.1115 0.0822 0.0856 0.0969 0.1105 0.1297 0.1532 0.1749 0.1902 0.2003 0.2087 0.2182
0.0940 0.0785 0.0840 0.0954 0.1085 0.1278 0.1511 0.1731 0.1879 0.1987 0.2064 0.2164
0.0901 0.0769 0.0833 0.0946 0.1078 0.1271 0.1503 0.1718 0.1865 0.1977 0.2057 0.2160
0.0860 0.0755 0.0823 0.0936 0.1077 0.1267 0.1496 0.1707 0.1861 0.1966 0.2050 0.2151
0.0846 0.0745 0.0819 0.0935 0.1079 0.1269 0.1495 0.1704 0.1857 0.1961 0.2046 0.2150
0.0826 0.0739 0.0821 0.0939 0.1079 0.1265 0.1494 0.1706 0.1855 0.1958 0.2045 0.2149
0.0816 0.0734 0.0823 0.0937 0.1078 0.1261 0.1490 0.1702 0.1853 0.1957 0.2043 0.2147
0.0802 0.0729 0.0817 0.0935 0.1075 0.1261 0.1489 0.1702 0.1852 0.1957 0.2041 0.2145
0.0795 0.0721 0.0815 0.0933 0.1075 0.1262 0.1490 0.1699 0.1849 0.1955 0.2039 0.2142
0.0783 0.0714 0.0811 0.0930 0.1072 0.1258 0.1485 0.1695 0.1845 0.1951 0.2037 0.2140

O O XU WN -

—_

121

involves the test data. Obviously, this is a help for distances that need parameter tuning.

Table B.2: Median error of LCSS in Table 4.1 with different parameters.

mean\ €

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

O OO NONU b WN -

[y

0.0869
0.0707
0.0667
0.0625
0.0608
0.0590
0.0583
0.0571
0.0566
0.0556

0.0577
0.0536
0.0531
0.0526
0.0524
0.0516
0.0512
0.0506
0.0500
0.0500

0.0589
0.0576
0.0571
0.0565
0.0564
0.0567
0.0571
0.0568
0.0564
0.0563

0.0652
0.0643
0.0640
0.0640
0.0643
0.0649
0.0647
0.0646
0.0645
0.0643

0.0741
0.0722
0.0720
0.0720
0.0728
0.0729
0.0728
0.0730
0.0731
0.0728

0.0889
0.0868
0.0867
0.0864
0.0865
0.0857
0.0857
0.0857
0.0857
0.0850

0.1029
0.1000
0.1000
0.1000
0.1000
0.1000
0.0987
0.0984
0.0984
0.0976

0.1143
0.1118
0.1103
0.1094
0.1087
0.1088
0.1088
0.1083
0.1079
0.1076

0.1240
0.1222
0.1200
0.1200
0.1194
0.1189
0.1187
0.1187
0.1182
0.1179

0.1325
0.1304
0.1297
0.1278
0.1274
0.1267
0.1267
0.1266
0.1261
0.1256

0.1387
0.1360
0.1357
0.1353
0.1357
0.1353
0.1353
0.1346
0.1340
0.1336

0.1474
0.1458
0.1464
0.1449
0.1449
0.1449
0.1446
0.1444
0.1444
0.1440

Table B.3: Error standard deviation of LCSS in Table 4.1 with different parameters.

SD
6

€

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

OO O U WD =

—_

0.0930
0.0857
0.0846
0.0826
0.0822
0.0809
0.0808
0.0793
0.0792
0.0777

0.0839
0.0823
0.0797
0.0773
0.0764
0.0759
0.0757
0.0751
0.0746
0.0738

0.0879
0.0866
0.0861
0.0847
0.0845
0.0843
0.0844
0.0838
0.0838
0.0834

0.0994
0.0979
0.0969
0.0957
0.0953
0.0951
0.0948
0.0948
0.0946
0.0943

0.1129
0.1109
0.1102
0.1098
0.1097
0.1096
0.1095
0.1094
0.1094
0.1092

0.1273
0.1267
0.1263
0.1259
0.1258
0.1258
0.1256
0.1255
0.1255
0.1254

0.1484
0.1477
0.1471
0.1469
0.1467
0.1466
0.1464
0.1465
0.1465
0.1464

0.1673
0.1660
0.1655
0.1653
0.1652
0.1652
0.1650
0.1650
0.1651
0.1651

0.1775
0.1764
0.1760
0.1760
0.1759
0.1758
0.1756
0.1755
0.1756
0.1754

0.1834
0.1830
0.1826
0.1822
0.1821
0.1822
0.1820
0.1821
0.1821
0.1821

0.1871
0.1867
0.1865
0.1861
0.1860
0.1861
0.1860
0.1861
0.1861
0.1861

0.1916
0.1911
0.1909
0.1904
0.1904
0.1905
0.1905
0.1906
0.1906
0.1906

Table B.4: Classification Error of EDR in Table 4.1 with different parameters.

€

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500 0.0550

mean
median

SD

0.1070
0.0833
0.0918

0.0802
0.0554
0.0835

0.0846
0.0581
0.0876

0.0957
0.0640
0.0990

0.1096
0.0731
0.1125

0.1289
0.0875
0.1272

0.1521
0.1009
0.1482

0.1744
0.1139
0.1671

0.1894
0.1229
0.1773

0.1997
0.1319
0.1834

0.2078 0.2175
0.1378 0.1462
0.1872 0.1916

122

Table B.5: Classification Error of LSH1g and LSH2j in Table 4.1 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.4145 0.3792 0.3143 0.2645 0.2197 0.1374 0.1290 0.1501 0.1487 0.1774 0.1680 0.1633

LSH1p, median | 0.3913 0.3500 0.2693 0.2121 0.1667 0.1000 0.0949 0.1114 0.1046 0.1133 0.1154 0.1179
SD | 0.2481 0.2303 0.2116 0.2010 0.1774 0.1236 0.1130 0.1297 0.1328 0.1691 0.1523 0.1440

mean | 0.4161 0.3873 0.3449 0.3043 0.2798 0.2637 0.2574 0.2494 0.2445 0.2415 0.2409 0.2426

LSH2g, median | 0.3919 0.3644 0.3154 0.2605 0.2333 0.2281 0.2255 0.2275 0.2216 0.2195 0.2182 0.2191
SD | 0.2492 0.2304 0.2137 0.2013 0.1952 0.1736 0.1647 0.1496 0.1483 0.1450 0.1450 0.1467

