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Abstract

We study computing with indecisive point sets. Such points have spatial uncertainty where the true
location is one of a finite number of possible locations. This data arises from probing distributions a
few times or when the location is one of a few locations from a known database. In particular, we study
computing distributions of geometric functions such as the radius of the smallest enclosing ball and the
diameter. Surprisingly, we can compute the distribution of the radius of the smallest enclosing ball ex-
actly in polynomial time, but computing the same distribution for the diameter is #P-hard. We generalize
our polynomial-time algorithm to all LP-type problems. We also utilize our indecisive framework to de-
terministically and approximately compute on a more general class of uncertain data where the location
of each point is given by a probability distribution.
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1 Introduction

We consider uncertain data point sets where each element of the set is o
not known exactly, but rather is represented by a finite set of candidate
elements, possibly weighted, describing the finite set of possible true o ©
locations of the data point. The weight of a candidate location governs S
the probability that the data point is at that particular location. We call a o

point under this representation an indecisive point. Given indecisive in- °

put points we study computing full probability distributions (paramount ~ Figure 1: One of the 6° pos-
for downstream analysis) over the value of some geometric query func- ~ sible supports of points from
tion, such as the radius of the smallest enclosing ball. n = 3 sets of k = 6 points

Indecisive points appear naturally in many applications. They play an ~ €ach.
important role in databases [9, 1, 8, 7, 21], machine learning [5], and sensor networks [25] where a limited
number of probes from a certain data set are gathered, each potentially representing the true location of a
data point. Alternatively, data points may be obtained using imprecise measurements or are the result of
inexact earlier computations.

Consider the problem of tracking the spatial nature of a recently spreading disease. However, due to
privacy considerations we do not know exactly who became sick, only their postal codes. But, we do have
all coordinates and postal codes of people who live in the area under consideration. In this situation we are
given a set of “points,” but we do not know the location of each point, only that it is at one of a certain
finite number of possible locations. How can we estimate, say, the size of the smallest circle enclosing the
patients?

We can generalize the classification of indecisive points to when the true location of each data point is
described by a probability distribution. We call these points uncertain points. In addition to indecisive
points, this general class also includes for instance multivariate normal distributions and all points within
a unit disk. More broadly, these data points could represent any (uncertain) geometric object, such as a
hyperplane or disc; but since these objects can usually be dualized to points, our exposition will focus on
points.

Related work on uncertain points. Many specific ways to model an uncertain point have been intro-
duced throughout the past decades. One of the earliest models for uncertain points was a simple circular
region [12], where each point has an infinite set of possible locations: all locations inside a given unit disk.
This model has received considerable attention since [4, 15] and can be extended to more complicated re-
gions [23]. Most work in these models focuses on computing the minimum or maximum possible values
of a query. Another related model studies outliers, where each point is given one location and a probability
that the location is correct [14, 2, 3].

The full model of uncertain points, where each point’s location is represented by a probability distribution,
has received much less attention in the algorithms community, mainly because its generality is difficult to
handle and exact solutions seem impossible for all but the most simple questions. Loffler and Phillips [17]
study simple randomized algorithms in this model.

There has also been a recent flurry of activity in the database community [9] on problems such as index-
ing [21], clustering [8], and histogram building [7]. However, the results with detailed algorithmic analysis
generally focus on one-dimensional data; furthermore, they often only return the expected value or the most
likely answer instead of calculating a full distribution.

1.1 Contribution

We study several geometric measures on sets of indecisive points in Section 2. We compute an exact distri-
bution over the values that these measures can take, not just an expected or most-likely value. Surprisingly,
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Figure 2: (a) An example input consisting of n = 3 sets of k = 6 points each. (b) One of the 62 possible samples
of n = 3 points.

while for some measures we present polynomial time algorithms (e.g. for the radius of the smallest enclos-
ing ball), other seemingly very similar measures either are #P-Hard (e.g. the diameter) or have a solution
size exponential in the number of indecisive input points (e.g. the area of the convex hull). In particular, we
show that the family of problems which admit polynomial-time solutions includes a// LP-type problems [20]
with constant combinatorial dimension. #P-hardness results for indecisive data have been shown before [9],
but the separation has not been understood as precisely, nor from a geometric perspective.

In Section 3 we extend the above polynomial-time algorithms to uncertain points, a much broader model
for uncertainty. We describe detailed results for data points endowed with multivariate normal distributions
representing their location. We deterministically reduce uncertain points to indecisive points by creating
e-samples (aka e-approximations) of their distributions; however, this is not as straightforward as it may
seem. It requires a structural theorem (Theorem 3.1) describing a special range space which can account
for the dependence among the distributions, dependence that is created by the measure being evaluated.
This is required even when the distributions themselves are independent because once an e-sample has been
fixed for one uncertain point, the other e-samples need to account for the interaction of those fixed points
with the measure. All together, these results build important structure required to transition between sets of
continuous and discrete distributions with bounded error, and may be of independent interest.

These results provide a deterministic alternative to some of the results in [17]. The determinism in these
algorithms is important when there can be no probability of failure, the answer needs to be identical each
time it is computed, or when each indecisive point has a small constant number of possible locations.

2 Exact Computations on Indecisive Point Sets

In this section, we assume that we are given a set of n indecisive points, that is, a collection Q = {Q1, Q2, ..., Qn}
of n sets containing k points each, so Q; = {qi1, g2, - - -, qir. }- We say that a set P of n points is a support
from Q if it contains exactly one point from each set Q;, that is, if P = {p1,p2,...,pn} withp; € @Q;. In
this case we also write P € Q. Figure 2(b) shows an example of a set of indecisive points (identified by
shading), highlighting a possible support.

