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Tracking and approximating data matrices in streaming
fashion is a fundamental challenge. The problem requires
more care and attention when data comes from multiple
distributed sites, each receiving a stream of data. This
paper considers the problem of “tracking approximations
to a matrix” in the distributed streaming model. In this
model, there are m distributed sites each observing a dis-
tinct stream of data (where each element is a row of a dis-
tributed matrix) and has a communication channel with a
coordinator, and the goal is to track an ε-approximation to
the norm of the matrix along any direction. To that end,
we present novel algorithms to address the matrix approxi-
mation problem. Our algorithms maintain a smaller matrix
B, as an approximation to a distributed streaming matrix
A, such that for any unit vector x: |‖Ax‖2 − ‖Bx‖2| ≤
ε‖A‖2F . Our algorithms work in streaming fashion and in-
cur small communication, which is critical for distributed
computation. Our best method is deterministic and uses
only O((m/ε) log(βN)) communication, where N is the size
of stream (at the time of the query) and β is an upper-
bound on the squared norm of any row of the matrix. In
addition to proving all algorithmic properties theoretically,
extensive experiments with real large datasets demonstrate
the efficiency of these protocols.

1. INTRODUCTION
Large data matrices are found in numerous domains, such

as scientific computing, multimedia applications, networking
systems, server and user logs, and many others [27–29, 37].
Since such data is huge in size and often generated continu-
ously, it is important to process them in streaming fashion
and maintain an approximating summary. Due to its im-
portance, the matrix approximation problem has received
careful investigations in the literature; the latest significant
effort is represented by Liberty [29] on a centralized stream.

In recent years, distributed streaming model [14] has be-
come popular, in which there are multiple distributed sites,
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each observing a disjoint stream of data and together at-
tempt to monitor a function at a single coordinator site C.
Due to its wide applications in practice [14], a flurry of work
has been done under this setting. This model is more gen-
eral than the streaming model [3] that maintains a function
at a single site with small space. It is also different from
communication model [43] in which data is (already) stored
at multiple sites and the goal is to do a one-time computa-
tion of a target function. The key resources to optimize in
distributed streaming model is not just the space needed at
the coordinator or each site, but the communication between
the sites and coordinator.

Despite prior works on distributed streaming model, and
distributed matrix computations (e.g., the MadLINQ library
[39]), little is known on continuously tracking an matrix ap-
proximation in the distributed streaming model. This paper
considers the important problem of “tracking approxima-
tions to matrices” in the distributed streaming model [14].

Motivation. Our problem is motivated by many appli-
cations in distributed databases, wireless sensor networks,
cloud computing, etc [35] where data sources are distributed
over a network and collecting all data together at a central
location is not a viable option. In many such environments
queries must be answered continuously, based on the total
data that has arrived so far.

For example, in large scale image analysis, each row in the
matrix corresponds to one image and contains either pixel
values or other derived feature values (e.g, 128-dimensional
SIFT features). A search engine company has image data
continuously arriving at many data centers, or even within a
single data center at many nodes in a massive cluster. This
forms a distributed matrix and it is critical to obtain excel-
lent, real-time approximation of the distributed streaming
image matrix with little communication overhead.

Yet another example is for large-scale distributed web
crawling or server access log monitoring/mining, where data
in the bag-of-words model is a matrix whose columns corre-
spond to words or tags/labels (for textual analysis, e.g. LSI,
and/or for learning and classification purpose) and rows cor-
respond to documents or log records (which arrive continu-
ously at distributed nodes).

Since data is continuously changing in these applications,
query results can also change with time. So the challenge
is to minimize the communication between sites and the
coordinator while maintaining accuracy of results at all time.

In our case, each site may generate a record in a given
time instance, which is a row of a matrix. The goal is to ap-
proximate the matrix that is the union of all the rows from
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all sites until current time instance tnow continuously at the
coordinator C. This problem can be easily found in dis-
tributed network monitoring applications [38], distributed
data mining, cloud computing [39], stream mining [24], and
log analysis from multiple data centers [9].

Distributed streaming matrix approximation. For-
mally, assume A = (a1, . . . , an, . . .) is an unbounded stream
of items. At the current time tnow, let n denote the number
of items the system has seen so far; that is at the current
time the dataset is A = (a1, . . . , an). And although we do
not place a bound on the number of items, we let N denote
the total size of the stream at the time when a query q is
performed. This allows us to discuss results in terms of n at
a given point, and in terms of N for the entire run of the
algorithm until the time of a query q.

At each time step we assume the item an appears at ex-
actly one ofm sites S1, . . . , Sm. The goal is to approximately
maintain or monitor some function f(A) of A at the coor-
dinator node C. Each site can only communicate with the
coordinator (which in practice may actually be one of the
sites). This model is only off by a factor 2 in communication
with a model where all pairs of sites can communicate, by
routing through the coordinator.

Our goal is to maintain a value f̂(A) which is off by some
ε-factor from the true value f(A). The function and manner
of approximation is specified for a variety of problems [4,11,
12, 26, 31, 44] included total count, heavy hitters, quantiles,
and introduced in this paper, matrix approximation:
Definition 1 (Tracking distributed streaming matrix) :
Suppose each an is a record with d attributes, a row from a
matrix in an application. Thus, at time tnow, A = (a1, . . . , an)
forms a n× d distributed streaming matrix. At any time in-
stance, C needs to approximately maintain the norm of ma-
trix A along any arbitrary direction. The goal is to contin-
uously track a small approximation of matrix A. Formally,
for any time instance tnow (i.e., for any n), C needs to main-
tain a smaller matrix B ∈ R`×d as an approximation to the
distributed streaming matrix A ∈ Rn×d such that ` � n
and for any unit vector x: |‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2F .

As required in the distributed streaming model [14], each
site Si must process its incoming elements in streaming fash-
ion. The objective is to minimize the total communication
between C and all sites S1, . . . , Sm.
Additional notations. In the above definition, the Frobe-
nius norm of a matrix A is ‖A‖F =

√∑n
i=1 ‖ai‖2 where

‖ai‖ is standard Euclidean norm of row ai; the Frobenius
norm is a widely used matrix norm. We also let Ak be the
best rank k approximation of matrix A, specifically Ak =
arg minX:rank(X)≤k‖A−X‖F .

Our contributions. This work makes important contri-
butions in solving the open problem of tracking distributed
streaming matrix. Instead of exploring heuristic methods
that offer no guarantees on approximation quality, we focus
on principled approaches that are built on sound theoretical
foundations. Moreover, all methods are simple and efficient
to implement as well as effective in practice. Specifically:

• We establish and further the important connection
between tracking a matrix approximation and main-
taining ε-approximate weighted heavy-hitters in the
distributed streaming model in Section 4. Initial in-
sights along this direction were established in very
recent work [21, 29]; but the extent of this connec-
tion is still limited and not fully understood. This is

demonstrated, for instance, by us showing how three
approaches for weighted heavy hitters can be adapted
to matrix sketching, but a fourth cannot.

• We introduce four new methods for tracking the ε-
approximate weighted heavy-hitters in a distributed
stream in Section 4, and analyze their behaviors with
rigorous theoretical analysis.