Table B.6: Classification Error of LSH1g and LSH2, in Table 4.4 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.4113 0.3827 0.3239 0.2615 0.2303 0.2139 0.1830 0.1339 0.1151 0.1173 0.1122 0.1223

LSH1g, median | 0.3862 0.3448 0.2835 0.2079 0.1650 0.1429 0.1169 0.0958 0.0884 0.0875 0.0860 0.0923
SD | 0.2532 0.2482 0.2256 0.1969 0.1952 0.1930 0.1750 0.1228 0.1008 0.1053 0.0964 0.1040

mean | 0.3653 0.2740 0.2107 0.1766 0.1894 0.1571 0.1457 0.1399 0.1275 0.1409 0.1190 0.1217

LSH1g, median | 0.3333 0.2304 0.1639 0.1312 0.1299 0.1040 0.1000 0.0969 0.0889 0.0917 0.0861 0.0909
SD | 0.2196 0.1930 0.1666 0.1514 0.1696 0.1534 0.1389 0.1333 0.1216 0.1395 0.1110 0.1066

mean | 0.4150 0.3968 0.3482 0.3076 0.2860 0.2690 0.2516 0.2437 0.2335 0.2293 0.2278 0.2278

LSH2p, median | 0.3889 0.3644 0.3064 0.2683 0.2467 0.2325 0.2190 0.2105 0.2060 0.2048 0.2027 0.2050
SD | 0.2529 0.2484 0.2290 0.1984 0.1842 0.1757 0.1636 0.1585 0.1483 0.1427 0.1408 0.1396

mean | 0.3748 0.3109 0.2701 0.2471 0.2324 0.2204 0.2129 0.2070 0.2133 0.2099 0.2089 0.2081

LSH2g, median | 0.3424 0.2819 0.2345 0.2136 0.2083 0.2000 0.1921 0.1858 0.1935 0.1896 0.1893 0.1897
SD | 0.2262 0.1895 0.1694 0.1581 0.1409 0.1340 0.1280 0.1256 0.1269 0.1254 0.1244 0.1215

Table B.7: Mean error of LCSS in Table 4.6 with different parameters.

€
ean 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.2761 0.2956 0.2634 0.2676 0.2839 0.3046 0.3049 0.3147 0.3256 0.3459 0.3527 0.3582
0.3123 0.2761 0.2718 0.2647 0.2866 0.3148 0.3112 0.3160 0.3267 0.3458 0.3552 0.3598
0.3116 0.2905 0.2685 0.2448 0.2941 0.3350 0.3129 0.3160 0.3267 0.3458 0.3542 0.3598
0.3112 0.2911 0.2552 0.2556 0.2937 0.3347 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
0.2823 0.2919 0.2680 0.2656 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
0.2883 0.2904 0.2691 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3596
0.2931 0.2887 0.2645 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
0.2952 0.2828 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
0.2946 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598
0.2934 0.2831 0.2655 0.2726 0.2965 0.3352 0.3135 0.3160 0.3267 0.3458 0.3542 0.3598

O OO NONU b WN -

—_

123

Table B.8: Median error of LCSS in Table 4.6 with different parameters.

median

o

m

0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.2778 0.3056 0.2500 0.2778 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2778 0.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2778 0.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2500 0.2500 0.2778 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.2778 0.2778 0.2778 0.2500 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.2778 0.2778 0.2778 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
0.3056 0.2778 0.2500 0.2778 0.3056 0.3333 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611

O O ONONUWN -

[y

Table B.9: Error standard deviation of LCSS in Table 4.6 with different parameters.

SD\ ¢
)

0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

0.0543 0.0612 0.0618 0.0637 0.0597 0.0587 0.0502 0.0356 0.0277 0.0188 0.0127 0.0168
0.0582 0.0593 0.0619 0.0618 0.0597 0.0619 0.0507 0.0351 0.0272 0.0187 0.0149 0.0175
0.0545 0.0589 0.0618 0.0605 0.0608 0.0617 0.0504 0.0351 0.0272 0.0187 0.0139 0.0175
0.0546 0.0603 0.0592 0.0606 0.0599 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0558 0.0588 0.0612 0.0621 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0542 0.0572 0.0602 0.0628 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0541 0.0581 0.0592 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0544 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0541 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175
0.0540 0.0558 0.0594 0.0629 0.0589 0.0615 0.0503 0.0351 0.0272 0.0187 0.0139 0.0175

OO OO U = WN =

=

Table B.10: Classification error of EDR in Table 4.6 with different parameters.

e | 0.0010 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 0.0550

mean | 02748 0.2932 0.2661 0.2640 0.2854 0.3036 0.3050 0.3147 0.3256 0.3459 0.3527 0.3582
median | 0.2778 0.2778 0.2639 0.2500 0.2778 0.3056 0.3056 0.3056 0.3333 0.3611 0.3611 0.3611
SD | 0.0531 0.0619 0.0606 0.0622 0.0591 0.0595 0.0501 0.0356 0.0277 0.0188 0.0127 0.0168

Table B.11: Classification error of LSH1g and LSH2 in Table 4.6 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.3360 0.2767 0.2673 0.2784 0.3211 0.3804 0.3647 0.3707 0.3627 0.3616 0.3611 0.3659

LSH1p, median | 0.3611 0.2778 0.2778 0.2778 0.3333 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611
SD | 0.0356 0.0512 0.0448 0.0531 0.0618 0.0342 0.0261 0.0348 0.0139 0.0066 0.0000 0.0194

mean | 0.3361 0.2959 0.2789 0.2997 0.2869 0.2830 0.2811 0.2543 0.2516 0.2619 0.2684 0.2834

LSH2p, median | 0.3611 0.3056 0.2778 0.3056 0.2778 0.2778 0.2778 0.2500 0.2500 0.2778 0.2778 0.2778
SD | 0.0355 0.0449 0.0395 0.0510 0.0515 0.0561 0.0468 0.0459 0.0467 0.0413 0.0400 0.0371

mean | 0.3365 0.2517 0.2352 0.2209 0.2468 0.2642 0.3334 0.3020 0.3754 0.3668 0.3626 0.3611

LSH1p, median | 0.3333 0.2500 0.2222 0.2222 0.2500 0.2500 0.3333 0.3056 0.3611 0.3611 0.3611 0.3611
SD | 0.0265 0.0505 0.0611 0.0622 0.0590 0.0522 0.0525 0.0486 0.0298 0.0221 0.0191 0.0000

mean | 0.3472 0.3480 0.3428 0.2879 0.3131 0.2690 0.2945 0.2857 0.3217 0.3072 0.3249 0.3164

LSH2p, median | 0.3611 0.3611 0.3333 0.2778 0.3056 0.2778 0.3056 0.2778 0.3333 0.3056 0.3333 0.3056
SD | 0.0288 0.0254 0.0471 0.0430 0.0528 0.0464 0.0475 0.0481 0.0384 0.0464 0.0466 0.0387

Table B.12: Mean error of LCSS in Table 4.7 with different parameters.

