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Abstract

In distributed learning, the goal is to perform a learning task over data distributed across multiple
nodes with minimal (expensive) communication. Prior work (Daumé III et al., 2012) proposes a general
model that bounds the communication required for learning classifiers while allowing for ε training error
on linearly separable data adversarially distributed across nodes.

In this work, we develop key improvements and extensions to this basic model. Our first result is a
two-party multiplicative-weight-update based protocol that uses O(d2 log 1/ε) words of communication
to classify distributed data in arbitrary dimension d, ε-optimally. This readily extends to classification
over k nodes with O(kd2 log 1/ε) words of communication. Our proposed protocol is simple to implement
and is considerably more efficient than baselines compared, as demonstrated by our empirical results.

In addition, we illustrate general algorithm design paradigms for doing efficient learning over dis-
tributed data. We show how to solve fixed-dimensional and high dimensional linear programming effi-
ciently in a distributed setting where constraints may be distributed across nodes. Since many learning
problems can be viewed as convex optimization problems where constraints are generated by individual
points, this models many typical distributed learning scenarios. Our techniques make use of a novel
connection from multipass streaming, as well as adapting the multiplicative-weight-update framework
more generally to a distributed setting. As a consequence, our methods extend to the wide range of
problems solvable using these techniques.

1 Introduction

In recent years, distributed learning (learning from data spread across multiple locations) has witnessed a
lot of research interest (Bekkerman et al., 2011). One of the major challenges in distributed learning is to
minimize communication overhead between different parties, each possessing a disjoint subset of the data.
Recent work (Daumé III et al., 2012) has proposed a distributed learning model that seeks to minimize
communication by carefully choosing the most informative data points at each node. The authors present a
number of general sampling based results as well as a specific two-way protocol that provides a logarithmic
bound on communication for the family of linear classifiers in R2. Most of their results pertain to two
players but they propose basic extensions for multi-player scenarios. A distinguishing feature of this model
is that it is adversarial. Except linear separability, no distributional or other assumptions are made on the
data or how it is distributed across nodes.

In this paper, we develop this model in two substantial ways. First, we extend the results on linear clas-
sification to arbitrary dimensions, in the process presenting a more general algorithm that does not rely on
explicit geometric constructions. This approach exploits the multiplicative weight update (MWU) frame-
work (specifically its use in boosting) and retains desirable theoretical guarantees – data-size-independent
communication between nodes in order to classify data – while being simple to implement. Moreover, it
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easily extends to k-players with an additional k communication over the two-player result, which improves
the earlier results in two dimensions by a factor of k. A second contribution of this work is to demonstrate
how general convex optimization problems (for example, linear programming, SDPs and the like) can be
solved efficiently in this distributed framework using ideas from both multipass streaming, as well as the
well-known multiplicative weight update method. Since many (batch) learning tasks can be reduced to
convex optimization problems, this second contribution opens the door to deploying many other learning
tasks in the distributed setting with minimal communication.

Outline. Our main two-party result is proved in Section 4, based on background in Section 2. Using a
new sampling protocol for k players (Section 3) we extend the two-party result to k players in Section 5 and
present an empirical study in Section 6. In Section 7 we present our results for distributed optimization.

Related Work. Existing work in distributed learning mainly focuses on either inferring an accurate global
classifier from multiple distributed sub-classifiers learned individually (at respective nodes) or on improving
the efficiency of the overall learning protocol. The first line of work consists of techniques like parameter
mixing (McDonald et al., 2010; Mann et al., 2009) or averaging (Collins, 2002) and classifier voting (Bauer &
Kohavi, 1999). These approaches do admit convergence results but lack any bounds on the communication.
Voting, on the other hand, has been shown (Daumé III et al., 2012) to yield suboptimal results on adver-
sarially partitioned datasets. The goal of the second line of work is to make distributed algorithms scale
to very large datasets; many of these works (Chu et al., 2007; Teo et al., 2010) depend on MapReduce to
extract performance improvement. Dekel et al. (2010) averaged over mini-batches of accumulated gradients
to improve regret bounds for distributed online settings. (Zinkevich et al., 2010) proposed a MapReduce
based improved parallel stochastic gradient descent and more recently (Servedio & Long, 2011) improved
the time complexity of γ-margin parallel algorithms from Ω(1/γ2) to O(1/γ). Finally, (Duchi et al., 2010)
and (Agarwal & Duchi, 2011) consider optimization in distributed settings but their convergence analysis
applies to specific cases of subgradient and stochastic gradient descent algorithms.

Surprisingly, communication in learning has not been studied as a resource to be used sparingly. And as
(Daumé III et al., 2012) and this work demonstrates, intelligent interaction between nodes, communicating
relevant aspects of the data, not just its classification, can greatly reduce the necessary communication
over existing approaches. On large distributed systems, communication has become a major bottleneck for
many real-world problems; it accounts for a large percentage of total energy costs, and is the main reason
that MapReduce algorithms are designed to minimize rounds (of communication). This strongly motivates
the need to incorporate the study of this aspect of an algorithm directly, as presented and modeled in this
paper.

Recently but independently, research by (Balcan et al., 2012) considers very similar models to those of
(Daumé III et al., 2012). They also consider adversarially distributed data among k parties and attempt
to learn on the adversarially distributed data while minimizing the total communication between the
parties. Like (Daumé III et al., 2012) the work of (Balcan et al., 2012) presents both agnostic and non-
agnostic results for generic settings, and shows improvements over sampling bounds in several specific
settings including the d-dimensional linear classifier problem we consider here (also drawing inspiration from
boosting). In addition, their work provides total communication bounds for decision lists and for proper
and non-proper learning of parity functions. They also extend the model so as to preserve differential and
distributional privacy while conserving total communication, as a resource, during the learning process.