When given a set of indecisive points, we assume that each indecisive point is at each of its locations with
a fixed probability. Often these probabilities are equal, but for completeness, we describe our algorithms for
when each point has a distinct probability of being the true position. For each @); € Q and each ¢;; € Q;,
let w(g;;) be a positive weight. We enforce Z§:1 w(qi;) = k, and w(g;;)/k is the probability that ¢;; is the
true position of Q);.

We let f denote the function we are interested in computing on Q, that is, f takes a set of n points as input
and computes a single real number as output. Since Q is indecisive, the value of f is not fixed, rather we are
interested in the distribution of the possible values. We show that for some measures, we can compute this



distribution in polynomial time, while for others it is #P-hard or the solution itself has size exponential in n.

2.1 Polynomial Time Algorithms

We are interested in the distribution of the value f(P) for each support P € Q. Since there are k™ possible
supports, in general we cannot hope to do anything faster than that without making additional assumptions
about f. In fact, we will show that some problems (e.g. area of convex hull) the distribution can require that
many values, and for other problems (e.g. diameter) computing the distribution is # P-hard, even though
the distribution is guaranteed to be much smaller. Define f (Q,r) as the fraction (measured by weight) of
supports of Q for which f gives a value smaller than or equal to ». We start with a simple example and
then generalize. In this version, for simplicity, we assume general position and that k™ can be described by
O(1) words. (handled otherwise in Appendix A). First, we will let f(P) denote the radius of the smallest
enclosing disk of P in the plane, and show how to solve the decision problem in polynomial time in that
case. We then show how to generalize the ideas to other classes of measures.

Smallest enclosing disk. Consider the problem where f measures the radius of the smallest enclosing
disk of a support and let all weights be uniform so w(g; ;) = 1 for all ¢ and j.

Evaluating f (Q,r) in time polynomial in n and k is not completely trivial since there are k™ possible
supports. However, we can make use of the fact that each smallest enclosing disk is in fact defined by a set
of at most 3 points that lie on the boundary of the disk. For each support P € Q we define Bp C P to be
this set of at most 3 points, which we call the basis for P. Bases have the property that f(P) = f(Bp).

Now, to avoid having to test an exponential number of supports, we define a potential basis to be a set of
at most 3 points in Q such that each point is from a different );. Clearly, there are less than (nk) possible
potential bases, and each support P € Q has one as its basis. Now, we only need to count for each potential
basis the number of supports it represents. Counting the number of samples that have a certain basis is
easy for the smallest enclosing circle. Given a basis B, we count for each indecisive point () that does not
contribute a point to B itself how many of its members lie inside the smallest enclosing circle of B, and then
we multiply these numbers.

Now, for each potential basis B we have two values: the number of supports that have B as their basis,
and the value f(B). We can sort these O((nk)?3) pairs on the value of f, and the result provides us with the
required distribution. We spend O(nk) time per potential basis for counting the points inside and O(n) time
for multiplying these values, so combined with O((nk)?) potential bases this gives O((nk)?) total time.

Theorem 2.1. Let Q be a set of n sets of k points. In O((nk)*) time, we can compute a data structure of
O((nk)?) size that can tell us in O(log(nk)) time for any value v how many supports of P € Q satisfy
f(P)<r.

LP-type problems. The approach described above also works for measures f : Q@ — R other than the
smallest enclosing disk. In particular, it works for LP-type problems [20] that have constant combinatorial
dimension. An LP-type problem provides a set of constraints H and a function w : 27 — R with the
following two properties:

MONOTONICITY: Forany FF C G C H, w(F) < w(G).

LOCALITY: Forany F' C G C H with w(F) = w(G) and an h € H such that w(G U h) > w(G) implies that
w(FUh) > w(F).

A basis for an LP-type problem is a subset B C H such that w(B’) < w(B) for all proper subsets B’
of B. And we say that B is a basis for a subset G C H if B C G, w(B) = w(G) and B is a basis. A
constraint h € H violates a basis B if w(B U h) > w(B). The radius of the smallest enclosing ball is
an LP-type problem (where the points are the constraints and w(-) = f(+)) as are linear programming and



many other geometric problems. Let the maximum cardinality of any basis be the combinatorial dimension
of a problem.

For our algorithm to run efficiently, we assume that our LP-type problem has available the following
algorithmic primitive, which is often assumed for LP-type problems with constant combinatorial dimen-
sion [20]. For a subset G C H where B is known to be the basis of G and a constraint h € H, a
violation test determines in O(1) time if w(B U h) > w(B); i.e., if h violates B. More specifically,
given an efficient violation test, we can ensure a stronger algorithmic primitive. A full violation test is
given a subset G C H with known basis B and a constraint h € H and determines in O(1) time if
w(B) < w(G U h). This follows because we can test in O(1) time if w(B) < w(B U h); MONOTONIC-
ITY implies that w(B) < w(B U h) only if w(B) < w(BUh) < w(G U h), and LOCALITY implies that
w(B) =w(BUh) only if w(B) = w(G) = w(G U h). Thus we can test if i violates G by considering just
B and h, but if either MONOTONICITY or LOCALITY fail for our problem we cannot.

We now adapt our algorithm to LP-type problems where elements of each (); are potential constraints
and the ranking function is f. When the combinatorial dimension is a constant /3, we need to consider only
O((nk)?) bases, which will describe all possible supports.

The full violation test implies that given a basis B, we can measure the sum of probabilities of all supports
of Q that have B as their basis in O(nk) time. For each indecisive point ) such that BN Q = (), we sum
the probabilities of all elements of () that do not violate B. The product of these probabilities times the
product of the probabilities of the elements in the basis, gives the probability of B being the true basis. See
Algorithm 2.1 where the indicator function applied 1(f(B U {¢;}) = f(B)) returns 1 if ¢; does not violate
B and 0 otherwise. It runs in O((nk)%+1) time.