124

mean \ €

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

O O XU WN -~

—_

0.4961
0.4112
0.4025
0.3504
0.3509
0.3481
0.3527
0.3437
0.3499
0.3582

0.4776
0.3867
0.4163
0.4115
0.4190
0.4117
0.4241
0.4141
0.4244
0.4329

0.4484
0.4405
0.4903
0.4320
0.4082
0.3961
0.3996
0.3998
0.4039
0.4041

0.4584
0.4520
0.4728
0.4481
0.4217
0.4000
0.4009
0.4009
0.3969
0.3969

0.4068
0.4363
0.4343
0.4435
0.4177
0.3939
0.3947
0.3947
0.3961
0.3961

0.4395
0.4539
0.4307
0.4066
0.4061
0.4045
0.4071
0.4064
0.4064
0.4064

0.4412
0.4238
0.4389
0.4319
0.4378
0.4368
0.4308
0.4308
0.4308
0.4308

0.4033
0.4611
0.4448
0.4546
0.4453
0.4465
0.4387
0.4324
0.4324
0.4324

0.4233
0.4999
0.4656
0.4397
0.4606
0.4592
0.4569
0.4554
0.4554
0.4554

0.4585
0.5007
0.4737
0.4511
0.4389
0.4391
0.4397
0.4390
0.4390
0.4390

0.5073
0.5062
0.4814
0.4631
0.4738
0.4759
0.4780
0.4780
0.4780
0.4780

0.5142
0.5299
0.5158
0.4901
0.4983
0.4993
0.4993
0.4993
0.4993
0.4993

Table B.13: Median error of LCSS in Table 4.7 with different parameters.

median

o

m

0.0010 0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

—_

O O ONNUTWN -

0.5000 0.5000
0.3889 0.3889
0.3889 0.4444
0.3333 0.3889
0.3333 0.4444
0.3333 0.3889
0.3333 0.4444
0.3333 0.4167
0.3333 0.4444
0.3333 0.4444

0.4444
0.4444
0.5000
0.4444
0.3889
0.3889
0.3889
0.3889
0.3889
0.3889

0.4444
0.4444
0.4444
0.4444
0.4444
0.3889
0.3889
0.3889
0.3889
0.3889

0.3889
0.4444
0.4444
0.4444
0.4444
0.3889
0.3889
0.3889
0.3889
0.3889

0.4444
0.4444
0.4444
0.3889
0.3889
0.3889
0.3889
0.3889
0.3889
0.3889

0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444

0.3889
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444

0.4444
0.5000
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444

0.4444
0.5000
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444
0.4444

0.5000
0.5000
0.5000
0.4444
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000

Table B.14: Error standard deviation of LCSS in Table 4.7 with different parameters.

SD
)

€

0.0010

0.0050 0.

0100 O.

0150 0.

0200 O.

0250 0.

0300 0.

0350 0.

0400 O.

0450 0.

0500 0.

0550

SO ONONUlHk WN -~

—_

0.0385
0.0715
0.0730
0.0760
0.0832
0.0835
0.0812
0.0812
0.0814
0.0811

0.0596 0.
0.0791 0.
0.0760 0.
0.0807 0.
0.0884 0.
0.0864 0.
0.0848 0.
0.0860 0.
0.0848 0.
0.0839 0.

0798 0.
0812 0.
0843 0.
0857 0.
0879 0.
0878 0.
0873 0.
0874 0.
0873 0.
0871 0.

0784 0.
0836 0.
0836 0.
0851 0.
0855 0.
0866 0.
0888 0.
0888 0.
0886 0.
0886 0.

0836 0.
0861 0.
0824 0.
0852 0.
0797 0.
0818 0.
0838 0.
0838 0.
0827 0.
0827 0.

0824 0.
0787 0.
0749 0.
0759 0.
0766 0.
0769 0.
0761 0.
0758 0.
0758 0.
0758 0.

0815 0.
0830 0.
0833 0.
0860 0.
0850 0.
0859 0.
0851 0.
0851 0.
0851 0.
0851 0.

0760 0.
0829 0.
0828 0.
0850 0.
0847 0.
0834 0.
0822 0.
0793 0.
0793 0.
0793 0.

0780 0.
0833 0.
0886 0.
0882 0.
0869 0.
0849 0.
0834 0.
0829 0.
0829 0.
0829 0.

0827 0.
0853 0.
0917 0.
0893 0.
0886 0.
0885 0.
0880 0.
0880 0.
0880 0.
0880 0.

0874 0.
0862 0.
0888 0.
0875 0.
0880 0.
0879 0.
0874 0.
0874 0.
0874 0.
0874 0.

0879
0900
0963
0951
0951
0951
0951
0951
0951
0951

Table B.15: Classification error of EDR in Table 4.7 with different parameters.