In contrast, this work identifies optimization as a key primitive underlying many learning tasks, and
focuses on solving the underlying optimization problems as a way to provide general communication-
friendly distributed learning methods. We introduce techniques that rely on multiplicative weight updates
and multi-pass streaming algorithms. Our main contributions are translating these techniques into this
distributed setting and using them to solve LPs (and SDPs) in addition to solving for d-dimensional linear
separators.
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2 Background

In this section, we revisit the model proposed in (Daumé III et al., 2012) and mention related results.

Model. We assume that there are k parties P1, P2, . . . Pk. Each party Pi possesses a dataset Di that no
other party has access to, and each Di may have both positive and negative examples. The goal is to
classify the full dataset D = ∪iDi correctly. We assume that there exists a perfect classifier h∗ from a
family of classifiers H with associated range space (D,H) and bounded VC-dimension ν. We are willing
to allow ε-classification error on D so that up to ε|D| points in total are misclassified.

Each word of data (e.g., a single point or vector in Rd counts as O(d) words) passed between any pair
of parties is counted towards the total communication; this measure in words allows us to examine the
cost of extending to d-dimensions, and allows us to consider communication in forms other than example
points, but does not hinder us with precision issues required when counting bits. For instance, a protocol
that broadcasts a message of M words (say M/d points in Rd) from one node to the other k − 1 players
costs O(kM) communication. The goal is to design a protocol with as little communication as possible.
We assume an adversarial model of data distribution; in this setting we prepare for the worst, and allow
some adversary to determine which player gets which subset of D.

Sampling bounds. Given any dataset D and a family of classifiers with bounded VC-dimension ν, then
a random sample of size

sε,ν = O(min{(ν/ε) log(ν/ε), ν/ε2}) (2.1)

from D has at most ε-classification error on D with constant probability (Anthony & Bartlett, 2009), as
long as there exists a perfect classifier. Throughout this paper we will assume that a perfect classifier
exists. This constant probability of success can be amplified to any 1− δ with an extra O(log(1/δ)) factor
of samples.

Randomly partitioned distributions. Assume that for all i ∈ [1, k], each party Pi has a dataset Di drawn
from the same distribution. That is, all datasets Di are identically distributed. This case is much simpler
than what the remainder of this paper will consider. Using (2.1), each Di can be viewed as a sample from
the full set D = ∪iDi, and with no communication each party Pi can faithfully estimate a classifier with
error O((ν/|Di|) log(ν|Di|)).

Henceforth we will focus on adversarially distributed data.

One-way protocols. Consider a restricted setting where protocols are only able to send data from parties
Pi (for i ≥ 2) to P1; a restricted form of one-way communication. We can again use (2.1) so that all
parties Pi send a sample Si of size sε,ν to P1, and then P1 constructs a global classifier on ∪ki=2Si with
ε-classification error ∪ki=1Di; this requires O(dksε,ν) words of communication for points in Rd.

For specific classifiers Daumé III et al. (2012) do better. For thresholds and intervals one can learn
a zero-error distributed classifier using constant amount of one-way communication. The same can be
achieved for axis-aligned rectangles with O(kd2) words of communication. However, those authors show
that hyperplanes in Rd, for d ≥ 2, require at least Ω(k/ε) one-way bits of communication to learn an
ε-error distributed classifier.

Two-way protocols. Hereafter, we consider two-way protocols where any two players can communicate
back and forth. It has been shown (Daumé III et al., 2012) that, in R2, a protocol can learn linear
classifiers with at most ε-classification error using at most O(k2 log 1/ε) communication. This protocol is
deterministic and relies on a complicated pruning argument, whereby in each round, either an acceptable
classifier is found, or a constant fraction more of some party’s data is ensured to be classified correctly.
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3 Improved Random Sampling for k-players

Our first contribution is an improved two-way k-player sampling-based protocol using two-way communi-
cation and the sampling result in (2.1). We designate party P1 as a coordinator, and it gathers the size of
each player’s dataset Di, simulates sampling from each player completely at random, and then reports back
to each player the number of samples to be drawn by it, in O(k) communication. Then each other party
Pi selects sε,ν |Di|/|D| random points (in expectation), and sends them to the coordinator. The union of
this set satisfies the conditions of the result from (2.1) over D = ∪iDi and yields the following result.

Theorem 3.1. Consider any family of hypothesis that has VC-dimension ν for points in Rd. Then there
exists a two-way k-player protocol using O(kd+dmin{(ν/ε) log(ν/ε), ν/ε2}) total words of communication
that achieves ε-classification error, with constant probability.

Again using two-way communication, this type of result can be made even more general. Consider
the case where each Pi’s dataset arrives in a continuous stream; this is what is known as a distributed
data stream (Cormode et al., 2008). Then applying results of (Cormode et al., 2010), we can continually
maintain a sufficient random sample at the coordinator of size sε communicating O((k + sε,ν)d log |D|)
words.

Theorem 3.2. Consider any family of hypothesis that has VC-dimension ν for points in Rd. Let each
of k parties have a stream of data points Di where D = ∪iDi. Then there exists a two-way k-player
protocol using O((k + min{(ν/ε) log(ν/ε), ν/ε2}) d log |D|) total words of communication that maintains
ε-classification error, with constant probability.

4 A Two-Party Protocol

In this section, we consider only two parties, and for notational clarity, we refer to them as A and B.
A′s dataset is labeled DA and B’s dataset is labeled DB. Let |DB| = n. Our protocol, summarized
in Algorithm 1, is called WeightedSampling. In each round, A sends a classifier hA to B and B
responds back with a set of points RB, which it constructs by sampling from a weighting on its points.
At the end of T rounds (for T = O(log(1/ε))), we will show that by voting on the result from the set
of T classifiers hA will misclassify at most ε|DB| points from DB while being perfect on DA, and hence
ε|DB| < ε|DB ∪DA| = ε|D|, yielding a ε-optimal classifier as desired.