Algorithm 2.1 Construct Probability Distribution for f(Q).
1: for all potential bases B C P € Q do
2: fori=1tondo
3 if there is a j such that ¢;; € B then
4 Set w; = w(qij).
5: else
6
7

Setw; = 35 wai)L(f(BU {g;}) = f(B)).
Store a point with value f(B) and weight (1/k") [, w;.

As with the special case of smallest enclosing disk, we can create a distribution over the values of f given
an indecisive point set Q. For each basis B we calculate u(B), the summed probability of all supports that
have basis B, and f(B). We can then sort these pairs according to the value as f again. For any query
value 7, we can retrieve f(Q,7) in O(log(nk)) time and it takes O(n) time to describe (because of its long
length).

Theorem 2.2. Given a set Q of n indecisive point sets of size k each, and given an LP-type problem f :
Q — R with combinatorial dimension 3, we can create the distribution of f over Q in O((nk)°*1) time.
The size of the distribution is O(n(nk)?).

If we assume general position of Q relative to f, then we can often slightly improve the runtime needed
to calculate 1(B) using range searching data structures. However, to deal with degeneracies, we may need
to spend O(nk) time per basis, regardless.

If we are content with an approximation of the distribution rather than an exact representation, then it is of-
ten possible to drastically reduce the storage and runtime. This requires the definition of e-quantizations [17],
which is delayed until Section 3 where it is discussed in more detail.

Measures that fit in this framework for points in R? include smallest enclosing axis-aligned rectangle
(measured either by area or perimeter) (3 = 2d), smallest enclosing ball in the L1, Lo, or Lo, metric



(B = d + 1), directional width of a set of points (3 = 2), and, after dualizing, linear programming (3 = d).

2.2 Hardness Results

In this section, we examine some extent measures that do not fit in the above framework. First, diameter
does not satisfy the LOCALITY property, and hence we cannot efficiently perform the full violation test. We
show that a decision variant of diameter is #P-Hard, even in the plane, and thus (under the assumption that
#P # P), there is no polynomial time solution. Second, the area of the convex hull does not have a constant
combinatorial dimension, thus we can show the resulting distribution may have exponential size.

Diameter. The diameter of a set of points in the plane is the largest distance between any two points. We
will show that the counting problem of computing f(Q, r) is #P-hard when f denotes the diameter.

Problem 2.1. PLANAR-DIAM: Given a parameter d and a set Q = {Q1, ..., Qn} of n sets, each consisting
of k points in the plane, how many supports P € Q have f(P) < d?

We will now prove that Problem 2.1 is #P-hard. Our proof has three steps. We first show a special version
of #2SAT has a polynomial reduction from Monotone #2SAT, which is #P-complete [22]. Then, given an
instance of this special version of #2SAT, we construct a graph with weighted edges on which the diameter
problem is equivalent to this #2S AT instance. Finally, we show the graph can be embedded as a straight-line
graph in the plane as an instance of PLANAR-DIAM.

Let 3CLAUSE-#2SAT be the problem of counting the number of solutions to a 2SAT formula, where
each variable occurs in at most three clauses, and each variable is either in exactly one clause or is negated
in exactly one clause. Thus, each distinct literal appears in at most two clauses.

Lemma 2.1. Monotone #2SAT has a polynomial reduction to 3CLAUSE-#2SAT.

Proof. The Monotone #2SAT problem counts the number satisfying assignments to a #2S AT instance where
each clause has at most two variables and no variables are negated. Let X = {(x,v1), (z,v2),..., (2, yu)}
be the set of u clauses which contain variable  in a Monotone #2SAT instance. We replace x with u
variables {z1, 22, ..., 2, } and we replace X with the following 2u clauses {(z1, y1), (22,%2), -, (zu, Yu)}
and {(z1,22), (22,723),. -+, (Zu—1, 72u), (2u, 721)}. The first set of clauses preserves the relation with
other original variables and the second set of clauses ensures that all of the new variables have the same
value (i.e. TRUE or FALSE). This procedure is repeated for each original variable that is in more than 1
clause. O

We convert this problem into a graph problem by, for each variable x;, creating a set Q); = {p;r, p; }
of two points. Let Q = (J, Q;. Truth assignments of variables correspond to a support as follows. If
x; is set TRUE, then the support includes p;r, otherwise the support includes p;. We define a distance
function f between points, so that the distance is greater than d (long) if the corresponding literals are in
a clause, and less than d (short) otherwise. If we consider the graph formed by only long edges, we make
two observations. First, the maximum degree is 2, since each literal is in at most two clauses. Second, there
are no cycles since a literal is only in two clauses if in one clause the other variable is negated, and negated
variables are in only one clause. These two properties imply we can use the following construction to show
that the PLANAR-DIAM problem is as hard as counting Monotone #2SAT solutions, which is #P-complete.

Lemma 2.2. An instance of PLANAR-DIAM reduced from 3CLAUSE-#2SAT can be embedded so Q C R2.

Proof. Consider an instance of 3CLAUSE-#2SAT where there are n variables, and thus the corresponding
graph has n sets {Q;}!"_;. We construct a sequence I' of n’ € [2n,4n] points. It contains all points from
Q and a set of at most as many dummy points. First organize a sequence I so if two points ¢ and p have a
long edge, then they are consecutive. Now for any pair of consecutive points in IV which do not have a long
edge, insert a dummy point between them to form the sequence I'. Also place a dummy point at the end of
.



We place all points on a circle C of diameter d/ cos(mw/n'), see Figure 3.
We first place all points on a semicircle of C according to the order of I', so
each consecutive points are 7 /n’ radians apart. Then for every other point
(i.e. the points with an even index in the ordering I') we replace it with its
antipodal point on C, so no two points are within 27 /n’ radians of each %
other. Finally we remove all dummy points. This completes the embedding
of Q, we now need to show that only points with long edges are further than
d apart.