• We design three novel algorithms for tracking a good
approximation of a distributed streaming matrix in
Section 5; these leverage the new insights connecting
this problem to solutions in Section 4 for distributed
weighted heavy hitters tracking.

• We present thorough experimental evaluations of the
proposed methods in Section 6 on a number of large
real data sets. Experimental results verify the effec-
tiveness of our methods in practice.

In addition, we provide a thorough review of related works
and relevant background material in Section 2. The paper
is concluded in Section 7.

2. RELATED WORK
There are two main classes of prior work that are rele-

vant to our study: approximating a streaming matrix in a
centralized stream, and tracking heavy hitters in either a
centralized stream or (the union of) distributed steams.

Matrix approximation in a centralized stream. Ev-
ery incoming item in a centralized stream represents a new
row of data in a streaming matrix. The goal is to contin-
uously maintain a low rank matrix approximation. It is a
special instance of our problem for m = 1, i.e., there is only
a single site. Several results exist in the literature, including
streaming PCA (principal component analysis) [34], stream-
ing SVD (singular value decomposition) [7, 40], and matrix
sketching [8, 21, 29]. The matrix sketching technique [29]
only recently appeared and is the start-of-the-art for low-
rank matrix approximation in a single stream. Liberty [29]
adapts a well-known streaming algorithm for approximat-
ing item frequencies, the MG algorithm [33], to sketching a
streaming matrix. The method, Frequent Directions (FD),
receives n rows of a matrix A ∈ Rn×d one after another,
in a centralized streaming fashion. It maintains a sketch
B ∈ R`×d with only ` � n rows, but guarantees that
ATA ≈ BTB. More precisely, it guarantees that ∀x ∈ Rd,
‖x‖ = 1, 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ 2‖A‖2F /`. FD uses O(d`)
space, and each item updates the sketch in amortized O(d`)
time; two such sketches can also be merged in O(d`2) time.

A bound on ‖Ax‖ for any unit vector x preserves norm (or
length) of a matrix in direction x. For instance, when one
performs PCA on A, it returns the set of the top k orthogo-
nal directions, measured in this length. These are the linear
combinations of attributes (here we have d such attributes)
which best capture the variation within the data in A. Thus
by increasing `, this bound allows one to approximately re-
tain all important linear combinations of attributes.

An extension of FD to derive streaming sketch results with
bounds on relative errors, i.e., to ensure that ‖A− Ak‖2F ≤
‖A‖2F − ‖Bk‖2F ≤ (1 + ε)‖A − Ak‖2F , appeared in [21]. It
also gives that ‖A − πBk (A)‖2F ≤ (1 + ε)‖A − Ak‖2F where
Bk is the top k rows of B and πBk (A) is the projection of A
onto the row-space of Bk. This latter bound is interesting
because, as we will see, it indicates that when most of the
variation is captured in the first k principal components,
then we can almost recover the entire matrix exactly.
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But none of these results can be applied in distributed
streaming model without incurring high communication cost.
Even though the FD sketches are mergeable, since the coor-
dinator C needs to maintain an approximation matrix con-
tinuously for all time instances. One has to either send m
sketches to C, one from each site, at every time instance and
ask C to merge them to a single sketch, or one can send a
streaming element to C whenever it is received at a site and
ask C to maintain a single sketch using FD at C. Either
approach will lead to Ω(N) communication.

Nevertheless, the design of FD has inspired us to explore
the connection between distributed matrix approximation
and approximation of distributed heavy hitters.

Heavy hitters in distributed streams. Tracking heavy
hitters in distributed streaming model is a fundamental prob-
lem [4,26,31,44]. Here we assume each an ∈ A is an element
of a bounded universe [u] = {1, . . . , u}. If we denote the fre-
quency of an element e ∈ [u] in the stream A as fe(A), the
φ-heavy hitters of A (at time instance tnow) would be those
items e with fe(A) ≥ φn for some parameter φ ∈ [0, 1]. We
denote this set as Hφ(A). Since computing exact φ-heavy
hitters incurs high cost and is often unnecessary, we allow
an ε-approximation, then the returned set of heavy hitters
must include Hφ(A), may or may not include items e such
that (φ − ε)n ≤ fe(A) < φn and must not include items e
with fe(A) < (φ− ε)n.

Babcock and Olston [4] designed some deterministic heuris-
tics called as top-k monitoring to compute top-k frequent
items. Fuller and Kantardzid modified their technique and
proposed FIDS [20], a heuristic method, to track the heavy
hitters while reducing communication cost and improving
overall quality of results. Manjhi et.al. [31] studied φ-heavy
hitter tracking in a hierarchical communication model.

Cormode and Garofalakis [11] proposed another method
by maintaining a summary of the input stream and a predic-
tion sketch at each site. If the summary varies from the pre-
diction sketch by more than a user defined tolerance amount,
the summary and (possibly) a new prediction sketch is sent
to a coordinator. The coordinator can use the informa-
tion gathered from each site to continuously report frequent
items. Sketches maintained by each site in this method re-
quire O((1/ε2) log(1/δ)) space and O(log(1/δ)) time per up-
date, where δ is a probabilistic confidence.

Yi and Zhang [44] provided a deterministic algorithm with
communication cost O((m/ε) logN) and O(1/ε) space at
each site to continuously track φ-heavy hitters and the φ-
quantiles. In their method, every site and the coordinator
have as many counters as the type of items plus one more
counter for the total items. Every site keeps track of number
of items it receives in each round, once this number reaches
roughly ε/m times of the total counter at the coordinator,
the site sends the counter to the coordinator. After the co-
ordinator receives m such messages, it updates its counters
and broadcasts them to all sites. Sites reset their counter
values and continue to next round. To lower space usage
at sites, they suggested using space-saving sketch [32]. The
authors also gave matching lower bounds on the communi-
cation costs for both problems, showing their algorithms are
optimal in the deterministic setting.

Later, Huang et.al. [23] proposed a randomized algorithm
that usesO(1/(ε

√
m)) space at each site andO((

√
m/ε) logN)

total communication and tracks heavy hitters in a distributed
stream. For each item a in the stream a site chooses to send

a message with a probability p =
√
m/(εn̂) where n̂ is a 2-

approximation of the total count. It then sends fe(Aj) the
total count of messages at site j where a = e, to the coor-
dinator. Again an approximation heavy-hitter count f̂e(Aj)
can be used at each site to reduce space.

The ε-heavy hitters can be maintained from a random
sampling of elements of size s = O(1/ε2). This allows one
to use the well studied technique of maintaining a random
sample of size s from a distributed stream [15,42], which can
be done with roughly O((m+ s) log(N/s)) communication.

Other related work. Lastly, our work falls into the gen-
eral problem of tracking a function in distributed streaming
model. Many existing works have studied this general prob-
lem for various specific functions, and we have reviewed the
most related ones on heavy hitters. A detailed survey of
results on other functions (that are much less relevant to
our study) is beyond the scope of this work, and we refer
interested readers to [10,14] and references therein.