There are two ways RB can construct its points: a random sample and a deterministic sample. For
simplicity, we will focus our presentation on the randomized version since it is more practical, although it
has slightly worse bounds in the two-party case. Then we will also mention and analyze the deterministic
version.

It remains to describe how B’s points are weighted and updated, which dictates how B constructs the
sample sent to A. Initially, they are all given a weight w1 = 1. Then the re-weighting strategy (described
in Algorithm 2) is an instance of the multiplicative weight update framework; with each new proposed
classifier hA from A, party B increases all weights of misclassified points by a (1 + ρ) factor, and does
not change the weight for correctly classified points. We will show ρ = 0.75 is sufficient. Intuitively, this
ensures that consistently misclassified points eventually get weighted high enough that they are very likely
to be chosen as examples to be communicated in future rounds. The deterministic variant simply replaces
Line 7 of Algorithm 2 with the weighted variant (Matousek, 1991) of the deterministic construction of RB
(Chazelle, 2000); see details below.

Note that this is roughly similar in spirit to the heuristic protocol (Daumé III et al., 2012) that exchanged
support points and was called IterativeSupports, which we will experimentally compare against. But
the protocol proposed here is less rigid, and as we will demonstrate next, this allows for a much less nuanced
analysis.
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Algorithm 1 WeightedSampling

Input: DA, DB, parameters: 0 < ε < 1
Output: hAB (classifier with ε-error on DA ∪DB)
Init: RB = {}; w0

i = 1 ∀xi ∈ DB;
for t = 1 . . . T = 5 log2(1/ε) do

——— A’s move ———
DA = DA ∪RB;
htA := Learn(DA);
send htA to B;
——— B’s move ———
RB := Mwu (DB, htA, ρ = 0.75, c = 0.2); send RB to A;

end for
hAB = Majority(h1

A, h
2
A, . . . , h

T
A);

Algorithm 2 Mwu (DB, htA, ρ, c)

1: Input: htA, DB, parameters: 0 < ρ < 1, 0 < c < 1
2: Output: RB (a set of sc,d points)
3: for all (xi ∈ DB) do
4: if(htA(xi) 6= yi) then wt+1

i = wti(1 + ρ);
5: if(htA(xi) == yi) then wt+1

i = wti ;
6: end for
7: randomly sample RB from DB (according to wt+1);

4.1 Analysis

Our analysis is based on the multiplicative weight update framework (and closely resembles boosting).
First, we state a key structural lemma. Thereafter, we use this lemma to prove our main result.

As mentioned above (see (2.1)), after collecting a random sample Sε of size sε,d = O(min{(d/ε) log(d/ε), d/ε2})
drawn over the entire dataset D ⊂ Rd, a linear classifier learned on Sε is sufficient to provide ε-classification
error on all of D with constant probability. There exist deterministic constructions for these samples Sε
still of size sε,ν (Chazelle, 2000); although they provide at most ε-classification error with probability 1,
they, in general, run in time exponential in ν. Note that the VC-dimension of linear classifiers in Rd is
O(d), and these results still holds when the points are weighted and the sample is drawn (respectively
constructed (Matousek, 1991)) and error measured with respect to this weighting distribution. Thus B
could send sε,d points to A, and we would be done; but this is too expensive. We restate this result with
a constant c, so that at most a c fraction of the weights of points are mis-classified (later we show that
c = 0.2 is sufficient with our framework). Specifically, setting ε = c and rephrasing the above results yields
the following lemma.

Lemma 4.1. Let B have a weighted set of points DB with weight function w : DB → R+. For any
constant c > 0, party B can send a set Sc,d of size O(d) (where the constant depends on c) such that any
linear classifier that correctly classifies all points in Sc,d will misclassify points in DB with a total weight at
most c

∑
x∈DB w(x). The set Sc,d can be constructed deterministically, or a weighted random sample from

(DB, w) succeeds with constant probability.

We first state the bound using the deterministic construction of the set Sc,d, and then extend it to the
more practical (from a runtime perspective) random sampling result, but with a slightly worse communi-
cation bound.
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Theorem 4.1. The deterministic version of two-party two-way protocol WeightedSampling for linear
separators in Rd misclassifies at most ε|D| points after T = O(log(1/ε)) rounds using O(d2 log(1/ε)) words
of communication.

Proof. At the start of each round t, let φt be the potential function given by the sum of weights of all
points in that round. Initially, φ1 =

∑
xi∈DB wi = n since by definition for each point xi ∈ DB we have

wi = 1.

Then in each round, A constructs a classifier htA at B to correctly classify the set of points that accounts
for at least 1− c fraction of the total weight by Lemma 4.1. All other misclassified points are upweighted
by (1 + ρ). Hence, for round (t+ 1) we have φt+1 ≤ φt ((1− c) + c(1 + ρ)) = φt (1 + cρ) = n (1 + cρ)t.

Let us consider the weight of the points in the set S ⊂ DB that have been misclassified by a majority
of the T classifiers (after the protocol ends). This implies every point in S has been misclassified at least
T/2 number of times and at most T number of times. So the minimum weight of points in S is (1 + ρ)T/2

and the maximum weight is (1 + ρ)T .