We can now argue that only vertices which were consecutive in I' are
further than d apart, the remainder are closer than d. Consider a vertex p  Figure 3: Embedded points
and a circle C, of radius d centered at p. Let p’ be the antipodal point of ~ are solid, at center of circles
pon C. C, intersects C' at two points, at 27 /n’ radians in either direction  of radius d.  Dummy points
from p’. Thus only points within 27 /n’ radians of p’ are further than a are hollow. Long edges are
distance d from p. This set includes only those points which are adjacent ~drawn between points at dis-
to p in T, which can only include points which should have a long edge, by ~ tance greater than d.
construction. 0

Combining Lemmas 2.1 and 2.2:

Theorem 2.3. PLANAR-DIAM is #P-hard.

Convex hull. Our LP-type framework also does not work for any properties of the convex hull (e.g. area
or perimeter) because it does not have constant combinatorial dimension; a basis could have size n. In fact,
the complexity of the distribution describing the convex hull may be Q(k™), since if all points in Q lie on
or near a circle, then every support P € Q may be its own basis of size n, and have a different value f(P).
Thus each support would create a separate data point in the distribution.

3 Approximate Computations on Uncertain Points

Perhaps the most general way to model an imprecise point is by providing a full probability distribution over
R?; all popular simpler models can be seen as special cases of this. However, probability distributions can
be difficult to handle, specifically, it is often impossible to do exact computations on them. In this section we
show how the results from Section 2 can be used to approximately answer questions about uncertain points
by representing each distribution by a discrete point set, resulting in a set of indecisive points.

In this section, we are given a set X = {X;, X9, X3,..., X,,} of n independent random variables over
the universe RY, together with a set M = {1, fi2, 143, - - . , /i, } of . probability distributions that govern the
variables, that is, X; ~ p;. We call a set of points P = {p1, p2,p3, ..., pn} a support of X, and because of
the independence we have probability Pr[X = P| = [[, Pr[X; = p;].

As before, we are interested in functions f that measure something about a point set. We now define
f(X,r) as the probability that a support P drawn from M satisfies f(P) < r. In most cases, we cannot
evaluate this function exactly, but previous work [17] describes a Monte Carlo algorithm for approximating
f (X, r). Here we show how to make this approximate construction deterministic.

To approximate f (X, r), we construct an e-quantization [17]. Let g : R — R™ be a distribution so
Jz 9(z) dz =1, and let G be its integral so G(t) = ffoo g(z) dz. Then G : R — [0,1] is a cumulative
density function. Also, let R be a set of points in R, that is, a set of values. Then R induces a function
Hp, where Hr(v) = \{TEI‘%%, that is, Hg(v) describes the fraction of points in R with value at most v.
We say that R is an e-quantization of g if Hr approximates GG within &, that is, for all values v we have
|Hg(v) — G(v)| < e. Figure 4 shows an example of an e-quantization. Note that we can apply techniques
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Figure 4: (a) The true form of the cumulative function G. (b) The e-quantization R as a point set in R. (c)
The inferred curve Hp in R2.

from [17] to deterministically reduce the exact distributions created in Section 2 to e-quantizations of size
O(1/e).

The main strategy will be to replace each distribution p; by a discrete point set ();, such that the uniform
distribution over (); is “not too far” from p; (Q; is not the most obvious e-sample of ;). Then we apply
the algorithms from Section 2 to the resulting set of point sets. Finally, we argue that the result is in fact an
e-quantization of the distribution we are interested in, and we show how to simplify the output in order to
decrease the space complexity for the data structure, without increasing the approximation factor too much.

Range spaces and c-samples. Before we describe the algorithms, we need to formally define range
spaces and e-samples. Given a set of elements Y let A C 2 be a family of subsets of Y. For instance, if Y’
is a point set, A could be all subsets defined by intersection with a ball. A pair 7" = (Y, A) is called a range
space.

We say a set of ranges A shatters a set Y if for every subset Y’ C Y there exists some A € A such that
Y’ =Y N A. The size of the largest subset Y/ C Y that A shatters is the VC-dimension [24] of T = (Y, A),
denoted vp.

Let n : Y — R™ be a measure on Y. For discrete sets Y p is cardinality, for continuous sets Yy is a

Lebesgue measure. An e-sample (often referred to by the generic term e-approximation) of a range space

A ANY
T = (Y,A)isasubset S C Y suchthat VA € A : A ﬂS)_u( ny) < e. Arandom subset S C Y

() p(Y)
of size O((1/e%)(vr + log(1/9))) is an e-sample with probability at least 1 — & [24, 16]. For a range space
T = (Y, A) with Y discrete and u(Y') = n, there are also deterministic algorithms to generate e-samples
of size O((v7/€2) log(1/¢)) in time O(V%VTN((1/62) log(vr/€))¥T) [6]. Or when the ranges A are defined
by the intersection of £ oriented slabs (i.e. axis-aligned rectangles with k = d), then an e-sample of size
O((k/e)log?(1/¢)) can be deterministically constructed in O((n/e®) log® (1/¢)) time [19].

In the continuous setting, we can think of each point y € Y as representing y(y) points, and for simplicity
represent a weighted range space as (u, A) when the domain of the function y is implicitly known to be YV’
(often R? or R?%). Phillips [19] studies e-samples for such weighted range spaces with ranges defined as
intersection of k intervals; Appendix B extends this. The appendix also supplies constructions that ensure
that the resulting e-samples are in general position, which is helpful if these are to be used in conjunction
with the machinery in Section 2. These results, as well as those following, may be of independent interest
in further understanding the structure required to transition from continuous to discrete representations of
distributions.