Our study is also related to various matrix computations
over distributed matrices, for example, the MadLINQ li-
brary [39]. However, these results focus on one-time compu-
tation over non-streaming data, i.e., in the communication
model [43] as reviewed in Section 1. We refer interested
readers to [39] and references therein for details.

There are also many studies on low-rank approximations
of matrices in centralized, non-streaming setting, e.g., [1,16,
19,30] and others, but these methods are not applicable for
a distributed streaming setting.

3. INSIGHTS, WEIGHTS AND ROUNDS
A key contribution of this paper is strengthening the con-

nection between maintaining approximate weighted frequency
counts and approximately maintaining matrices.

To review, the Misra-Gries (MG) algorithm [33] is a deter-
ministic, associative sketch to approximate frequency counts,
in contrast to, say the popular count-min sketch [13] which
is randomized and hash-based. MG maintains an associative
array of size ` whose keys are elements of e ∈ [u], and values

are estimated frequency f̂e such that 0 ≤ fe − f̂e ≤ n/`.
Upon processing element e ∈ A, three cases can occur. If
e matches a label, it increments the associated counter. If
not, and there is an empty counter, it sets the label of the
counter to e and sets its counter to 1. Otherwise, if no empty
counters, then it decrements (shrinks) all counters by 1.

Liberty [29] made this connection between frequency es-
timates and matrices in a centralized stream through the
singular value decomposition (svd). Our approaches avoid
the svd or use it in a different way. The svd of an n× d ma-
trix A returns (among other things) a set of d singular values
{σ1 ≥ σ2 ≥ . . . ≥ σd} and a corresponding set of orthogonal
right singular vectors {v1, . . . , vd}. It holds that ‖A‖2F =∑d
i=1 σ

2
i and for any x that ‖Ax‖2 =

∑d
i=1 σ

2
i 〈vi, x〉2. The

work of Liberty [29] shows that one can run a version of
the Misra-Gries [33] sketch for frequency counts using the
singular vectors as elements and squared singular values as
the corresponding total weights, recomputing the svd when
performing the shrinkage step.

To see why this works, let us consider the restricted case
where every row of the matrix A is an indicator vector
along the standard orthonormal basis. That is, each row
ai ∈ {e1, . . . , ed}, where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth
standard basis vector. Such a matrix A can encode a stream
S of items from a domain [d]. If the ith element in the stream

3



S is item j ∈ {1, . . . , d}, then the ith row of the matrix A
is set to ai = ej . At time tnow, the frequency fj from S can
be expressed as fj = ‖Aej‖2, since ‖Ax‖2 =

∑n
i=1〈ai, x〉

2

and the dot product is only non-zero in this matrix for rows
which are along ej . A good approximate matrix B would
be one such that gj = ‖Bej‖2 is a good approximation of
fj . Given ‖A‖2F = n (since each row of A is a standard
basis vector), we derive that |fj − gj | ≤ εn is equivalent to
|‖Aej‖2 − ‖Bej‖2| ≤ ε‖A‖2F .

However, general matrices deviate from this simplified ex-
ample in having non-orthonormal rows. Liberty’s FD algo-
rithm [29] demonstrates how taking svd of a general matrix
gets around this deviation and it achieves the same bound
|‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2F for any unit vector x.

Given the above connection, in this paper, first we pro-
pose four novel methods for tracking weighted heavy hitters
in a distributed stream of items (note that tracking weighted
heavy hitters in the distributed streaming model has not been
studied before). Then, we try to extend them to track ma-
trix approximations where elements of the stream are d-
dimensional vectors. Three extensions are successful, in-
cluding one based directly on Liberty’s algorithm, and two
others establishing new connections between weighted fre-
quency estimation and matrix approximation. We also show
why the fourth approach cannot be extended, illustrating
that the newly established connections are not obvious.

Upper bound on weights. As mentioned above, there
are two main challenges in extending ideas from frequent
items estimation to matrix approximation. While, the sec-
ond requires delving into matrix decomposition properties,
the first one is in dealing with weighted elements. We dis-
cuss here some high-level issues and assumptions we make
towards this goal.

In the weighted heavy hitters problem (similarly in ma-
trix approximation problem) each item ai in the stream has
a weight wi (for matrices this weight will be implicit as
‖ai‖2). Let W =

∑n
i=1 wi be the total weight of the prob-

lem. However, allowing arbitrary weights can cause prob-
lems as demonstrated in the following example.

Suppose we want to maintain a 2-approximation of the
total weight (i.e. a value Ŵ such that Ŵ ≤W ≤ 2Ŵ ). If the
weight of each item doubles (i.e. wi = 2i for tuple (ai, wi) ∈
A), every weight needs to be sent to the coordinator. This

follows since W more than doubles with every item, so Ŵ
cannot be valid for more than one step. The same issue
arises in tracking approximate heavy hitters and matrices.

To make these problems well-posed, often researchers [25]
assume weights vary in a finite range, and are then able
to bound communication cost. To this end we assume all
wi ∈ [1, β] for some constant β ≥ 1.

One option for dealing with weights is to just pretend
every item with element e and weight wi is actually a set of
dwie distinct items of element e and weight 1 (the last one
needs to be handled carefully if wi is not an integer). But
this can increase the total communication and/or runtime
of the algorithm by a factor β, and is not desirable.

Our methods take great care to only increase the commu-
nication by a log(βN)/ logN factor compared to similar un-
weighted variants. In unweighted version, each protocol pro-
ceeds in O(logN) rounds (sometimes O( 1

ε
logN) rounds); a

new round starts roughly when the total count n doubles. In
our settings, the rounds will be based on the total weight W ,
and will change roughly when the total weight W doubles.

Since the final weight W ≤ βN , this will causes an increase
to O(logW ) = O(log(βN)) rounds. The actual analysis re-
quires much more subtlety and care than described here, as
we will show in this paper.

4. WEIGHTED HEAVY HITTERS IN A DIS-
TRIBUTED STREAM

The input is a distributed weighted data streamA, which is
a sequence of tuples (a1, w1), (a2, w2), . . . , (an, wn), . . . where
an is an element label and wn is the weight. For any el-
ement e ∈ [u], define Ae = {(ai, wi) | ai = e} and let
We =

∑
(ai,wi)∈Ae

wi. For notational convenience, we some-

times refer to a tuple (ai, wi) ∈ A by just its element ai.
There are numerous important motivating scenarios for

this extension. For example, instead of just monitoring
counts of objects, we can measure a total size associated
with an object, such as total number of bytes sent to an IP
address, as opposed to just a count of packets.

We next describe how to extend four protocols for heavy
hitters to the weighted setting. These are extensions of the
unweighted protocols described in Section 2.

Estimating total weight. An important task is to approx-
imate the current total weight W =

∑n
i=1 wi for all items

across all sites. This is a special case of the heavy hitters
problem where all items are treated as being the same ele-
ment. So if we can show a result to estimate the weight of
any single element using a protocol within εW , then we can
get a global estimate Ŵ such that |W − Ŵ | ≤ εW . All our
subsequent protocols can run a separate process in parallel
to return this estimate if they do not do so already.