0.0010

0.0050 0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

mean
median

SD

0.4632
0.4444
0.0512

0.4541 04171
0.4444 0.4444
0.0654 0.0806

0.4450
0.4444
0.0824

0.3916
0.3889
0.0823

0.4134
0.3889
0.0801

0.4422
0.4444
0.0761

0.4259
0.4444
0.0775

0.4618
0.4444
0.0786

0.4559
0.4444
0.0890

0.4681
0.4444
0.0899

0.5123
0.5000
0.0934

125

Table B.16: Classification Error of LSH1g and LSH2(, in Table 4.7 with different parameters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.5098 0.2524 0.2950 0.4878 0.4443 0.4691 0.4494 0.4558 0.5046 0.5103 0.4439 0.4305

LSH1g median | 0.5000 0.2222 0.2778 0.5000 0.4444 0.4444 0.4444 0.4444 0.5000 0.5000 0.4444 0.4444
SD | 0.0240 0.0990 0.0818 0.0802 0.0789 0.0813 0.0922 0.0768 0.0671 0.0822 0.0828 0.0779

mean | 0.5000 0.4547 0.3248 0.3850 0.5271 0.5400 0.5216 0.5130 0.4828 0.4943 0.4406 0.4865

LSH25 median | 0.5000 0.4444 0.3333 0.3889 0.5278 0.5556 0.5000 0.5000 0.5000 0.5000 0.4444 0.5000
SD 0 0.0863 0.0916 0.0872 0.0825 0.0703 0.0677 0.0848 0.0723 0.0701 0.0872 0.0839

B.4 Choose at Most 40 Points for Each Trajectory of Beijing
Drivers

In this section, we redo the Beijing drivers experiment in Section 4.4.3, and the only
difference is when a trajectory in the raw data has at least 10 and at most 40 critical points
we directly retain all the critical points of this trajectory, and when a trajectory in the raw
data has more than 40 critical points, we use Douglas-Peucker algorithm to convert it to
a trajectory with 40 critical points. So, in the data after preprocessing, trajectories have
different numbers of critical points, which implies Euclidean distance and d;;’ cannot be
used in this case. We use the same points set Q1, Q2, Q3 and 01, Q2, O3 in Section 4.4.3.

The running result for different algorithms and distances is shown in Table B.17 and Table
B.18. From these two tables, we can see the performances of most distances are slightly
improved, except LCSS whose mean error is greatly reduced and achieves the best result.
However, d and d; are still competitive. df achieves the best result in all distances except
LCSS. Moreover, LCSS needs two parameters and for each pair of parameter (J, ¢) it takes
more than 6 hours to get the result of error statistics (we use a computer with Intel Xeon(R)
CPU E5-2660 v3 @2.6GHz (2 processors), 6GB RAM and Windows 10 operating system).
So, to choose the best parameters for LCSS we need to try many or all choices, and this is
why LCSS is actually dramatically slower! For example, the computation of all errors in
Table B.19 needs more than 720 hours. By contrast, dj; does not need parameters and it
only takes about 7 minutes to get the result of error statistics for the case |Q| = 200. It takes
about 10 minutes to convert all trajectories to vectors in R*®. So, the computation of dg is
much faster than LCSS (17 minutes vs. 720 hours), even if the time of data preprocessing
is considered. The computation of dg, is faster than df), since for dg each trajectory is

converted to a vector in R2% rather than R*". Other distances, except Euclidean distance,

126

Table B.17: Classification error on Beijing Drivers (|Q| = 20, each trajectory contains at
most 40 critical points)

distance | mean median SD
dg, | 0.0823 0.0676 0.0622
dg, | 0.0820 0.0667 0.0621
dg, | 0.0804 0.0655 0.0620

0.0724 0.0583 0.0575

Q1
dgz 0.0720 0.0571 0.0571
d63 0.0698 0.0556 0.0565

dF | 01045 00875 0.0731

DTW | 0.0708 0.0556 0.0594

KNN dH | 0.0889 0.0733 0.0652
LCSS (¢ = 0.001,6 = 40) | 0.0651 0.0450 0.0695
EDR(e = 0.005) | 0.0756 0.0533 0.0762

LSH1, (r=0.06) | 0.1261 0.0927 0.1116
LSHIp, (r=0.1) | 0.1132 0.0869 0.0969

LSH1p, (r=0.1) | 0.1182 0.0867 0.1082

LSH2o, (r=0.1) | 0.2447 0.2250 0.1423

LSH2, (r=0.1) | 0.2527 0.2308 0.1513

LSH20, (r=0.11) | 02113 0.1944 0.1185

do, | 02069 0.1854 0.1257

do, | 02042 01818 0.1249

do, | 02042 01818 0.1246

linear SVM dgl 0.2047 0.1892 0.1219
dgz 0.2005 0.1818 0.1213
d63 02019 0.1833 0.1213

do, | 02197 01778 0.1685
dg, | 02155 0.1702 0.1695
do, | 02155 0.1715 0.1676
quadratic SVM da% | 0.1998 0.1468 0.1685

Q1
dgz 0.2010 0.1480 0.1688
d63 0.1942 0.1395 0.1676

do, | 0.0730 0.0588 0.0594
do, | 0.0740 0.0599 0.0593
do, | 00731 0.0587 0.0593

Gaussian SVM dgl 0.0737 0.0594 0.0597
dgz 0.0738 0.0596 0.0595
d63 0.0725 0.0581 0.0593

are also slower than dg and dg: dF: about 9.2 hours, dH: about 4.2 hours, DTW: about 7.1
hours, EDR: about 1 hour for one parameter on average, LSH1,: about 3 minutes for one
parameter on average, LSH2(, : about 28 minutes for one parameter on average.

The change of error statistics for LCSS, EDR, LSH1g and LSH2 with different parameters
are shown in Tables B.19, B.20, B.21, B.22 and B.23. The smallest mean error and the

corresponding median and standard deviation (SD) are marked by bold font.

127

Table B.18: Classification error on Beijing Drivers (]Q| = 200, each trajectory contains at
most 40 critical points)

distance | mean median SD
ds, | 00810 0.0654 0.0626
ds, | 0.0811 0.0656 0.0619
KNN ds, | 0.0805 0.0651 0.0623
a3 | 00707 0.0558 0.0575
a3 | 00708 0.0563 0.0569
a3 | 00699 0.0556 0.0566
ds, | 01422 01129 0.1057
ds, | 01426 01126 0.1059
_ dp, | 01416 01125 0.1053
linear SVM a7 | 01429 0.1185 0.1014
dg: 0.1438 0.1190 0.1020
af | 01427 01179 0.1014
dp, | 01391 0.0909 0.1410
ds, | 01413 00913 0.1435
' ds, | 01390 0.0900 0.1418
quadratic SVM df | 02597 02222 0.1912
dgl 0.2609 0.2208 0.1928
a3 | 02590 02181 0.1917
dp, | 00723 00582 0.0589
ds, | 0.0725 0.0582 0.0587
_ ds, | 00719 00577 0.0585
Gaussian SVM a3 | 00728 0.0586 0.059
dgi 0.0728 0.0583 0.059%
af | 00724 0.0580 0.0592

Table B.19: Mean error of LCSS in Table B.17 with different parameters.