Let ni be the number of points in S that has weight (1 + ρ)i where i ∈ [T/2, T ]. The potential function
value of S after T rounds is φTS =

∑T
i=T/2 ni(1 + ρ)i. Our claim is that

∑T
i=1 ni = |S| ≤ εn. Each of these

at most |S| points have a weight of at least (1 + ρ)T/2. Hence we have that

φTS =
T∑

i=T/2

ni(1 + ρ)i ≥ (1 + ρ)T/2
T∑

i=T/2

ni = (1 + ρ)T/2|S|.

Relating these two inequalities we obtain the following,

|S|(1 + ρ)T/2 ≤ φTS ≤ φT = n (1 + cρ)T .

Hence (using T = 5 log2(1/ε))

|S| ≤ n
(

(1 + cρ)

(1 + ρ)1/2

)T
= n

(
(1 + cρ)

(1 + ρ)1/2

)5 log2(1/ε)

= n(1/ε)
5 log2

(
(1+cρ)

(1+ρ)1/2

)
.

Setting c = 0.2 and ρ = 0.75 we get 5 log2

(
(1 + cρ)/(1 + ρ)1/2

)
) < −1 and thus |S| < n(1/ε)−1 < εn, as

desired since ε < 1. Thus each round uses O(d) points, each requiring d words of communication, yielding
a total communication of O(d2 log(1/ε)).

In order to use random sampling (as suggested in Algorithm 2), we need to address the probability of
failure of our protocol. That is, more specifically the set Sc,d in Lemma 4.1 is of size O(d log(1/δ′)) and
a linear classifier that has no error on Sc,d misclassifies points in DB with weight at most c

∑
x∈DB w(x),

with probability at least 1− δ′.
However, we would like this probability of failure to be a constant δ over the entire course of the protocol.

To guarantee this, we need the c-misclassification property to hold in each of T rounds. Setting δ′ = δ/T ,
and applying the union bound implies that then the probability of failure at any point in the protocol is at
most

∑T
i=1 δ

′ =
∑T

i=1 δ/T = δ. This increases the communication cost of each round to O(d2 log(1/δ′)) =
O(d2 log(log(1/ε)/δ)) = O(d2 log log(1/ε)) words, with a constant δ probability of failure. Hence using
random sampling as described in WeightedSampling requires a total of O(d2 log(1/ε) log log(1/ε)) words
of communication. We formalize below.

Theorem 4.2. The randomized two-party two-way protocol WeightedSampling for linear separators
in Rd misclassifies at most ε|D| points, with constant probability, after T = O(log(1/ε)) rounds using
O(d2 log(1/ε) log log(1/ε)) words of communication.
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5 k-Party Protocol

In Section 3 we described a simple protocol (Theorem 3.1) to learn a classifier with ε-error jointly among k
parties using O(kd+ dmin{ν/ε log(ν/ε), ν/ε2}) words of total communication. We now combine this with
the two-party protocol from Section 4 to obtain a k-player protocol for learning a joint classifier with error
ε.

We fix an arbitrary node (say P1) as the coordinator for the k-player protocol of Theorem 3.1. Then P1

runs a version of the two-player protocol (from Section 4) from A’s perspective and where players P2, . . . , Pk
serve jointly as the second player B. To do so, we follow the distributed sampling approach outlined in
Theorem 3.1. Specifically, we fix a parameter c (set c = 0.2). Each other node reports the total weight
w(Di) of their data to P1, who then reports back to each node what fraction of the total data w(Di)/w(D)
they own. Then each player sends the coordinator a random sample of size sc,dw(Di)/w(D). Recall that we
require sc,d = O(d log log(1/ε)) in this case to account for probability of failure over all rounds. The union
of these sets at P1 satisfies the sampling condition in Lemma 4.1 for ∪ki=2Di. P1 computes a classifier on
the union of its data and this joint sample and all previous joint samples, and sends the resulting classifier
back to all the nodes. Sending this classifier to each party requires O(kd) words of communication. The
process repeats for T = log2(1/ε) rounds.

Theorem 5.1. The randomized k-party protocol for ε-error linear separators in Rd terminates in T =
O(log(1/ε)) rounds using O((kd + d2 log log(1/ε)) log(1/ε)) words of communication, and has a constant
probability of failure.

Proof. The correctness and bound of T = O(log(1/ε)) rounds follows from Theorem 4.1, since, aside from
the total weight gathering step, from party P1’s perspective it appears to run the protocol with some partyB
where B represents parties P2, P3, . . . , Pk. The communication for P1 to collect the samples from all parties
is O(kd+dsc,d) = O(kd+d2 log log(1/ε)). And it takes O(dk) communication to return hA to all k−1 other
players. Hence the total communication over T = O(log(1/ε)) rounds is O((kd+ d2 log log(1/ε)) log(1/ε))
as claimed.

However, this randomized sampling algorithm required a sample of size sc,d = O(d log log(1/ε)), we can
achieve a different communication trade-off using the deterministic construction. We can no longer use the
result from Theorem 3.1 since that has a probability of failure. In this case, in each round each party Pi
communicates a deterministically constructed set Sc,i of size sc,d = O(d), then the coordinator P1 computes
a classifier that correctly classifies points from all of these sets, and hence has at most cw(Di) weight of
points misclassified in each Di. The error is at most cw(Di) on each dataset Di, so the error on all sets is
at most c

∑k
i=2w(Di) = cw(D). Again using T = O(log(1/ε)) rounds we can achieve the following result.

Theorem 5.2. The deterministic k-party protocol for ε-error linear separators in Rd terminates in T =
O(log(1/ε)) rounds using O(kd2 log(1/ε)) words of communication.

6 Experiments

In this section, we present empirical results, using WeightedSampling, for finding linear classifiers in Rd
for two-party and k-party scenarios. We empirically compare amongst the following approaches.