Recall that the heavy hitter problem typically calls to
return all elements e ∈ [u] if fe(A)/W ≥ φ, and never if
fe(A)/W < φ−ε. For each protocol we study, the main goal

is to ensure that an estimate Ŵe satisfies |fe(A)−Ŵe| ≤ εW .

We show this, along with the Ŵ bound above, adjusting
constants, is sufficient to estimate weighted heavy hitters.
We return e as a φ-weighted heavy hitter if Ŵe/Ŵ > φ−ε/2.

Lemma 1 If |fe(A) − Ŵe| ≤ (ε/6)W and |W − Ŵ | ≤
(ε/5)W , we return e if and only if it is a valid weighted
heavy hitter.

Proof. We need | Ŵe

Ŵ
− fe(A)

W
| ≤ ε/2. We show the upper

bound, the lower bound argument is symmetric.

Ŵe

Ŵ
≤ fe(A)

Ŵ
+
ε

6

W

Ŵ
≤ fe(A)

W

1

1− ε/5 +
ε

5

1 + ε/5

1− ε/5

≤ fe(A)

W
+
ε

4
+
ε

4
=
fe(A)

W
+
ε

2
.

Given this result, we can focus just on approximating the
frequency fe(A) of all items.

4.1 Weighted Heavy Hitters, Protocol 1
We start with an intuitive approach to the distributed

streaming problem: run a streaming algorithm (for frequency
estimation) on each site, and occasionally send the full sum-
mary on each site to the coordinator. We next formalize
this protocol (P1).

On each site we run the Misha-Gries summary [33] for fre-
quency estimation, modified to handle weights, with 2/ε =
1/ε′ counters. We also keep track of the total weight Wi

of all data seen on that site i since the last communication
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with the coordinator. When Wi reaches a threshold τ , site
i sends all of its summaries (of size only O(m/ε)) to the co-

ordinator. We set τ = (ε/2m)Ŵ , where Ŵ is an estimate of
the total weight across all sites, provided by the coordina-
tor. At this point the site resets its content to empty. This
is summarized in Algorithm 4.1.

The coordinator can merge results from each site into a
single summary without increasing its error bound, due to
the mergeability of such summaries [2]. It broadcasts the up-

dated total weight estimate Ŵ when it increases sufficiently
since the last broadcast. See details in Algorithm 4.2.

Algorithm 4.1 P1: Tracking heavy-hitters (at site Si)

for (an, wn) in round j do
Update Gi ← MGε′(Gi, (an, wn)).
Update total weight on site Wi += wn.
if (Wi ≥ τ = (ε/2m)Ŵ ) then

Send (Gi,Wi) to coordinator; make Gi,Wi empty.

Algorithm 4.2 P1: Tracking heavy-hitters (at C)

On input (Gi,Wi):
Update sketch S ← Mergeε′(S,Gi) and WC += Wi.

if (WC/Ŵ > 1 + ε/2) then

Update Ŵ ←WC , and broadcast Ŵ to all sites.

Lemma 2 (P1) Algorithms 4.1 and 4.2 maintain that for
any item e ∈ [u] that |fe(S) − fe(A)| ≤ εWA. The total
communication cost is O((m/ε2) log(βN)) elements.

Proof. For any item e ∈ [u], the coordinator’s summary
S has error coming from two sources. First is the error as
a result of merging all summaries sent by each site. By
running these with an error parameter ε′ = ε/2, we can
guarantee [2] that this leads to at most ε′WC ≤ εWA/2,
where WC is the weight represented by all summaries sent
to the coordinator, hence less than the total weight WA.

The second source is all elements on the sites not yet sent
to the coordinator. Since we guarantee that each site has
total weight at most τ = (ε/2m)Ŵ ≤ (ε/2m)W , then that
is also an upper bound on the weight of any element on each
site. Summing over all sites, we have that the total weight
of any element not communicated to the coordinator is at
most m · (ε/2m)W = (ε/2)W .

Combining these two sources of error implies the total er-
ror on each element’s count is always at most εW , as desired.

The total communication bound can be seen as follows.
Each message takes O(1/ε) space. The coordinator sends
out a message to all m sites every (at most) m updates it
sees from the coordinators; call this period an epoch. Thus
each epoch uses O(m/ε) communication. In each epoch,

the size of WC (and hence Ŵ ) increases by an additive m ·
(ε/2m)Ŵ ≥ (ε/4)WA, which is at least a relative factor
(1 + ε/4). Thus starting from a weight of 1, there are k
epochs until 1·(1+ε/4)k ≥ βN , and thus k = O( 1

ε
log(βN)).

So after all k epochs the total communication is at most
O((m/ε2) log(βN)).

4.2 Weighted Heavy-Hitters Protocol 2
Next we observe that we can significantly improve the

communication cost of protocol P1 (above) using an obser-
vation, based on an unweighted frequency estimation proto-
col by Yi and Zhang [44]. Algorithms 4.3 and 4.4 summarize
this protocol.

Each site takes an approach similar to Algorithm 4.1, ex-
cept that when the weight threshold is reached, it does not
send the entire summary it has, but only the weight at the
site. It still needs to report heavy elements, so it also sends
e whenever any element e’s weight has increased by more
than (ε/m)Ŵ since the last time information was sent for
e. Note here it only sends that element, not all elements.

After the coordinator has received m messages, then the
total weight constraint must have been violated. Since W ≤
βN , at most O(log(1+ε)(βN)) = O((1/ε) log(βN)) rounds
are possible, and each round requires O(m) total weight
messages. It is a little trickier (but not too hard) to see
it requires only a total of O((m/ε) log(βN)) element mes-
sages, as follows from the next lemma; it is in general not
true that there are O(m) such messages in one round.

Algorithm 4.3 P2: Tracking heavy-hitters (at site Si)

for each item (an, wn) do
Wi += wn and ∆an += wn.

if (Wi ≥ (ε/m)Ŵ ) then
Send (total,Wi) to C and reset Wi = 0.

if (∆an ≥ (ε/m)Ŵ ) then
Send (an,∆an) to C and reset ∆an = 0.

Algorithm 4.4 P2: Tracking heavy-hitters (at C)

On message (total,Wi):

Set Ŵ += Wi and #msg += 1.
if (#msg ≥ m) then

Set #msg = 0 and broadcast Ŵ to all sites.
On message (an,∆n): set Ŵan += ∆an .

Lemma 3 After r rounds, at most O(m · r) element update
messages have been sent.

Proof. We prove this inductively. Each round gets a
budget of m messages, but only uses ti messages in round
i. We maintain a value Tr = r · m −

∑r
i=1 ti. We show

inductively that Tr ≥ 0 at all times.
The base case is clear, since there are at most m messages

in round 1, so t1 ≤ m, thus T1 = m − t1 ≥ 0. Then since
it takes less than 1 message in round i to account for the
weight of a message in a round i′ < i. Thus, if

∑r−1
i=1 ti = nr,

so kr = (r−1)m−nr, then if round i had more than m+kr
messages, the coordinator would have weight larger than
having m messages from each round, and it would have at
some earlier point ended round r. Thus this cannot happen,
and the inductive case is proved.

The error bounds follow directly from the unweighted case
from [44], and is similar to that for (P1). We can thus state
the following theorem.