mean \ €

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350 0.0400 0.0450

0.0500

0.0550

31
32
33
34
35
36
37
38
39
40

0.0666
0.0665
0.0664
0.0664
0.0660
0.0657
0.0653
0.0652
0.0652
0.0651

0.0669
0.0666
0.0666
0.0665
0.0664
0.0661
0.0661
0.0660
0.0658
0.0658

0.0760
0.0760
0.0759
0.0759
0.0759
0.0758
0.0757
0.0755
0.0755
0.0754

0.0867
0.0868
0.0868
0.0867
0.0867
0.0867
0.0867
0.0865
0.0864
0.0863

0.0996
0.0994
0.0994
0.0994
0.0995
0.0994
0.0993
0.0993
0.0993
0.0992

0.1152
0.1151
0.1151
0.1151
0.1152
0.1151
0.1151
0.1150
0.1150
0.1149

0.1345
0.1344
0.1344
0.1344
0.1344
0.1344
0.1344
0.1343
0.1343
0.1343

0.1536 0.1680 0.1775
0.1535 0.1678 0.1774
0.1535 0.1678 0.1775
0.1535 0.1678 0.1775
0.1535 0.1678 0.1775
0.1535 0.1678 0.1775
0.1535 0.1678 0.1774
0.1534 0.1677 0.1774
0.1534 0.1677 0.1774
0.1534 0.1677 0.1773

0.1859
0.1857
0.1858
0.1857
0.1857
0.1857
0.1857
0.1856
0.1856
0.1856

0.1947
0.1947
0.1947
0.1948
0.1947
0.1947
0.1946
0.1946
0.1946
0.1945

Table B.20: Median error of LCSS in Table B.17 with different parameters.

128

mean \ €

o

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

31
32
33
34
35
36
37
38
39
40

0.0459
0.0459
0.0460
0.0459
0.0457
0.0455
0.0452
0.0450
0.0450
0.0450

0.0477
0.0474
0.0474
0.0474
0.0474
0.0471
0.0471
0.0469
0.0467
0.0467

0.0547
0.0548
0.0547
0.0547
0.0547
0.0545
0.0545
0.0544
0.0544
0.0543

0.0617
0.0617
0.0617
0.0617
0.0617
0.0617
0.0617
0.0616
0.0615
0.0615

0.0700
0.0700
0.0700
0.0700
0.0700
0.0700
0.0698
0.0697
0.0696
0.0696

0.0809
0.0809
0.0809
0.0809
0.0809
0.0808
0.0808
0.0808
0.0808
0.0808

0.0912
0.0911
0.0911
0.0911
0.0911
0.0911
0.0911
0.0909
0.0909
0.0909

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

0.1101
0.1100
0.1100
0.1100
0.1100
0.1100
0.1099
0.1098
0.1100
0.1100

0.1174
0.1174
0.1174
0.1174
0.1174
0.1174
0.1174
0.1174
0.1174
0.1174

0.1242
0.1242
0.1242
0.1240
0.1242
0.1243
0.1243
0.1240
0.1240
0.1240

0.1332
0.1333
0.1332
0.1333
0.1333
0.1324
0.1323
0.1323
0.1323
0.1322

Table B.21: Error standard deviation of LCSS in Table B.17 with different parameters.

SD
)

)

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

31
32
33
34
35
36
37
38
39
40

0.0705
0.0706
0.0703
0.0703
0.0699
0.0698
0.0696
0.0695
0.0695
0.0695

0.0683
0.0681
0.0680
0.0680
0.0680
0.0677
0.0678
0.0675
0.0675
0.0674

0.0759
0.0758
0.0757
0.0756
0.0757
0.0756
0.0757
0.0755
0.0755
0.0754

0.0852
0.0852
0.0853
0.0852
0.0852
0.0852
0.0852
0.0851
0.0850
0.0850

0.0984
0.0983
0.0983
0.0983
0.0983
0.0982
0.0982
0.0982
0.0982
0.0982

0.1107
0.1107
0.1107
0.1106
0.1106
0.1106
0.1106
0.1106
0.1106
0.1106

0.1297
0.1297
0.1297
0.1296
0.1296
0.1296
0.1296
0.1296
0.1296
0.1296

0.1474
0.1474
0.1474
0.1474
0.1474
0.1474
0.1473
0.1473
0.1473
0.1473

0.1587
0.1587
0.1587
0.1587
0.1587
0.1587
0.1587
0.1587
0.1586
0.1586

0.1646
0.1646
0.1645
0.1645
0.1645
0.1645
0.1645
0.1645
0.1645
0.1645

0.1685
0.1685
0.1685
0.1685
0.1684
0.1684
0.1684
0.1684
0.1684
0.1684

0.1724
0.1724
0.1724
0.1724
0.1724
0.1724
0.1724
0.1724
0.1724
0.1724

Table B.22: Classification Error of EDR in Table B.17 with different parameters.

0.0010

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

0.0400

0.0450

0.0500 0.0550

mean
median

SD

0.0874
0.0667
0.0826

0.0756
0.0533
0.0762

0.0798
0.0571
0.0785

0.0909
0.0643
0.0888

0.1031
0.0718
0.1004

0.1188
0.0833
0.1126

0.1388
0.0947
0.1322

0.1590
0.1062
0.1497

0.1731
0.1144
0.1605

0.1824
0.1220
0.1659

0.1904 0.1993
0.1286 0.1368
0.1698 0.1740

129

Table B.23: Classification Error of LSH1g and LSH2 in Table B.17 with different parame-
ters.

r | 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100

mean | 0.4140 0.3790 0.3099 0.2631 0.2172 0.1354 0.1261 0.1518 0.1476 0.1769 0.1673 0.1634

LSH1p, median | 0.3914 0.3478 0.2632 0.2096 0.1667 0.1000 0.0927 0.1121 0.1037 0.1148 0.1149 0.1178
SD | 0.2481 0.2312 0.2122 0.2007 0.1753 0.1218 0.1116 0.1321 0.1313 0.1667 0.1526 0.1441

mean | 0.4094 0.3806 0.3201 0.2574 0.2272 0.2132 0.1823 0.1329 0.1154 0.1196 0.1132 0.1243