• Naive: a naive approach that sends all data from (k − 1) nodes to a coordinator node and then
learns at the coordinator. For any dataset, this accuracy is the best possible.

• Voting: a simple voting strategy that trains classifiers at each individual node and sends over the
(k − 1) classifiers to a coordinator node. For any datapoint, the coordinator node predicts the label
by taking a vote over all k classifiers.
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• Rand: each of the (k − 1) nodes sends a random sample of size sε,d to a coordinator node and then
a classifier is learned at the coordinator node using all of its own data and the samples received.

• RandEmp: a cheaper version of Rand that uses a random sample of size 9d from each party each
round; this value was chosen to make this baseline technique as favorable as possible.

• MaxMarg: IterativeSupports that selects informative points heuristically (Daumé III et al.,
2012). A node is chosen as the coordinator and the coordinator exchanges maximum margin support
points with each of the (k − 1) nodes. This continues until the training accuracy reaches within
(1− ε) of the optimal (i.e., (1− ε)100% in our case since we assume linearly separable data) or the
communication cost equals the total size of the data at (k − 1) non-coordinator nodes (i.e., the cost
for Naive).

• Mwu: WeightedSampling that randomly samples points based on the distribution of the weights
and runs for 5 log(1/ε) number of rounds (ref. Section 4).

• MwuEmp: a cheaper version of Mwu with an early stopping condition. The protocol is stopped
early if the training accuracy has reached within (1− ε) of the optimal, i.e., (1− ε)100%.

We do not compare results with Median (Daumé III et al., 2012) as it does not work on datasets beyond
two dimensions. For all these methods, SVM (from libSVM (Chang & Lin, 2011) library), with a linear
kernel, was used as the underlying classifier. We report training accuracy and communication cost. The
training accuracy is computed over the combined dataset D with an ε value of 0.05 (where applicable).
The communication cost (in words) of all methods are reported as ratios with reference to MwuEmp as
the base method. All numbers reported are averaged over 10 runs of the experiments; standard deviations
are reported where appropriate. For Mwu and MwuEmp, we use ρ = 0.75.

Communication Cost Computation. In the following, we describe the communication cost computation
for each method. Each example point sent from one node to another incurs a communication cost of d+ 1,
since it requires d words to describe its position in Rd and 1 word to describe its sign. Similarly, each linear
classifier requires d+ 1 words of communication to send; d words to describe its direction, and 1 word to
describe its offset.

• Naive: assuming node 1 to be coordinator, the total cost is the number of words sent over by each
node to the coordinator and is equal to

∑k
i=2(d+ 1)|Di|.

• Voting: each node sends over its classifier to the coordinator node which incurs a total cost of
(d+ 1)(k − 1).

• Rand: the cost is equal to (k−1)(d+1)sε,d = (k−1)(d+1)(d/ε) log(d/ε) times some constant where
we set the constant to 1.

• RandEmp: despite the theoretical cost of (k − 1)(d + 1)sε,d = (k − 1)(d + 1)(d/ε) log(d/ε) (same
as Rand), in practice the random sampling based approach performs well with far fewer samples.
Starting with a sample size of 5, we first perform a doubling search to find the range within which
RandEmp achieves ε-optimal accuracy and then do binary search within this range to pick the
smallest value for the sample size. Our goal is to pick one value that performs well across all of
our datasets. In our case, 9d seems to work well for all the datasets we tested. Thus, in our case,
RandEmp incurs a total cost of 9d(d+ 1)(k − 1) words.

• MaxMarg: let SPi denote the support set of node i. Assuming node 1 to be coordinator, the total
cost in each round is equal to (d + 1)(k − 1)|SP1| +

∑k
i=2(d + 1)|SPi| (the number words sent by

the coordinator to all (k − 1) nodes plus the number of words sent back by the (k − 1) nodes to the
coordinator). The cost accumulates over rounds until the target accuracy is reached or until the cost
equals the total size of the data at (k − 1) non-coordinator nodes (i.e., the cost for Naive).
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• Mwu: for our algorithm the cost incurred in each round is (d+1)sc,d(k−1)+(d+1)(k−1) words. The
first term comes from each player other than the coordinator sending sc,d points to the coordinator.
The second term accounts for the coordinator replying with a classifier to each of those (k− 1) other
players. However, we observe that exchanging a small constant number of samples, instead of sc,d,
each round works quite well in practice for all of our datasets. For our analysis we had set c = 1/5
indicating that sc,d is some constant times 25d. But in our experiments, we use a much smaller
sample size of 100 per round, with a word cost of 100(d + 1) per round. The search process to find
this smaller sample size is the same as described in RandEmp. The number of rounds for Mwu is
5 log2 (1/0.05) log2 log2 (1/0.05) ' 5× 10 = 50.

• MwuEmp: similar to Mwu, the sample size chosen in 100 and the cost is 100(d + 1)(k − 1) + (d +
1)(k − 1) words times the number of rounds until the early stopping criterion is met.

Note that given our cost computation, for some datasets the cost of Rand, RandEmp and Mwu can
exceed the cost of Naive (see, for example, Cancer). For those datasets, the size of the data is small
compared to the dimensions. As a result, the communication costs (in number of points) for (a) Rand:
(k − 1)sε,d = (k − 1)(d/ε) log(d/ε), (b) RandEmp: 9d(k − 1), and (c) Mwu: (100(k − 1) + (k − 1))T =
101(k− 1)× 50 are large compared to the total size of the data at the (k− 1) non-coordinator nodes (i.e.,
the cost of Naive).

Datasets. We report results for two-party and four-party protocols on both synthetic and real-world
datasets.