Theorem 1 Protocol 2 (P2) sends O(m
ε

log(βN)) total mes-
sages, and approximates all frequencies within εW .

One can use the space-saving algorithm [32] to reduce the
space on each site to O(m/ε), and the space on the coordi-
nator to O(1/ε).

4.3 Weighted Heavy-Hitters Protocol 3
The next protocol, labeled (P3), simply samples elements

to send to the coordinator, proportional to their weight.
Specifically we combine ideas from priority sampling [18]
for without replacement weighted sampling, and distributed
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sampling on unweighted elements [15]. In total we main-
tain a random sample S of size at least s = O( 1

ε2
log 1

ε
)

on the coordinator, where the elements are chosen propor-
tional to their weights, unless the weights are large enough
(say greater than W/s), in which case they are always cho-
sen. By deterministically sending all large enough weighted
elements, not only do we reduce the variance of the ap-
proach, but it also means the protocol naturally sends the
full dataset if the desired sample size s is large enough, such
as at the beginning of the stream. Algorithm 4.5 and Algo-
rithm 4.6 summarize the protocol.

We denote total weight of sample by WS . On receiving
a pair (an, wn), a site generates a random number rn ∈
Unif(0, 1) and assigns a priority ρn = wn/rn to an. Then
the site sends triple (an, wn, ρn) to the coordinator if ρn ≥ τ ,
where τ is a global threshold provided by the coordinator.

Initially τ is 1, so sites simply send any items they receive
to the coordinator. At the beginning of further rounds, the
coordinator doubles τ and broadcasts it to all sites. There-
fore at round j, τ = τj = 2j . In any round j, the coordinator
maintains two priority queues Qj and Qj+1. On receiving a
new tuple (an, wn, ρn) sent by a site, the coordinator places
it into Qj+1 if ρn ≥ 2τ , otherwise it places an into Qj .

Once |Qj+1| = s, the round ends. At this time, the co-
ordinator doubles τ as τ = τj+1 = 2τj and broadcasts it
to all sites. Then it discards Qj and examines each item
(an, wn, ρn) in Qj+1, if ρn ≥ 2τ , it goes into Qj+2, other-
wise it remains in Qj+1.

Algorithm 4.5 P3: Tracking heavy-hitters (at site Si)

for (an, wn) in round j do
choose rn ∈ Unif(0, 1) and set ρn = wn/rn.
if ρn ≥ τ then send (an, wn, ρn) to C.

Algorithm 4.6 P3: Tracking heavy-hitters (at C)

On input of (an, wn, ρn) from any site in round j:
if ρ > 2τj then put an in Qj+1,

else put an in Qj .
if |Qj+1| ≥ s then

Set τj+1 = 2τj ; broadcast τj+1 to all sites.
for (an, wn, ρn) ∈ Qj+1 do

if ρn > 2τj+1, put an in Qj+2.

At any time, a sample of size exactly s can be derived by
subsampling from Qj ∪ Qj+1. But it is preferable to use a
larger sample S = Qj ∪Qj+1 to estimate properties of A, so
we always use this full sample.

Communication analysis. The number of messages sent
to the coordinator in each round is O(s) with high probabil-
ity. To see that, consider an arbitrary round j. Any item an
being sent to coordinator at this round, has ρn ≥ τ . This
item will be added to Qj+1 with probability

Pr(ρn ≥ 2τ | ρn ≥ τ) =
Pr(ρn ≥ 2τ)

Pr(ρn ≥ τ)
=

Pr(rn ≤ wn
2τ

)

Pr(rn ≤ wn
τ

)

=
min(1, wn

2τ
)

min(1, wn
τ

)
≥ 1

2
.

Thus sending 4s items to coordinator, the expected num-
ber of items in Qj+1 would be greater than or equal to
2s. Using a Chernoff-Hoeffding bound Pr(2s − |Qj+1| >
s) ≤ exp(−2s2/4s) = exp(−s/2). So if in each round 4s
items are sent to coordinator, with high probability (at least

1 − exp(−s/2)), there would be s elements in Qj+1. Hence
each round has O(s) items sent with high probability.

The next lemma, whose proof is in the appendix section
of the full version of our paper [22], bounds the number of
rounds. Intuitively, each round requires the total weight
of the stream to double, starting at weight s, and this can
happen O(log(βN/s)) times.

Lemma 4 The number of rounds is at most O(log(βN/s))

with probability at least 1− e−Ω(s).

Since with probability at least 1 − e−Ω(s), in each round
the coordinator receives O(s) messages from all sites and
broadcasts the threshold to all m sites, we can then combine
with Lemma 4 to bound the total messages.

Lemma 5 This protocol sends O((m+ s) log βN
s

) messages

with probability at least 1− e−Ω(s). We set s = Θ( 1
ε2

log 1
ε
).

Note that each site only requires O(1) space to store the
threshold, and the coordinator only requires O(s) space.

Creating estimates. To estimate fe(A) at the coordina-
tor, we use a set S′ = Qj∪Qj+1 which is of size |S′| = s′ > s.
Let ρ̂ be the priority of the smallest priority element in S′.
Let S be all elements in S′ except for this single smallest
priority element. For each of the s′− 1 elements in S assign
them a weight w̄i = max(wi, ρ̂), and we set WS =

∑
ai∈S w̄i.

Then via known priority sampling results [18,41], it follows
that E[WS ] = WA and that (1 − ε)WA ≤ WS ≤ (1 + ε)WA

with large probability (say with probability 1− ε2, based on
variance bound Var[WS ] ≤ W 2

A/(s
′ − 2) [41] and a Cheby-

shev bound). Define Se = {an ∈ S | an = e} and fe(S) =∑
an∈Se

w̄n.

The following lemma, whose proof is in the appendix, of
the full version [22], shows that the sample maintained at
the coordinator gives a good estimate on item frequencies.
At a high-level, we use a special Chernoff-Hoeffding bound
for negatively correlated random variables [36] (since the
samples are without replacement), and then only need to
consider the points selected that have small weights, and
thus have values in {0, ρ̂}.

Lemma 6 With s = Θ((1/ε2) log(1/ε)), the coordinator
can use the estimate from the sample S such that, with large
probability, for each item e ∈ [u], |fe(S)− fe(A)| ≤ εWA.

Theorem 2 Protocol 3 (P3) sends O((m+ s) log βN
s

) mes-
sages with large probability; It gets a set S of size s =
Θ( 1

ε2
log 1

ε
) so that |fe(S)− fe(A)| ≤ εW .

4.3.1 Sampling With Replacement
We can show similar results on s samples with replace-

ment, using s independent samplers. In round j, for each
element (an, wn) arriving at a local site, the site generates
s independent rn values, and thus s priorities ρn. If any of
them is larger than τj , then the site forwards it to coordi-
nator, along with the index (or indices) of success.

For each of s independent samplers, say for sampler t ∈ [s],

the coordinator maintains the top 2 priorities ρ
(1)
t and ρ

(2)
t ,

ρ
(1)
t > ρ

(2)
t , among all it received. It also keeps the element

information at associated with ρ(1). For the sampler i ∈ [s],

the coordinator keeps a weight w̄i = ρ
(2)
i . One can show

that E[w̄i] = W , the total weight of the entire stream [18].