LSH1p, median | 0.3819 0.3436 0.2757 0.2000 0.1607 0.1426 0.1174 0.0953 0.0886 0.0900 0.0869 0.0941
SD | 0.2520 0.2466 0.2221 0.1971 0.1936 0.1931 0.1743 0.1214 0.1002 0.1069 0.0969 0.1042

mean | 0.3640 0.2706 0.2084 0.1767 0.1876 0.1561 0.1453 0.1380 0.1274 0.1407 0.1182 0.1208

LSH1p, median | 0.3333 0.2253 0.1606 0.1305 0.1273 0.1020 0.0987 0.0954 0.0889 0.0924 0.0867 0.0900
SD | 0.2184 0.1925 0.1667 0.1523 0.1690 0.1525 0.1382 0.1317 0.1214 0.1374 0.1082 0.1057

mean | 0.4161 0.3887 0.3482 0.3105 0.2963 0.2810 0.2723 0.2561 0.2470 0.2502 0.2447 0.2454

LSH2p, median | 0.3939 0.3660 0.3231 0.2730 0.2552 0.2475 0.2401 0.2333 0.2276 0.2316 0.2250 0.2250
SD | 0.2496 0.2315 0.2135 0.2027 0.1959 0.1772 0.1683 0.1501 0.1443 0.1435 0.1423 0.1427

mean | 0.4138 0.3962 0.3594 0.3193 0.2986 0.2900 0.2666 0.2579 0.2560 0.2542 0.2527 0.2530

LSH2g, median | 0.3871 0.3625 0.3196 0.2857 0.2641 0.2549 0.2369 0.2302 0.2321 0.2304 0.2308 0.2308
SD | 0.2516 0.2480 0.2334 0.2038 0.1907 0.1819 0.1701 0.1618 0.1562 0.1545 0.1513 0.1498

mean | 0.3761 0.3106 0.2681 0.2529 0.2384 0.2307 0.2228 0.2178 0.2174 0.2150 0.2125 0.2113

LSH2p, median | 0.3478 0.2828 0.2363 0.2200 0.2138 0.2091 0.2042 0.2000 0.2010 0.2000 0.1960 0.1944
SD | 0.2263 0.1864 0.1681 0.1576 0.1411 0.1324 0.1278 0.1256 0.1228 0.1221 0.1212 0.1185

REFERENCES

[1] A. ABDULLAH, S. DARUKI, AND J. M. PHILLIPS, Range counting coresets for uncertain data,
in SOCG, 2013.

[2] P. K. AcarwAL, B. ArRoNOV, S. HAR-PELED, J. M. PHILLIPS, K. YI, AND W. ZHANG,
Nearest-neighbor searching under uncertainty II, in PODS, 2013.

[3] P. K. AGARWAL, S.-W. CHENG, Y. Tao, aND K. Y1, Indexing uncertain data, in PODS,
2009.

[4] P. K. AGARWAL, A. EFRAT, S. SANKARARAMAN, AND W. ZHANG, Nearest-neighbor
searching under uncertainty, in PODS, 2012.

[5] P. K. AGARWAL, S. HAR-PELED, S. SuRI, H. YILDIz, AND W. ZHANG, Convex hulls under
uncertainty, in ESA, 2014.

[6] P. AcrawAL, O. BENJELLOUN, A. D. SARMA, C. HAYWORTH, S. NABAR, T. SUGIHARA,
AND J. Wipow, Trio: A system for data, uncertainty, and lineage, in PODS, 2006.

[7] G. Avrouris, Geometric measures of data depth, in Data Depth: Robust Multivariate
Analysis, Computational Geometry and Applications, AMS, 2006.

[8] H. ALt anp L. J. GuiBas, Discrete geometric shapes: Matching, interpolation, and
approximation: A survey, in Handbook of Computational Geometry, -, 1996.

[9] H. Art, K. MEHLHORN, H. WAGENER, AND E. WELzL, Congruence, similarity, and symme-
tries of geometric objects, Discrete & Computational Geometry, 3 (1988), pp. 237-256.

[10] N. AMENTA, S. CHoI, AND R. K. KoLLURI, The power crust, in Proceedings of the sixth
ACM symposium on Solid modeling and applications, 2001.

[11] M. ANTHONY AND P. L. BARTLETT, Neural Network Learning: Theoretical Foundations,
Cambridge University Press, 1999.

[12] S. ARORA, P. RAGHAVAN, AND S. Rao, Approximation schemes for euclidean k-medians and
related problems, in STOC, 1998.

[13] M. ASTEFANOAEI, P. CESARETTI, P. KATSIKOULI, AND M. G. ANDRIK SARKAR, Multi-
resolution sketches and locality sensitive hashing for fast trajectory processing, in SIGSPATIAL,
2018.

[14] P. Bose, A. MAHESHWARI, AND P. MORIN, Fast approximations for sums of distances
clustering and the Fermet-Weber problem, CGTA, 24 (2003), pp. 135-146.

[15] C. Boutsipis, M. W. MAHONEY, AND P. DRINEAS, An improved approximation algorithm
for the column subset selection problem, in Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2009.

131

[16] V. BRAVERMAN, D. FELDMAN, AND H. LaNG, New frameworks for offline and streaming
coreset constructions, arXiv preprint arXiv:1612.00889, 2016.

[17] R. CHANDRASEKARAN AND A. TAMIR, Algebraic optimization: The Fermet-Weber location
problem, Mathematical Programming, 46 (1990), pp. 219-224.

[18] F. CHAzAL AND D. COHEN-STEINER, Geometric inference. https://geometrica.saclay.
inria.fr/team/Fred.Chazal/papers/GeomInference5.pdf.

[19] F. CuazaL, D. COHEN-STEINER, AND Q. MERIGOT, Geometric inference for probability
measures, Foundations of Computational Mathematics, (2010), pp. 1-19.

[20] F. CuazaL AND A. LIEUTIER, The “A-medial axis”, Graphical Models, 67 (2005), pp. 304—
331.

[21] C. CuEeN, C. Yuan, aND C. CHEN, Solving M-modes using heuristic search, in 25th
International Joint Conference on Artificial Intelligence, 2016.

[22] D. CHEN AND J. M. PHILLIPS, Relative error embeddings for the gaussian kernel distance, in
Algorithmic Learning Theory, 2017.

[23] L. Cuen, M. T. Ozsu, aND V. Oria, Robust and fast similarity search for moving object
trajectories., in SIGMOD, 2005.

[24] R. CHENG, Y. X1A, S. PRABHAKAR, R. SHAH, AND J. S. VITTER, Efficient indexing methods
for probabilistic threshold queries over uncertain data, in VLDB, 2004.