General approach (KEY CONCEPTS). Given a distribution p; : R? — R describing uncertain point
X, and a function f of bounded combinatorial dimension 3 defined on a support of X, we can describe a
straightforward range space 7; = (u;,As), where Ay is the set of ranges corresponding to the bases of f
(e.g., when f measures the radius of the smallest enclosing ball, Ay would be the set of all balls). More
formally, Ay is the set of subsets of R? defined as follows: for every set of 3 points which define a basis
B for f, Ay contains a range A that contains all points p such that f(B) = f(B U {p}). However, taking



e-samples from each Tj is not sufficient to create sets (); such that Q = {Q1,Q2,...,Qy} so for all  we
have |f(Q,7) — f(X,r)| <e.

f (X, r) is a complicated joint probability depending on the n distributions and f, and the n straight-
forward e-samples do not contain enough information to decompose this joint probability. The required
e-sample of each yi; should model p; in relation to f and any instantiated point g; representing i for 7 # j.
The following crucial definition allows for the range space to depend on any n — 1 points, including the
possible locations of each uncertain point.

Let Ay, describe a family of Lebesgue-measurable sets defined by n — 1 points Z C R? and a value
w. Specifically, A(Z,w) € Ay, is the set of points {p € R? | f(Z Up) < w}. We describe examples of
At in detail shortly, but first we state the key theorem using this definition. Its proof, delayed until after
examples of A ,,, will make clear how (p;, Ay ,,) exactly encapsulates the right guarantees to approximate

f(X, ), and thus why (1;, A ) does not.

Theorem 3.1. Let X = {X1,..., X, } be a set of uncertain points where each X; ~ ;. For a function f,

A~ ~

let Q; be an &'-sample of (p;, Ayy) and let Q = {Q1, ..., Qn}. Then for anyr, | f(X,r) — f(Q, 7’)‘ <én.

3.1 Smallest Axis-Aligned Bounding Box by Perimeter

Given a set of points P C R?, let f(P) represent the perimeter of the smallest axis-aligned box that contains
P. Let each p; be a bivariate normal distribution with constant variance. Solving f(P) is an LP-type
problem with combinatorial dimension § = 4, and as such, we can describe the basis B of a set P as the
points with minimum and maximum x- and y-coordinates. Given any additional point p, the perimeter of
size p can only be increased to a value w by expanding the range of z-coordinates, y-coordinates, or both.
As such, the region of R? described by a range A(P,w) € Ay, is defined with respect to the bounding box
of P from an edge increasing the z-width or y-width by (w — p)/2, or from a corner extending so the sum
of the z and y deviation is (w — p)/2. See Figure 5(Left).

Since any such shape defining a range A(P,w) € Ay, can be described as the intersection of k = 4
slabs along fixed axis (at 0°, 45°, 90°, and 135°), we can construct an (¢/n)-sample Q; of (u;, Afp) of
size k = O((n/e)log®(n/e)) in O((n%/£%) 1og?"(n/¢)) time [19]. From Theorem 3.1, it follows that for
Q={Q1,...,Qn} and any r we have ‘f(x,r) — f(Q,7r)| <e.

We can then apply Theorem 2.2 to build an e-quantization of f(X) in O((nk)®) = O(((n?/¢) log®(n/¢€))®) =
O((n'%/£%)1og?(n/e)) time. The size can be reduced to O(1/¢) within that time bound. Assuming
1/e < n, we can state the following corollary of Theorem 3.1.

Corollary 3.1. Let X = { X1, ..., X,,} be a set of indecisive points where each X; ~ p; is bivariate normal
with constant variance. Let f measure the perimeter of the smallest enclosing axis-aligned bounding box.
We can create an e-quantization of f(X) in O((n'°/e%)1og?®(n/e)) time of size O(1/¢).

3.2 Smallest Enclosing Disk

Given a set of points P C R2, let f(P) represent the radius of the smallest enclosing disk of P. Let each
; be a bivariate normal distribution with constant variance. Solving f(P) is an LP-type problem with
combinatorial dimension 3 = 3, and the basis B of P generically consists of either 3 points which lie on
the boundary of the smallest enclosing disk, or 2 points which are antipodal on the smallest enclosing disk.
However, given an additional point p € R2, the new basis B, is either B or it is p along with 1 or 2 points
which lie on the convex hull of P.

We can start by examining all pairs of points p;, p; € P and the two disks of radius w whose boundary
circles pass through them. If one such disk D; ; contains P, then D; ; C A(P,w) € Ay |p|41. For this to



Figure 5: Left: A shape from Ay ,, for axis-aligned bounding box, measured by perimeter. Middle: A shape from
A for smallest enclosing ball using the Ly metric. The curves are circular arcs of two different radii. Right:
The same shape divided into wedges from Wy ,,.

hold, p; and p; must lie on the convex hull of P and no point that lies between them on the convex hull can
contribute to such a disk. Thus there are O(n) such disks. We also need to examine the disks created where
p and one other point p; € P are antipodal. The boundary of the union of all such disks which contain P is
described by part of a circle of radius 2w centered at some p; € P. Again, for such a disk B; to describe a
part of the boundary of A(P,w), the point p; must lie on the convex hull of P. The circular arc defining this
boundary will only connect two disks D; ; and Dy, ; because it will intersect with the boundary of B; and
By, within these disks, respectively. An example of A(P,w) is shown in Figure 5(Middle).

Unfortunately, the range space (R?, Ay ,,) has VC-dimension O(n); it has O(n) circular boundary arcs.
So, creating an e-sample of T; = (u;, Af,,) would take time exponential in n. However, we can decompose
any range A(P,w) € Ay, into at most 2n “wedges.” We choose one point y inside the convex hull of
P. For each circular arc on the boundary of A(P,w) we create a wedge by coning that boundary arc
to y. Let Wy describe all wedge shaped ranges. Then S = (R2,W ) has VC-dimension vg at most 9
since it is the intersection of 3 ranges (two halfspaces and one disk) that can each have VC-dimension
3. We can then create @;, an (¢/2n?)-sample of S; = (u;, Wy), of size k = O((n*/2)log(n/¢)) in
O((n?/e)>*910g?9(n/e)) = O((n*0/?3) log! (n/e)) time, via Corollary B.1 (Appendix B). It follows
that ); is an (¢/n)-sample of T; = (u;, Ay, ), since any range A(Z, w) € Ay, can be decomposed into at
most 2n wedges, each of which has counting error at most £/2n, thus the total counting error is at most €.