We improve the global estimate as Ŵ = (1/s)
∑s
i=1 w̄i, and
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then assign each element ai the same weight ŵi = Ŵ/s.
Now E[

∑s
i=1 ŵi] = W , and each ai is an independent sample

(with replacement) chosen proportional to its weight. Then
setting s = O((1/ε2) log(1/ε)) it is known that these samples
can be used to estimate all heavy hitters within εW with
probability at least 1− e−Ω(s).

The jth round terminates when the ρ
(2)
i for all i is larger

than 2τj . At this point, coordinator sets τj+1 = 2τj , informs
all sites of the new threshold and begins the (j+1)th round.

Communication analysis. Since this protocol is an adap-
tation of existing results [15], its communication is O((m+
s log s) log(βN) = O((m+ 1

ε2
log2 1

ε
) log(βN)) messages. This

result doesn’t improve the error bounds or communication
bounds with respect to the without replacement sampler de-
scribed above, as is confirmed in Section 6. Also in terms
of running time (without parallelism at each site), sampling
without replacement will be better.

4.4 Weighted Heavy-Hitters Protocol 4
This protocol is inspired by the unweighted case from

Huang et.al. [23]. Each site maintains an estimate of the

total weight Ŵ that is provided by the coordinator and al-
ways satisfies Ŵ ≤ W ≤ 2Ŵ , with high probability. It
then sets a probability p = 2

√
m/(εŴ ). Now given a new

element (a,w) with some probability p̄, it sends to the co-
ordinator (e, w̄e,j = fe(Aj)) for a = e ∈ [u]; this is the total
weight of all items in its stream that equal element e. Fi-
nally the coordinator needs to adjust each w̄e,j by adding
1/p−1 (for elements that have been witnessed) since that is
the expected number of items with element e in the stream
until the next update for e.

If w is an integer, then one option is to pretend it is ac-
tually w distinct elements with weight 1. For each of the
w elements we create a random variable Zi that is 1 with
probability p and 0 otherwise. If any Zi = 1, then we send
fe(Aj). However this is inefficient (say if w = β = 1000),
and only works with integer weights.

Instead we notice that at least one Zi is 1 if none are
0, with probability 1 − (1 − p)w ≈ 1 − e−pw. So in the
integer case, we can set p̄ = 1− (1− p)w, and then since we
send a more accurate estimate of fe (as it essentially comes
later in the stream) we can directly apply the analysis from
Huang et.al. [23]. To deal with non integer weights, we set
p̄ = 1− e−pw, and describe the approach formally on a site
in Algorithm 4.7.

Notice that the probability of sending an item is asymp-
totically the same in the case that w = 1, and it is smaller
otherwise (since we send at most one update w̄e,j per batch).
Hence the communication bound is asymptotically the same,
except for the number of rounds. Since the weight is broad-
cast to the sites from the coordinator whenever it doubles,
and now the total weight can be βN instead of N , the num-
ber of rounds is O(log(βN)) and the total communication is
O((
√
m/ε) log(βN)) with high probability.

Algorithm 4.7 P4: Tracking of heavy-hitters (at site Sj)

Given weight Ŵ from C, set p = 2
√
m/(εŴ ).

for each item (a,w) it receives do
For a = e update fe(Aj) := fe(Aj) + w.
Set p̄ = 1− e−pw.
With probability p̄ send w̄e,j = fe(Aj) to C.

When the coordinator is sent an estimate w̄e,j of the total
weight of element e at site j, it needs to update this estimate
slightly as in Huang et.al., so that it has the right expected
value. It sets ŵe,j = w̄e,j+1/p, where again p = 2

√
m/(εŴ );

ŵe,j = 0 if no such messages are sent. The coordinator then

estimates each fe(A) as Ŵe =
∑m
j=1 ŵe.

We first provide intuition how the analysis works, if we
used p̄ = 1− (1− p)w (i.e. ≈ 1− e−pw) and w is an integer.
In this case, we can consider simulating the process with
w items of weight 1; then it is identical to the unweighted
algorithm, except we always send w̄e,j at then end of the
batch of w items. This means the expected number until
the next update is still 1/p−1, and the variance of 1/p2 and
error bounds of Huang et.al. [23] still hold.

Lemma 7 The above protocol guarantees that |fe(A)−Ŵe| ≤
εW on the coordinator, with probability at least 0.75.

Proof. Consider a value of k large enough so that w ·10k

is always an integer (i.e., the precision of w in a system is at
most k digits past decimal point). Then we can hypotheti-
cally simulate the unweighted case using wk = w ·10k points.
Since now Ŵ represents 10k times as many unweighted el-
ements, we have pk = p/10k =

√
m/(εŴ10k). This means

the probability we send an update should be 1− (1− pk)wk

in this setting.
Now use that for any x that limn→∞(1− x

n
)n = e−x. Thus

setting n = wk and x = pk · wk = (p/10k)(w10k) = pw we
have limk→∞ 1− (1− pk)wk = 1− e−pw.

Next we need to see how this simulated process affects
the error on the coordinator. Using results from Huang
et.al. [23], where they send an estimate w̄e,j , the expected
value E[w̄e,j ] = fe(Aj) − 1/p + 1 at any point afterwards
where that was the last update. This estimates the count
of weight 1 objects, so in the case where they are weight
10−k objects the estimate of fe(Aj)

(k) = fe(Aj)10k is using

w̄
(k)
e,j = w̄e,j10k. Then, in the limiting case (as k → ∞), we

adjust the weights as follows.

E[w̄e,j ] = E[w̄
(k)
e,j ]10−k = (fe(Aj)

(k) − 1/pk + 1) · 10−k

= (fe(Aj)10k − 10k

p
+ 1)10−k = fe(Aj)−

1

p
+ 10−k,

so as limk→∞ E[w̄e,j ] = fe(Aj)− 1/p. So our procedure has
the right expected value. Furthermore, it also follows that
the variance is still 1/p2, and thus the error bound from [23]

that any |fe(A) − Ŵe| ≤ εW with probability at least 0.75
still holds.

Theorem 3 Protocol 4 (P4) sends O(
√
m
ε

log(βN)) total

messages and with probability 0.75 has |fe(A)− Ŵe| ≤ εW .

The bound can be made to hold with probability 1− δ by
running log(2/δ) copies and taking the median. The space
on each site can be reduced to O(1/ε) by using a weighted
variant of the space-saving algorithm [32]; the space on the
coordinator can be made O(m/ε) by just keeping weights

for which w̄i,e ≥ 2εŴj , where Ŵj is a 2-approximation of
the weight on site j.

5. DISTRIBUTED MATRIX TRACKING
We will next extend weighted frequent item estimation

protocols to solve the problem of tracking an approximation
to a distributed matrix. Each element an of a stream for
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any site is now a row of the matrix. As we will show soon in
our analysis, it will be convenient to associate a weight with
each element defined as the squared norm of the row, i.e.,
wn = ‖an‖2. Hence, for reasons outlined in Section 3, we
assume in our analysis that the squared norm of every row
is bounded by a value β. There is a designated coordinator
C who has a two-way communication channel with each site
and whose job is to maintain a much smaller matrix B as an
approximation to A such that for any unit vector x ∈ Rd×1

(with ‖x‖ = 1) we can ensure that:

|‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2F .