[25] M. B. CoHEN, C. Musco, aAND C. Musco, Input sparsity time low-rank approximation via
ridge leverage score sampling, in ACM-SIAM Symposium on Discrete Algorithms, 2017.

[26] M. B. CoHEN, C. Musco, AND J. PacHOCKI., Online row sampling, in International
Workshop on Approximation, Randomization, and Combinatorial Optimization, 2016.

[27] G. CorMODE AND M. GARAFALAKIS, Histograms and wavelets of probabilitic data, in ICDE,
2009.

[28] G. CorMODE AND A. McGREGOR, Approximation algorithms for clustering uncertain data,
in PODS, 2008.

[29] M. O. Cruz, H. MACEDO, R. BARRETO, AND A. GUIMARAES, GPS Trajectories Data Set,
February 2016.

[30] N. Darvi aNDp D. Suctu, Efficient query evaluation on probabilistic databases, in VLDB,
2004.

[31] N. N. Dawrvi, C. RE, aAND D. Suciu, Probabilistic databases: Diamonds in the dirt, Comm.
ACM, 52 (2009), pp. 86-94.

[32] P. DAvVIES AND U. GATHER, The breakdown point: Examples and counterexamples, REVSTAT
— Statitical Journal, 5 (2007), pp. 1-17.

[33] D. DonoHO AND P. J. HUBER, The notion of a breakdown point, in A Festschrift for Erich L.
Lehmann, P. Bickel, K. Doksum, and J. Hodges, eds., Wadsworth International Group,
1983, pp. 157-184.

132

[34] A. DRIEMEL, J. M. PHILLIPS, AND 1. PSARROS, On the vc dimension of metric balls under
frechet and hausdorff distances, in International Symposium on Computational Geometry,
2019.

[35] P. DrINEAS, M. MAGDON-ISMAIL, M. W. MAHONEY, AND D. P. WOODRUFF, Fast ap-
proximation of statistical leverage, Journal of Machine Learning Research, 13 (2012),
pp- 3475-3506.

[36] P. DRINEAS, M. W. MAHONEY, AND S. MUTHUKRISHNAN, Relative-error CUR matrix decom-
positions, SIAM Journal of MAtrix Analysis and Applications, 30 (2008), pp. 844-881.

[37] H. EDELSBRUNNER AND E. P. MUCKE, Three-dimensional alpha shapes, ACM Transactions
on Graphics, 13 (1994), pp. 43-72.

[38] T. Erter aND H. ManniLa, Computing discrete Frechet distance, tech. rep., Christian
Doppler Laboratory for Expert Systems, 1994.

[39] Y. Fanc, R. CHENG, W. TANG, S. MaNw, AND X. S. YANG:, Scalable algorithms for
nearest-neighbor joins on big trajectory data, in ICDE, 2016.

[40] D. FELDMAN AND M. LANGBERG, A unified framework for approximating and clustering
data, in Proceedings ACM Symposium on Theory of Computing, 2011.

[41] D. FELDMAN AND M. LANGBERG, A unified framework for approximating and clustering
data, in STOC, 2011, pp. 569-578.

[42] D. FELDMAN, M. ScHMIDT, AND C. SOHLER, Turning big data into tiny data: Constant-size
coresets for k-means, pca, and projective clustering, in SODA, 2013, pp. 1434-1453.

[43] ——, Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective
clustering, in Proceedings 24th ACM-SIAM Symposium on Discrete Algorithms, 2013.

[44] D. FELDMAN AND L. J. ScHULMAN, Data reduction for weighted and outlier-resistant
clustering, in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2012.

[45] D. C.-S. FREDERIC CHAZAL AND A. LIEUTIER, A sampling theory for compact sets in
euclidean space, DCG, 41 (2009), pp. 461-479.

[46] E. FrRENTZOS, K. GRATSIAS, N. PELEKIS, AND Y. THEODORIDIS, Nearest neighbor search
on moving object trajectories, in SSTD, 2005.

[47] E. G. GILBERT AND C.-P. Foo, Computing the distance between general convex objects
in three-dimensional space., IEEE Transactions on Robotics and Automation, 6 (1990),
pp- 53-61.

[48] E. G. GILBERT, D. W. JOHNSON, AND S. S. KEERTHI, A fast procedurefor computing the
distance between objects in three-dimensionalspace., IEEE J. Robotics and Automation, 4
(1988), pp. 193-203.

[49] T. F. GonzaLez, Clustering to minimize the maximum intercluster distance, Theoretical
Computer Science, 38 (1985), pp. 293-306.

[50] R. H. GUTING, T. BEHR, AND J. XU, Efficient k-nearest neighbor search on moving object
trajectories, in VLDB, 2010.

133

[51] F. HamPEL, E. M. RONCHETTI, P. J. ROUSSEEUW, AND W. A. STAHEL, Robust Statistics:
The Approach Based on Influence Functions, Wiley, 1986.

[52] F. R. HamPEL, A general qualitative definition mof robustness, Annals of Mathematical
Statistics, 42 (1971), pp. 1887-1896.

[53] S. HAR-PELED, Geometric Approximation Algorithms, Mathematical Surveys and Mono-
graphs, American Mathematical Society, 2011.

[54] X. HE, D. G. SIMPLSON, AND S. L. PorTNOY, Breakdown robustness of tests, Journal of
the Maerican Statistical Association, 85 (1990), pp. 446—452.

[55] L. HuaNG aND J. L1, Approximating the expected values for combinatorial optimization
problems over stochastic points, in ICALP, 2015.

[56] P. J. HUBER, Robust Statistics, Wiley, 1981.

[57] P. J. HUBER AND E. M. RONCHETTI, Breakdown point, in Robust Statistics, John Wiley &
Sons, Inc., 2009, p. 8.

[58] T. Jayram, A. MCGREGOR, S. MUTHUKRISHNAN, AND E. VEE, Estimating statistical
aggregates on probabilistic data streams, ACM TODS, 33 (2008), pp. 1-30.

[59] W. B. JOHNSON AND J. LINDENSTRAUSS, Extensions of Lipschitz maps into a Hilbert space,
Contemporary Mathematics, 26 (1984), pp. 189-206.

[60] A. G. JORGENSEN, M. LOFFLER, AND J. M. PHILLIPS, Geometric computation on indecisive
points, in WADS, 2011.