Invoking Theorem 3.1, it follows that Q = {Q1,...,Qy}, for any r we have ’f(f)C, r) — f(Q, r)‘ <e.

We can then apply Theorem 2.2 to build an e-quantization of f(X) in O((nk)*) = O((n?°/e®)log*(n/e))
time. This is dominated by the time for creating the n (¢/n?)-samples, even though we only need to build
one and then translate and scale to the rest. Again, the size can be reduced to O(1/¢) within that time bound.

Corollary 3.2. Let X = {X1,...,X,} be a set of indecisive points where each X; ~ u; is bivariate
normal with constant variance. Let f measure the radius of the smallest enclosing disk. We can create an

e-quantization of f(X) in O((n* /%) log!t(n/c)) time of size O(1/¢).

Now that we have seen two concrete examples, we prove Theorem 3.1. More examples can be found in
Appendix C.

3.3 Proof of Theorem 3.1

When each X; is drawn from a distribution 1;, then we can write f(X, ) as the probability that f(X) < r
as follows. Let 1(-) be the indicator function, i.e., it is 1 when the condition is true and 0 otherwise.

f(xﬂ"):/ m(pl).--/ (D) L(f({P1: D25 - - -, Pn}) < 7) dppdpn—1 ...dp1

p1 n



Consider the inner most integral

/ (D) 1(F((P1sp2s -2 pa}) < 7) s

Pn
where {p1,p2...,pn—1} are fixed. The indicator function is true when
f({p17p27 cee 7pn—17pn}) <r

and hence p,, is contained in a shape A({p1,...,pn—1},7) € Asy. Thus if we have an &’-sample @, for
(ftn, Ay, ), then we can guarantee that

Z 1(f<{p1,ps,...,pn}) < 7,) + e

/ i (Pn)1(f({p1: 02, - - -, pn}) <7) dpp <
" Prn€Qn

1
|Qnl

We can then move the ¢’ outside and change the order of the integrals to write:

: |

Pn€Qn

f(X,r) <

\Qn!

p1 Pn—1

/ p1(p1) - / pn—1(Prn—1)1(f({p1, .-, Pn}) < 7)dpp_1. -.dp1> + €.

Repeating this procedure n times, we get:

(H ) > WfUppes--spa)}) <7) +€n.

i=1 Z plte anQn

= ( r) +¢e'n,
where Q = |, Q;.
Similarly we can achieve a symmetric lower bound for f (X, 7). t
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A Algorithm 2.1 in RAM model

In this section we will analyze Algorithm 2.1 without the assumption that the integer £ can be stored in
O(1) words. To simplify the results, we assume a RAM model where a word size contains O(log(nk)) bits,
each weight w(g; ;) can be stored in one word, and the weight of any basis f(B), the product of n O(1)
word weights, can thus be stored in O(n) words. The following lemma describes the main result we will
need relating to large numbers.

Lemma A.1. In the RAM model where a word size has b bits we can calculate the product of n numbers
where each is described by O(b) bits in (nblog?® n)2°0°8" ) time.

Proof. Using Fiirer’s recent result [11] we can multiply two m-bit numbers in m log m2°(°8" ™) bit oper-

ations. The product of n m-bit numbers has O(log((2™)"™) = O(nm) bits, and can be accomplished with
n — 1 pairwise multiplications.

We can calculate this product efficiently from the bottom up, starting with n/2 multiplications of two
m = O(b) bit numbers. Then we perform n/4 multiplications of two 2m bit numbers, and so on. Since
each operation on O(b) bits takes O(1) time in our model, Fiirer’s result clearly upper bounds the RAM
result. The total cost of this can be written as

logn ) logn )
Z 221 (2m) log(2'm)20008™ (2'm)) — app Z (i + log b)20Uee™ (2108 b)) — b 1og 1 log (nb)20 00" (n0)),
=0 i=0

Since we assume b = O(log n) we can simplify this bound to (nblog? n)200og" "), O

This implies that Algorithm 2.1 takes O((nk)?*1) + ((nk)%nlog(nk)log? n)20U°8" ) time where each
wj can be described in O(b) = O(log(nk)) bits. This dominates the single division and all other operations.
Now we can rewrite Theorem 2.2 without the restriction that k™ can be stored in O(1) words.

Theorem A.l. Given a set Q of n indecisive point sets of size k each, and given an LP-type problem
[+ Q — R with combinatorial dimension 3, we can create the distribution of f over Q in O((nk) 1) +
((nk)Pnlog(nk)log? n)2°U°e™ ™) time. The size of the distribution is O(n(nk)?).

B c-Samples of Distributions

In this section we explore conditions for continuous distributions such that they can be approximated with
bounded error by discrete distributions (point sets). We state specific results for multi-variate normal distri-
butions.

We say a subset W C R? is polygonal approximable if there exists a polygonal shape S C R¢ with m
facets such that ¢(W \ S) 4+ ¢(S \ W) < ep(W) for any € > 0. Usually, m is dependent on ¢, for instance
for a d-variate normal distribution m = O((1/e%*1)1log(1/¢)) [19]. In turn, such a polygonal shape S
describes a continuous point set where (S,.A) can be given an e-sample Q using O((1/£2)log(1/¢)) points
if (S,.A) has bounded VC-dimension [18] or using O((1/¢) log?*(1/¢)) points if A is defined by a constant
k number of directions [19]. For instance, where A = B is the set of all balls then the first case applies, and
when A = Ry is the set of all axis-aligned rectangles then either case applies.