Note that the covariance of A is captured as ATA (where T

represents a matrix transpose), and that the above expres-
sion is equivalent to

‖ATA−BTB‖2 ≤ ε‖A‖2F .

Thus, the approximation guarantee we preserve shows that
the covariance of A is well-approximated by B. And the co-
variance is the critical property of a matrix that needs to be
(approximately) preserved as the basis for most downstream
data analysis; e.g., for PCA or LSI.

Our measures of complexity will be the communication
cost and the space used at each site to process the stream.
We measure communication in terms of the number of mes-
sages, where each message is a row of length d, the same
as the input stream. Clearly, the space and computational
cost at each site and coordinator is also important, but since
we show that all proposed protocols can be run as stream-
ing algorithms at each site, and will thus not be space or
computation intensive.

Overview of protocols. The protocols for matrix track-
ing mirror those of weighted item frequency tracking. This
starts with a similar batched streaming baseline P1. Proto-
col P2 again reduces the total communication bound, where
a global threshold is given for each “direction” instead of
the total squared Frobenious norm. Both P1 and P2 are
deterministic. Then matrix tracking protocol P3 randomly
selects rows with probability proportional to their squared
norm and maintains an ε-sample at the coordinator. Using
this sample set, we can derive a good approximation.

Given the success of protocols P1, P2, and P3, it is tempt-
ing to also extend protocol P4 for item frequency tracking
in Section 4.4 to distributed matrix tracking. However, un-
like the other protocols, we can show that the approach
described in Algorithm 4.7 cannot be extended to matri-
ces in any straightforward way while still maintaining the
same communication advantages it has (in theory) for the
weighted heavy-hitters case. Due to lack of space, we defer
this explanation, and the related experimental results to the
appendix section of the full version [22].

5.1 Distributed Matrix Tracking Protocol 1
We again begin with a batched version of a streaming

algorithm, shown as Algorithm 5.1 and 5.2. That is we run
a streaming algorithm (e.g. Frequent Directions [29], labeled
FD, with error ε′ = ε/2) on each site, and periodically send
the contents of the memory to the coordinator. Again this is
triggered when the total weight (in this case squared norm)
has increased by (ε/2m)W .

As with the similar frequency tracking algorithm, based
on Frequent Directions [29] satisfying the mergeable prop-
erty [2], we can show this maintains at most ε‖A‖2F total

Algorithm 5.1 P1: Deterministic Matrix Tracking (at Si)

for (an, wn) in round j do
Update Bi ← FDε′(Bi, an); and Fi += ‖an‖2.

if (Fi ≥ τ = (ε/2m)F̂ ) then
Send (Bi, Fi) to coordinator; make Bi, Fi empty.

Algorithm 5.2 P1: Deterministic Matrix Tracking (at C)

On input (Bi, Fi):
Update sketch B ← Mergeε′(B,Bi) and FC += Fi.

if (FC/F̂ > 1 + ε/2) then

Update F̂ ← FC , and broadcast F̂ to all sites.

error at all times, and requires a total of O((m/ε2) log(βN))
total rows of communication.

5.2 Distributed Matrix Tracking Protocol 2
Again, this protocol is based very closely on a weighted

heavy-hitters protocol, this time the one from Section 4.2.
Each site Sj maintains a matrix Bj of the rows seen so

far at this site and not sent to coordinator. In addition, it
maintains F̂ , an estimate of ‖A‖2F , and Fj = ‖Bj‖2F , denot-
ing the total squared Frobenius norm received since its last
communication to C about F̂ . The coordinator C maintains
a matrix B approximating A, and F̂ , an ε-approximation of
‖A‖2F .

Initially each F̂ is set to zero for all sites. When site j
receives a new row, it calls Algorithm 5.3, which basically
sends ‖Bjx‖2 in direction x when it is greater than some
threshold provided by the coordinator, if one exists.

Algorithm 5.3 P2: Deterministic Matrix Tracking (at Sj)

Fj += ‖ai‖2

if (Fj ≥ ε
m
F̂ ) then

Send Fj to coordinator; set Fj = 0.
Set Bj ← [Bj ; ai]
[U,Σ, V ] = svd(Bj)

for ((v`, σ`) such that σ2
` ≥ ε

m
F̂ ) do

Send σ`v` to coordinator; set σ` = 0.
Bj = UΣV T

On the coordinator side, it either receives a vector form
message σv, or a scalar message Fj . For a scalar Fj , it adds

it to F̂ . After at most m such scalar messages, it broadcasts
F̂ to all sites. For vector message r = σv, the coordinator
updates B by appending r to B ← [B; r]. The coordinator’s
protocol is summarized in Algorithm 5.4.

Lemma 8 At all times the coordinator maintains B such
that for any unit vector x

‖Ax‖2 − ε‖A‖2F ≤ ‖Bx‖2 ≤ ‖Ax‖2 (1)

Proof. To prove this, we also need to show it maintains
another property on the total squared Frobenious norm:

(1− 2ε)‖A‖2F < F̂ ≤ ‖A‖2F . (2)

This follows from the analysis in Section 4.2 since the squared
Frobenius norm is additive, just like weights. The following
analysis for the full lemma is also similar, but requires more
care in dealing with matrices. First, for any x we have

‖Ax‖2 = ‖Bx‖2 +

m∑
j=1

‖Bjx‖2.
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Algorithm 5.4 P2: Deterministic Matrix Tracking (at C)

On a scalar message Fj from site Sj
Set F̂ += Fj and #msg += 1.
if (#msg ≥ m) then

Set #msg = 0 and broadcast F̂ to all sites.
On a vector message r = σv: append B ← [B; r]

This follows since ‖Ax‖2 =
∑n
i=1〈ai, x〉

2, so if nothing is
sent to the coordinator, the sum can be decomposed like
this with B empty. We just need to show the sum is pre-
served when a message r = σ1v1 is sent. Because of the
orthogonal decomposition of Bj by the svd(Bj) = [U,Σ, V ],

then ‖Bjx‖2 =
∑d
`=1〈σ`v`, x〉

2. Thus if we send any σ`v` to
the coordinator, append it to B, and remove it from Bj , the
sum is also preserved. Thus, since the norm on B is always
less than on A, the right side of (1) is proven.

To see the left side of (1) we need to use (2), and show
that not too much mass remains on the sites. First we bound
‖Bjx‖2.

‖Bjx‖2 =

d∑
`=1

σ2
` 〈v`, x〉2 ≤

d∑
`=1

ε

m
F̂ 〈v`, x〉2 =

ε

m
F̂ ≤ ε

m
‖A‖2F .

And thus
∑m
j=1 ‖Bjx‖

2 ≤ m ε
m
‖A‖2F = ε‖A‖2F and hence

‖Ax‖2 ≤ ‖Bx‖2 +

m∑
j=1

‖Bjx‖2 ≤ ‖Bx‖2 + ε‖A‖2F .