[61] S. JosHI, R. V. KOMMARAJU, J. M. PHILLIPS, AND S. VENKATASUBRAMANIAN, Comparing
distributions and shapes using the kernel distance, Proceedings 27th Annual Symposium
on Computational Geometry, (2011).

[62] P. Kamousi, T. M. CHAN, AND S. SuRI, Stochastic minimum spanning trees in euclidean
spaces, in SOCG, 2011.

[63] M. LANGBERG AND L. J. ScHULMAN, Universal e-approximators for integrals, in SODA,
2010, pp. 598-607.

[64] J. L1, B. SAHA, AND A. DESHPANDE, A unified approach to ranking in probabilistic databases,
in VLDB, 2009.

[65] Y. L1, P. M. LoNG, AND A. SRINIVASAN, Improved bounds on the samples complexity of
learning, Journal of Computer and System Science, 62 (2001), pp. 516-527.

[66] D. LIN, R. ZHANG, AND A. ZHOU, Indexing fast moving objects for knn queries based on
nearest landmarks, Geolnformatica, 10 (2006), pp. 423-445.

[67] M. LOFFLER AND J. PHILLIPS, Shape fitting on point sets with probability distributions, in
ESA, 2009.

[68] D. Lopaz-Paz, K. MUANDET, B. SCHOLKOPF, AND I. TOLSTIKHIN, Towards a learning
theory of cause-effect inference, in International Conference on Machine Learning, 2015.

134

[69] H. P. LopuHAA AND P. J. Rousseeuw, Breakdown points of affine equivaniant estimators
of multivariate location and converiance matrices, The Annals of Statistics, 19 (1991),
pp- 229-248.

[70] S. M. Ma, QIANG AND M. SANDLER, Frugal streaming for estimating quantiles: One (or
two) memory suffices, arXiv preprint arXiv: 1407.1121, (2014).

[71] F. MémoLi, Gromov—Hausdorff distances in Euclidean spaces, In Proc. non-rigid shape
analysis and deformable image registration (NORDIA) workshop, (2008).

[72] M. MATHENY, D. XiE, AND J. M. PHILLIPS, Scalable spatial scan statistics for trajectories,
tech. rep., arXiv:1906.01693, 2019.

[73] K. MuanpET, K. FUKUMIZU, B. SRIPERUMBUDUR, AND B. ScHOLKOPF, Kernel mean
embedding of distributions: A review and beyond, Foundations and Trends in Machine
Learning, 10 (2017), pp. 1-141.

[74] C. Musco aND C. Musco, Recursive sampling for the Nystrom method, in NIPS, 2017.

[75] J. M. PuiLLips AND W. M. Tal, Relative error rkhs embeddings for gaussian kernels, tech.
rep., arXiv:1811.04136, 2018.

[76] J. M. PHILLIPS AND P. TaNG, Simple distances for trajectories via landmarks, tech. rep.,
arXiv:1804.11284, 2019.

[77] J. M. PHiLLIPS, B. WANG, AND Y. ZHENG, Geomtric inference on kernel density estimates,
in SOCG, 2015.

[78] P. J. Rousseeuw, Multivariate estimation with high breakdown point, Mathematical
Statistics and Applications, (1985), pp. 283-297.

[79] A. D. SarMA, O. BENJELLOUN, A. HALEVY, S. NABAR, AND J. WIDOM, Representing
uncertain data: models, properties, and algorithms, VLDB], 18 (2009), pp. 989-1019.

[80] Z. Suanc, G. Li, AND Z. Bao, Dita: Distributed in-memory trajectory analytics, in
SIGMOD, 2018.

[81] A.F. SiEGEL, Robust regression using repeated medians, Biometrika, 82 (1982), pp. 242-244.

[82] Y. Tao, R. CHENG, X. X1a0, W. K. Nacal, B. Kao, AND S. PRABHAKAR, Indexing
multi-dimensional uncertain data with arbitrary probability density functions, in VLDB,
2005.

[83] J. W. TUKEY, Mathematics and the picturing of data, in Proceedings of the 1974 Interna-
tional Congress of Mathematics, Vancouver, vol. 2, 1975, pp. 523-531.

[84] M. vaNn KREVELD AND M. LOFFLER, Largest bounding box, smallest diameter, and related
problems on imprecise points, CGTA, 43 (2010), pp. 419—433.

[85] V. VAPNIK AND A. CHERVONENKIS, On the uniform convergence of relative frequencies of
events to their probabilities, Th. Probability and Applications, 16 (1971), pp. 264-280.

[86] K. VARADARAJAN AND X. X1a0, On the sensitivity of shape fitting problems, in Proceedings
International Conference on Foundations of Software Technology and Theoretical
Computer Science, arxiv:1209.4893, 2012.

135

[87] M. ViracHos, G. KoLLios, AND D. GuNopruLos, Discovering similar multidimensional
trajectories, in ICDE, 2002.

[88] E. WEISzFELD, Sur le point pour lequel la somme des distances de n points dennes est minimum,
Tohoku Mathmatics, 43 (1937), pp. 355-386.

[89] E. WEISZFELD AND F. PLASTRIA, On the point for which the sum of the distances to n given
points is minimum, Annals of Operations Research, 167 (2009), pp. 7-41.

[90] A. H. WEeLsH, The standard deviation, in Aspects of Statistical Inference, Wiley-
Interscience;, 1996, p. 245.

[91] F. Wu, Z. L1, W.-C. LEE, H. WANG, AND Z. HUANG, Semantic annotation of mobility data
using social media, in WWW, 2015.

[92] D. XiE, F. L1, aND J. M. PuiLLips, Distributed trajectory similarity search, in VLDB, 2017.

[93] B.-K. Y1, H. JacapisH, AND C. FavLoutsos, Efficient retrieval of similar time sequences
under time warping, in ICDE, 1998.

[94] Y. Zuang, X. LIN, Y. Tao, AND W. ZHANG, Uncertain location based range aggregates in
a multi-dimensional space, in Proceedings 25th IEEE International Conference on Data
Engineering, 2009.

[95] Z. Zuang, K. HuaNc, aND T. TaN, Comparison of similarity measures for trajectory
clustering in outdoor surveillance scenes, in ICPR, 2006.

[96] Y. ZuEncg, H. Fu, X. XiE, W.-Y. MA, aND Q. Li, Geolife GPS trajectory dataset - User
Guide, July 2011.