Six datasets, three each for two-party and four-party case, have been generated synthetically from
mixture of Gaussians. Each Gaussian has been carefully seeded to generate different data partitions. For
Synthetic1 , Synthetic2 , Synthetic4 , Synthetic5 , each node contains 5000 data points (2500 positive and
2500 negative) whereas for Synthetic3 and Synthetic6 , each node contains 8500 data points (4250 positive
and 4250 negative) and all of these datapoints lie in 50 dimensions. Additionally, we investigate the
performance of our protocols on three real-world UCI datasets Frank & Asuncion (2010). Our goal is to
select datasets that are linearly separable or almost linearly separable. We choose Cancer and Mushroom
from the LibSVM data repository (Chang & Lin, 2011).

The proposed protocol works for perfectly separable datasets. However, this assumption is too idealistic
and in practice real-world datasets are seldom perfectly separable either because of presence of noise or
due to limitations of linear classifiers (for example, what if the data has a non-linear decision boundary).
So most of datasets have some amount of noise in them. This also shows that although our protocols were
designed for noiseless data then work well on noisy datasets too. However, when applied on noisy data, we
do not guarantee the communication bounds that were claimed for noiseless datasets.

For the datasets that are not perfectly separable, the accuracy of Naive (with some tolerance) that
learns an SVM on the entire data can be considered to be the best accuracy that can be achieved for that
particular dataset. Table 1 presents a summary of the datasets, the best possible accuracy that can be
achieved and also the accuracy required to yield an ε-optimal classifier with ε = 0.05.

Finally, in Tables 2-4, we highlight (in bold) the protocol that achieves the required accuracy and the
lowest communication cost and thus is the best among the methods compared. By best we mean that
the method has the cheapest communication cost as well an accuracy that is more that (1− ε) times the
optimal, i.e., 95% for our case for ε = 0.05. As will be frequently seen for Voting, the communication
cost is the cheapest but the accuracy is far from the desired ε-error specified, and in such circumstances
we do not deem Voting as the best method.

6.1 Synthetic Results

Table 2 compares the performance metrics of the aforementioned protocols for two-parties. As can be seen,
Voting performs the best for Synthetic1 and RandEmp performs the best for Synthetic2 . For Synthetic3 ,
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Dataset total # # of points per player dimensions type perfectly best ε-optimal
of points 2-player 4-player separable? accuracy accuracy

Synthetic1 10000 5000 - 50 synthetic no 99.23 95.00
Synthetic2 10000 5000 - 50 synthetic no 97.91 95.00
Synthetic3 17000 8500 - 50 synthetic no 97.39 95.00
Synthetic4 20000 - 5000 50 synthetic no 99.26 95.00
Synthetic5 20000 - 5000 50 synthetic no 97.97 95.00
Synthetic6 34000 - 8500 50 synthetic no 97.47 95.00

Cancer 683 342 171 10 real no 97.07 95.00
Mushroom 8124 4062 2031 112 real yes 100 95.00

Table 1: Summary of datasets used (ε = 0.05).

Synthetic1 Synthetic2 Synthetic3
Acc Cost Acc Cost Acc Cost

Naive 99.23 (0.0) 49.02 97.91 (0.0) 6.18 97.39 (0.0) 19.08
Voting 95.00 (0.0) 0.01 60.64 (0.0) 0.01 74.55 (0.0) 0.01
Rand 99.02 (0.0) 29.41 97.72 (0.0) 3.71 97.16 (0.0) 6.74

RandEmp 96.64 (0.1) 4.41 95.13 (0.1) 0.56 96.03 (0.1) 1.01
MaxMarg 96.39 (0.0) 4.26 93.76 (0.0) 6.18 73.62 (0.0) 19.08

Mwu 98.66 (0.1) 49.51 97.59 (0.1) 6.24 97.11 (0.1) 11.34
MwuEmp 95.00 (0.0) 1.00 95.17 (0.1) 1.00 95.25 (0.2) 1.00

Table 2: Mean accuracy (Acc) and communication cost (Cost) required by two-party protocols for synthetic
datasets.

Synthetic4 Synthetic5 Synthetic6
Acc Cost Acc Cost Acc Cost

Naive 99.26 (0.0) 100.00 97.97 (0.0) 12.72 97.47 (0.0) 54.84
Voting 95.00 (0.0) 0.01 65.83 (0.0) 0.01 75.52 (0.0) 0.01
Rand 99.18 (0.0) 60.00 97.83 (0.0) 7.63 97.39 (0.0) 19.35

RandEmp 97.33 (0.1) 9.00 96.61 (0.1) 1.15 96.67 (0.1) 2.90
MaxMarg 95.95 (0.0) 0.82 93.94 (0.0) 15.15 75.05 (0.0) 80.19

Mwu 98.03 (0.2) 34.78 97.30 (0.1) 4.45 96.87 (0.1) 11.24
MwuEmp 95.11 (0.3) 1.00 95.11 (0.2) 1.00 95.45 (0.2) 1.00

Table 3: Mean accuracy (Acc) and communication cost (Cost) required by four-party protocols for synthetic
datasets.

MwuEmp requires the least amount of communication to learn an ε-optimal distributed classifier. Note
that, for Synthetic2 and Synthetic3 , both Voting and MaxMarg fail to produce a ε-optimal (ε = 0.05)
classifier. MaxMarg exhibits this behavior despite incurring a communication cost that is as high as
Naive. Note that the cost of MaxMarg being the same as Naive does not imply that MaxMarg send
overs all points. Rather the accumulated cost of the support points become the same as the cost of Naive
at which point we stop the algorithm. Usually, by this point, the accuracy of MaxMarg saturates and
does not improve with exchange of more support points.