A shape W C R%*+! may describe a distribution . : R? — [0, 1]. For instance for a range space (1, B),
then the range space of the associated shape W, is (W, B x R) where B x R describes balls in R¢ for the
first d coordinates and any points in the (d + 1)th coordinate.

The general scheme to create an e-sample for (S,.A), where S € R? is a polygonal shape, is to use a
lattice A of points. A lattice A in R? is an infinite set of points defined such that for d vectors {vy, ..., vq}
that form a basis, for any point p € A, p + v; and p — v; are also in A for any ¢ € [1,d]. We first
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create a discrete (¢/2)-sample M = AN S of (S,A) and then create an (¢/2)-sample () of (M, A) using
standard techniques [6, 19]. Then @ is an e-sample of (S,.A). For a shape S with m (d — 1)-faces on its
boundary, any subset A’ C R? that is described by a subset from (S, A) is an intersection A’ = AN S
for some A € A. Since S has m (d — 1)-dimensional faces, we can bound the VC-dimension of (.5, .A)
as v = O((m + vg)log(m + v4)) where v4 is the VC-dimension of (R?,A). Finally the set M =
S N A is determined by choosing an arbitrary initial origin point in A and then uniformly scaling all vectors
{v1,...,v4} until |[M| = O((v/e?)log(v/e)) [18]. This construction follows a less general but smaller
construction in Phillips [19].

It follows that we can create such an e-sample K of (.S, .A) of size | M| in time O(| M |mlog |M|) by start-
ing with a scaling of the lattice so a constant number of points are in S and then doubling the scale until we
get to within a factor of d of |M|. If there are n points inside S, it takes O(nm) time to count them. We can
then take another e-sample of (K, .A) of size O((v.4/e%) log(v4/€)) in time O(yf’qyf‘ |M|((1/€?)log(va/e))"4).

Theorem B.1. For a polygonal shape S C R¢ with m (constant size) facets, we can construct an e-sample
for (S, A) of size O((v/e?)log(v/e)) in time O(m(v/?)log?(v/e)), where (S, A) has VC-dimension v 4
andv = O((vq +m)log(vg +m)).

This can be reduced to size O((v.4/€?) log(v.a/€)) in time O((1/e*4%2)(m+v.4) log"™ ((m+v4)/e) log(m/e).

We can consider the specific case of when W C R? is a d-variate normal distribution z : RY — R¥.
Then m = O((1/e%) log(1/¢)) and |M| = O((m/e?)logmlog(m/e)) = O((1/e42) log3(1/¢)).

Corollary B.1. Let i : RY — R* be a d-variate normal distribution with constant standard deviation.

We can construct an e-sample of (u, A) with VC-dimension vy > 2 (and where d < v, < 1/¢) of size
O((va/e¥)log(va/e)) in time O((1/e2¥AT4H2) log¥4 1 (1 /e)).

For convenience, we restate a tighter, but less general theorem from Phillips, here slightly generalized.

Theorem B.2 ([19]). Let u : R? — R* be a d-variate normal distribution with constant standard de-
viation. Let (1, Qy) be a range space where the ranges are defined as the intersection of k slabs with
fixed normal directions. We can construct an e-sample of (11, Q) of size O((1/¢)log(1/€)) in time

O((1/e™)1og® (1 /¢)).

B.1 Avoiding Degeneracy

An important part of the above construction is the arbitrary choice of the origin points of the lattice A. This
allows us to arbitrarily shift the lattice defining M and thus the set (). In Section 2.1 we need to construct n
g-samples {Q1, ..., Q,} for n range spaces {(S1,A4),...,(Sn,A)}. In Algorithm 2.1 we examine sets of
v 4 points, each from separate e-samples that define a minimal shape A € A. It is important that we do not
have two such (possibly not disjoint) sets of v 4 points that define the same minimal shape A € A. (Note,
this does not include cases where say two points are antipodal on a disk and any other point in the disk added
to a set of v4 = 3 points forms such a set; it refers to cases where say four points lie (degenerately) on the
boundary of a disc.) We can guarantee this by enforcing a property on all pairs of origin points p and ¢ for
(S, A) and (S}, A). For the purpose of construction, it is easiest to consider only the /th coordinates p; and
q; for any pair of origin points or lattice vectors (where the same lattice vectors are used for each lattice).
We enforce a specific property on every such pair p; and ¢;, for all [ and all distributions and lattice vectors.

First, consider the case where A = Ry describes axis-aligned bounding boxes. It is easy to see that if
for all pairs p; and ¢; that (p; — ¢;) is irrational, then we cannot have > 2d points on the boundary of an
axis-aligned bounding box, hence the desired property is satisfied.

Now consider the more complicated case where A = B describes smallest enclosing balls. There is a
polynomial of degree 2 that describes the boundary of the ball, so we can enforce that for all pairs p; and g;
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that (p; — q;) is of the form ¢y (1,)'/3 4 ca(ry,)'/® where ¢; and ¢y are rational coefficients and 7, and 7,
are distinct integers that are not multiple of cubes. Now if v = d + 1 such points satisfy (and in fact define)
the equation of the boundary of a ball, then no (d + 2)th point which has this property with respect to the
first d + 1 can also satisfy this equation.

More generally, if A can be described with a polynomial of degree p with v variables, then enforce that
every pair of coordinates are the sum of (p + 1)-roots. This ensures that no v + 1 points can satisfy the
equation, and the undesired situation cannot occur.

C Computing Other Measures on Uncertain Points

We generalize this machinery to other LP-type problems f defined on a set of points in R¢ and with constant
combinatorial dimension. Although, in some cases (like smallest axis-aligned bounding box by perimeter)
we are able to show that (R, A ,,) has constant VC-dimension, for other cases (like radius of the smallest
enclosing disk) we cannot and need to first decompose each range A(Z,w) € Ay, into a set of disjoint
“wedges” from a family of ranges W;.