As shown in Table 3, most of the two-party results carry over to the multiparty case. Voting is the
best for Synthetic4 whereas MwuEmp is the best for Synthetic5 and Synthetic6 . As earlier, both Voting
and MaxMarg do not yield an 0.05-optimal distributed classifiers for Synthetic5 and Synthetic6 .

Figure 1 (for two-party using Synthetic1 ) shows the communication costs (in log-scale) with variations
in the number of data points per node and the dimension of the data. Note that we do not report the
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numbers for MaxMarg since MaxMarg takes a long time to finish. However, for Synthetic1 the numbers
for MaxMarg are similar to those of RandEmp and so their curves in the figure are also the same. Note
that in Figure 1(b), the cost of Naive increases as the number of dimensions increase. This is because the
cost is multiplied by a factor of (d+ 1), when expressed in words.
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Figure 1: Communication cost vs Size and Dimensionality for Synthetic1 with 2-party protocol.

6.2 Real-World Data

Table 4 presents results for two-party protocols and four-party protocols using real-world datasets. Other
that the two-party case for Mushroom, Voting performs the best in all other case. However, note that
for Mushroom using two-party protocol, Voting does not yield a 0.05-optimal distributed classifier.

Cancer Mushroom
Acc Cost Acc Cost

2-party

Naive 97.07 (0.0) 3.34 100.00 (0.0) 20.01
Voting 97.36 (0.0) 0.01 88.38 (0.0) 0.00
Rand 97.16 (0.1) 4.52 100.00 (1.1) 36.97

RandEmp 96.90 (0.2) 0.88 100.00 (0.0) 4.97
MaxMarg 96.78 (0.0) 0.22 100.00 (0.0) 1.11

Mwu 97.36 (0.2) 49.51 100.00 (0.0) 24.88
MwuEmp 96.87 (0.4) 1.00 99.73 (0.5) 1.00

4-party

Naive 97.07 (0.0) 1.00 100.00 (0.0) 28.61
Voting 97.36 (0.0) 0.03 95.67 (0.0) 0.01
Rand 97.19 (0.1) 12.81 100.00 (0.6) 105.70

RandEmp 96.99 (0.1) 2.50 99.99 (0.0) 14.20
MaxMarg 96.78 (0.0) 0.56 100.00 (0.0) 2.34

Mwu 97.00 (0.2) 48.46 100.00 (0.1) 24.65
MwuEmp 96.97 (0.3) 1.00 98.86 (0.4) 1.00

Table 4: Mean accuracy (Acc) and communication cost (Cost) required by all protocols for real-world
datasets.
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The results for communication cost (in log-scale) versus data size and communication cost (in log-
scale) versus dimensionality are provided in Figure 2 for two-party protocol using the Mushroom dataset.
MwuEmp (denoted by the black line) is comparable to MaxMarg and cheaper than all other baselines
(except Voting).
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Figure 2: Communication cost vs Size and Dimensionality for Mushroom with 2-party protocol.

Remarks. The goal of our experiments is to show that our protocols perform well, particularly for difficult
or adversarially partitioned datasets. For easy datasets, any baseline technique can perform well. Indeed,
Voting performs the best on Synthetic1 and Synthetic4 and RandEmp performs better than others
on Synthetic2 . For the remaining three cases on synthetic datasets, MwuEmp outperforms the other
baselines. On real world data, Voting usually performs well. However, as we have shown earlier, for some
datasets Voting and MaxMarg fail to yield an ε-optimal classifier. In particular for Mushroom, using
the two-party protocol, the accuracy achieved by Voting is far from ε-optimal. This and earlier results
show that there exists scenarios where Voting and MaxMarg perform particularly worse and so learning
by majority voting or by exchanging support points in between nodes is not a good strategy in distributed
settings, even more so when the data is partitioned adversarially.

7 Distributed Optimization

Many learning problems can be formulated as convex (or even linear or semidefinite) optimizations (Bennett
& Parrado-Hernández, 2006). In these problems, the data (points) act as constraints to the resulting
optimization; for example, in a standard SVM formulation, there is one constraint for each point in the
training set.

Since in our distributed setting, points are divided among the different players, a natural distributed
optimization problem can be stated as follows. Each player i has a set of constraints Ci = {fij(x) ≥ 0},
and the goal is to solve the optimization min g(x) subject to the union of constraints ∪iCi. As earlier, our
goal is to solve the above with minimum communication.

A general solution for communication-efficient distributed convex optimization will allow us to reduce
communication overhead for a number of distributed learning problems. In this section, we illustrate two
algorithm design paradigms that achieves this for distributed convex optimization.
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7.1 Optimization via Multi-Pass Streaming

A streaming algorithm (Muthukrishnan, 2005) takes as input a sequence of items x1, . . . xn. The algorithm
is allowed working space that is sublinear in n, and is only allowed to look at each item once as it streams
past. A multipass streaming algorithm is one in which the algorithm may make more than one pass over
the data, but is still limited to sublinear working space and a single look at each item in each pass.

The following lemma shows how any (multipass) streaming algorithm can be used to build a multiparty
distributed protocol.

Lemma 7.1. Suppose that we can solve a given problem P using a streaming algorithm that has s words
of working storage and makes r passes over the data. Then there is a k-player distributed algorithm for P
that uses krs words of communication.

Before proving the above lemma, we note that streaming algorithms often have s = O(poly log n) and
r = O(log n), indicating that the total communication is O(k poly log n) words, which is sublinear in the
input size.

Proof. For ease of exposition, let us first consider the case when k = 2. Consider a streaming algorithm S
satisfying the conditions above. The simulation works by letting the first player A simulate the first half of
S, and letting the second player B simulate the second half. Specifically, the first player A simulates the
behavior of S on its input. When this simulation of S exhausts the input at A, A sends over the contents
of the working store of S to B. B restarts S on its input using this working store as S’s current state.
When B has finished simulating S on its input, it sends the contents of the working storage back to A.
This completes one pass of S, and used s words of communication. The process continues for r passes.