To simplify the already large polynomial runtimes below we replace the runtime bound in Theorem 2.2
with O((nk)#*11og(nk)).

Lemma C.1. If the disjoint union of m shapes from Wy can form any shape from Ay, then an (e/m)-
sample of (M, Wy) is an e-sample of (M, Ay ).

Proof. For any shape A € Ay, we can create a set of m shapes {Wy,...,W;,} C W, whose disjoint
union is A. Since each range of W may have error €/m, their union has error at most €. U

We study several example cases for which we can deterministically compute e-quantizations. For each
case we show an example element of A ¢, on an example of 7 points.

To facilitate the analysis, we define the notion of shatter dimension, which is similar to VC-dimension.
The shatter function 7p(m) of a range space T' = (Y, A) is the maximum number of sets in 7" where
|Y'| = m. The shatter dimension o of a range space T' = (Y, A) is the minimum value such that 77 (m) =
O(m?°T). If arange A € A is defined by k points, then & > op. It can be shown [13] that o7 < vy and
vr = O(orlogor). And, in general, the basis size of the related LP-type problem is bounded 5 < o7.

C.1 Directional Width

We first consider the problem of finding the width along a particular direction u (dwid). Given a point set
P, f(P) is the width of the minimum slab containing P, as in Figure 6(a). This can be thought of as a
one-dimensional problem by projecting all points P using the operation (-, u). The directional width is then
just the difference between the largest point and the smallest point. As such, the VC-dimension of (R?, A )
is 2. Furthermore, Ay, = A in this case, so (Rd,A f,n) also has VC-dimension 2. For 1 < 7 < n, we
can then create an (¢/n)-sample @Q; of (1, Asy) of size k = O(n/e) in O((n/e)log(n/c)) time given
basic knowledge of the distribution ;. We can then apply Theorem 2.2 to build an e-quantization in time
O((kn)*logh(n?/e)) = O(n8 /e log?(n/e)) for the dwid case.

We can actually evaluate f (Q,r) for all values of r faster using a series of sweep lines. Each of the
O(n*/£?) potential bases are defined by a left and right end point. Each of the O(n?/e) points in |J; Q;
could be a left or right end point. We only need to find the O(1/<) widths (defined by pairs of end points)
that wind up in the final e-quantization. Using a Frederickson and Johnson approach [10], we can search for
each width in O(log(n/e)) steps. At each step we are given a width w and need to decide what fraction of
supports have width at most w. We can scan from each of the possible left end points and count the number
of supports that have width at most w. For each w, this can be performed in O(n?/¢) time with a pair of
simultaneous sweep lines. The total runtime is O(1/¢) - O(log(n/¢)) - O(n?/e) = O((n?/e?)log(n/e)).
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(a) (®)

Figure 6: (a) Directional (vertical) width. (b) Axis-aligned bounding box, measured by area. The curves are
hyperbola parts.

Theorem C.1. We can create an e-quantization of size O(1/¢) for the dwid problem in O((n?/£?) log(n/¢))
time.

C.2 Axis-aligned Bounding Box

We now consider the set of problems related to axis-aligned bounding boxes in R?. For a point set P, we
minimize f(P), which either represents the d-dimensional volume of S(P) (the aabbv case — minimizes
the area in R?) or the (d — 1)-dimensional volume of the boundary of S(P) (the aabbp case — minimizes
the perimeter in R?). Figures 5(Left) and 6(b) show two examples of elements of A, for the aabbp case
and the aabbv case in R?. For both (R?, A ,) has a shatter dimension of 4 because the shape is determined
by the z-coordinates of 2 points and the y-coordinates of 2 points. This generalizes to a shatter dimension
of 2d for (R4, Ay;,,), and hence a VC-dimension of O(dlogd). The smaller VC-dimension in the aabbp
case discussed in detail above can be extended to higher dimensions.

Hence, for 1 < i < n, for both cases we can create an (¢/n)-sample Q; of (u;, Af.), each of size k =
O((n?/€?)1og(n/e)) in total time O(((n/e)log(n/c))°(*°8d)) via Corollary B.1. In R%, we can construct
the e-quantization in O((kn)?* 1 log* (nk)) = O((n%3 /e*d+2) log?¥*1(n /¢c)) time via Theorem 2.2.

Theorem C.2. We can create an e-quantization of size O(1/¢) for the aabbp or aabbv problem on n d-
variate normal distributions in O(((n /<) log(n/e))?@1e D) time,

C.3 Smallest Enclosing Ball

Figure 7 shows example elements of A ¢, for smallest enclosing ball, for metrics L, (the seb., case) and

L (the seby case) in R?. An example element of A #n for smallest enclosing ball for the Lo metric (the
seby case) was shown in Figure 5(Middle). For seb, and seb, (]Rd, Ay ) has VC-dimension 2d because

the shapes are defined by the intersection of halfspaces from d predefined normal directions. For seb; and
seboo, e can create n (g/n)-samples Q; of each (u;, Ay,) of size k = O((n/e) log?!(n/e)) in total time
O(n(n/e)™*10g%*3(n/e)) via Theorem B.2. We can then create an e-quantization in O((nk)24*+! log?(nk)) =
O((nAd+2 /g2d+1Y |ogdd*+2d+4(, /o)) time via Theorem 2.2.

Theorem C.3. We can create an e-quantization of size O(1/¢) for the seb; or sebs, problem on n d-variate
2
normal distributions in O((n4+2 /2d+1) 1ogd" 24+ ( /2Y) time.

We conjecture this technique can be extended to R? for seby, but we cannot figure how to decompose a
shape A € Ay, into a polynomial number of wedges with constant VC-dimension.
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Figure 7: (a) Smallest enclosing ball, L., metric. (b) Smallest enclosing ball, L; metric.
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