If there are k players A1, . . . , Ak instead of two, then we fix an arbitrary ordering of the players. The
first player simulates S on its input, and at completion passes the contents of the working store to the next
one, and so on. Each pass now requires O(ks) words of communication, and the result follows.

We can apply this lemma to get a streaming algorithm for fixed-dimensional linear programming1. This
relies on an existing result (Chan & Chen, 2007):

Theorem 7.1 ((Chan & Chen, 2007)). Given n halfspaces in Rd (for d constant), we can compute the
lowest point in their intersection by a O(1/δd−1)-pass Las Vegas algorithm that uses O((1/δO(1))nδ) space
and runs in time O((1/δO(1))n1+δ) with high probability, for any constant δ > 0.

Corollary 7.1. There is a k-player algorithm for solving distributed linear programming that uses O(k(1/δd+O(1))nδ)
communication, for any constant δ > 0.

While the above streaming algorithm can be applied as a blackbox in Corollary 7.1, looking deeper into
the streaming algorithm reveals room for improvement. As in the case of classification, suppose that we
are permitted to violate an ε-fraction of the constraints. It turns out that the above streaming algorithm
achieves its bounds by eliminating a fixed fraction of constraints in each space, and thus requires logr n
passes, where r = nΘ(δ). If we are allowed to violate an ε-fraction of constraints, we need only run the
algorithm for logr 1/ε passes, where r is now O(1/εΘ(δ)). This allows us to replace n in all terms by 1/ε,
resulting in an algorithm with communication independent of n.

Corollary 7.2. There is a k-player algorithm for solving distributed linear programming that violates at
most an ε-fraction of the constraints, and that uses O(k(1/δd+O(1))(1/ε)δ) communication, for any constant
δ > 0.

1Fixed-dimensional linear programming is the case of linear programming where the dimension is not part of the input.
Effectively, this means that exponential dependence on the dimension is permitted; the dependence on the number of constraints
remains polynomial as usual.
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7.2 Optimization via Multiplicative Weight Updates

The above result gives an approach for solving fixed-dimensional linear programming (exactly or with
at most εn violated constraints) in a distributed setting. There is no known streaming algorithm for
arbitrary-dimensional linear programming, so the stream-algorithm-based design strategy cannot be used.
However we will now show that the multiplicative weight update method can be applied in a distributed
manner, and this allows us to solve general linear programming problems, as well as SDPs and other convex
optimizations.

We first consider the problem of solving a general LP of the form min g>x, subject to Ax ≥ b, x ∈ P ,
where P is a set of “soft” constraints (for example, x ≥ 0) and Ax ≥ b are the “hard” constraints. Let
z∗ = min g>x∗ be the optimal value of the LP, obtained at x∗. Then the multiplicative weight update
method can be used to obtain a solution x̃ such that z∗ = g>x̃ and all (hard) constraints are satisfied
approximately, i.e ∀i, Aix̃ ≥ bi − ε, where Aix ≥ bi is one row of the constraint matrix. We call such a
solution a soft-ε-approximation (to distinguish it from a traditional approximation in which all constraints
would be satisfied exactly and the objective would be approximately achieved.

The standard protocol works as follows (Arora et al., 2005a). We assume that the optimal z∗ has
been guessed (this can be determined by binary search), and define the set of “soft” constraints to be
P = P ∪ {x | g>x = z∗}. Typically, it is easy to check for feasibility in P. We define a width parameter
ρ = max{maxi∈[n],x∈PAix − bi, 1}. Initialize mi(0) = 0. Then we run T = O(ρ2 lnn/ε2) iterations (with
t = 1, 2, . . . , T ) of the following:

1. Set pi(t) = exp(−εmi(t− 1)/2).

2. Find feasible x(t) in P ∪ {x |
∑

i piAix ≥
∑

i pibi}.
3. mi(t) = mi(t− 1) +Aix(t)− bi.

At the end, we return x = (1/t)
∑

t x(t) as our soft-ε-approximation for the LP.

We now describe a two-party distributed protocol for linear programming adapted from this scheme.
The protocol is asymmetric. Player A finds feasible values of x and player B maintains the weights mi.
Specifically, player A constructs a feasible set P consisting of the original feasible set P and all of its own
constraints. As above, B initializes a weight vector m to all zeros, and then sends over the single constraint∑

i piAix ≥
∑

i pibi to A. Player A then finds a feasible x using this constraint as well as P (solving a
linear program) and then sends the resulting x back to B, who updates its weight vector m.

Each round of communication requires O(d) words of information, and there are O(ρ2 lnn/ε2) rounds of
communication. Notice that this is exponentially better than merely sending over all constraints.

Theorem 7.2. There is a 2-player distributed protocol that uses O(dρ2 lnn/ε2) words of communication
to compute a soft-ε-approximation for a linear program.

A similar result applies for semidefinite programming (based on an existing primal MWU-based SDP
algorithm (Arora et al., 2005b)) as well as other optimizations for which the MWU applies, such as rank
minimization (Meka et al., 2008), etc.

8 Conclusion

In this work, we have proposed a simple and efficient protocol that learns an ε-optimal distributed classifier
for hyperplanes in arbitrary dimensions. The protocol also gracefully extends to k-players. Our proposed
technique WeightedSampling relates to the MWU-based meta framework and we exploit this connection
to extend WeightedSampling for distributed convex optimization problems. This makes our protocol
applicable to a wide variety of distributed learning problems that can be formulated as an optimization
task over multiple distributed nodes.
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