The communication bound follows directly from the anal-
ysis of the weighted heavy hitters since the protocols for
sending messages and starting new rounds are identical with
‖A‖2F in place of W , and with the squared norm change
along the largest direction (the top right singular value) re-
placing the weight change for a single element. Thus the
total communication is O(m

ε
log(βN)).

Theorem 4 For a distributed matrix A whose squared norm
of rows are bounded by β and for any 0 ≤ ε ≤ 1, the
above protocol (P2) continuously maintains Â such that 0 ≤
‖Ax‖2 −‖Bx‖2 ≤ ε‖A‖2F and incurs a total communication
cost of O((m/ε) log(βN)) messages.

Bounding space at sites. It is possible to also run a
small space streaming algorithm on each site j, and also
maintain the same guarantees. The Frequent Directions al-
gorithm [29], presented a stream of rows ai forming a ma-

trix A, maintains a matrix Ã using O(1/ε′) rows such that

0 ≤ ‖Ax‖2 − ‖Ãx‖2 ≤ ε′‖A‖2F for any unit vector x.
In our setting we run this on two matrices on each site

with ε′ = ε/4m. (It can actually just be run on Bj , but
then the proof is much less self-contained.) It is run on
Aj , the full matrix. Then instead of maintaining Bj that
is Aj after subtracting all rows sent to the coordinator, we
maintain a second matrix Sj that contains all rows sent to
the coordinator; it appends them one by one, just as in a
stream. Now ‖Bjx‖2 = ‖Ajx‖2−‖Sjx‖2. Thus if we replace

both Aj with Ãj and Sj with S̃j , then we have

‖Bjx‖2 = ‖Ajx‖2−‖Sjx‖2 ≤ ‖Ãjx‖2−‖S̃jx‖2 +
ε

4m
‖Aj‖2F ,

and similarly ‖Bjx‖2 ≥ ‖Ãjx‖2−‖S̃jx‖2− ε
4m
‖Aj‖2F (since

‖Sj‖2F ≤ ‖Aj‖2F ). From here we will abuse notation and

write ‖B̃jx‖2 to represent ‖Ãjx‖2 − ‖S̃jx‖2.

Now we send the top singular vectors v` of B̃j to the

coordinator only if ‖B̃jv`‖2 ≥ 3ε
4m
F̂ . Using our derivation,

thus we only send a message if ‖Bjv`‖2 ≥ ε
2m
‖A‖2F , so it

only sends at most twice as many as the original algorithm.
Also if ‖Bjv`‖2 > ε

m
‖A‖2F we always send a message, so we

do not violate the requirements of the error bound.
The space requirement per site is then O(1/ε′) = O(m/ε)

rows. This also means, as with Frequent Directions [29], we
can run Algorithm 5.3 in batch mode, and only call the svd
operation once every O(1/ε′) rows.

It is straightforward to see the coordinator can also use
Frequent Directions to maintain an approximate sketch, and
only keep O(1/ε) rows.

5.3 Distributed Matrix Tracking Protocol 3
Our next approach is very similar to that discussed in

Section 4.3. On each site we run Algorithm 4.5, the only
difference is that for an incoming row ai, it treats it as an
element (ai, wi = ‖ai‖2). The coordinator’s communication
pattern is also the same as Algorithm 4.6, the only difference
is how it interprets the data it receives.

As such, the communication bound follows directly from
Section 4.3; we need O((m+(1/ε2) log(1/ε)) log(βNε)) mes-
sages, and we obtain a set S of at least s = Θ((1/ε)2 log(1/ε))
rows chosen proportional to their squared norms; however
if the squared norm is large enough, then it is in the set
S deterministically. To simplify notation we will say that
there are exactly s rows in S.

Estimation by coordinator. The coordinator “stacks”
the set of rows {a1, . . . , as} to create an estimateB = [a1; . . . ; as].
We will show that for any unit vector x that |‖Ax‖2 −
‖Bx‖2| ≤ ε‖A‖2F .

If we had instead used the weighted sampling with replace-
ment protocol from Section 4.3.1, and retrieved s = O(1/ε2)
rows of A onto the coordinator (sampled proportionally to
‖ai‖2 and then rescaled to have the same weight), we could
immediately show the desired bound was achieved using
know results on column sampling [17]. However, as is the
case with weighted heavy-hitters, we can achieve the same
error bound for without replacement sampling in our proto-
col, and this uses less communication and running time.

Recall for rows ai such that ‖ai‖2 ≥ ρ̂, (for a priority
ρ̂ < 2τ) it keeps them as is; for other rows, it rescales them so
their squared norm is ρ̂. And ρ̂ is defined so that E[‖B‖2F ] =
‖A‖2F , thus ρ̂ ≤W/s.

Theorem 5 Protocol 3 (P3) uses O((m+s) log(βN/s)) mes-
sages of communication, with s = Θ((1/ε2) log(1/ε)), and
for any unit vector x we have |‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2F ,
with probability at least 1− 1/s.

Proof. The error bound roughly follows that of Lemma
6. We apply the same negatively correlated Chernoff-Hoeffding
bound but instead define random variable Xi,x = 〈ai, x〉2.
Thus Mx =

∑s
i=1 Xi,x = ‖Bx‖2. Again ∆ = ρ̂ (since ele-

ments with ‖ai‖2 > ρ̂ are not random) and E[Mx] = ‖Ax‖2.
It again follows that

Pr[|‖Bx‖2 − ‖Ax‖2| ≤ ε‖A‖2F /2] ≤ exp(−ε2s/32) ≤ δ.

Setting δ = Ω(1/s) yields that when s = Θ((1/ε2) log(1/ε))
this holds with probability at least 1 − δ = 1 − 1/s = 1 −
1/Θ((1/ε)2 log(1/ε)), for any unit vector x.

We need O(1) space per site and O(s) space on coordinator.
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6. EXPERIMENTS
Datasets. For tracking the distributed weighted heavy hit-
ters, we generated data from Zipfian distribution, and set
the skew parameter to 2 in order to get meaningful dis-
tributions that produce some heavy hitters per run. The
generated dataset contained 107 points, in order to assign
them weights we fixed the upper bound (default β = 1, 000)
and assigned each point a uniform random weight in range
[1, β]. Weights are not necessarily integers.

For the distributed matrix tracking problem, we used two
large real datasets “PAMAP” and “YearPredictionMSD”,
from the machine learning repository of UCI.

PAMAP is a Physical Activity Monitoring dataset and
contains data of 18 different physical activities (such as walk-
ing, cycling, playing soccer, etc.), performed by 9 subjects
wearing 3 inertial measurement units and a heart rate mon-
itor. The dataset contains 54 columns including a times-
tamp, an activity label (the ground truth) and 52 attributes
of raw sensory data. In our experiments, we used a sub-
set with N = 629, 250 rows and d = 44 columns (removing
columns containing missing values), giving a N × d matrix
(when running to the end). This matrix is low-rank.

YearPredictionMSD is a subset from the “Million Songs
Dataset” [6] and contains the prediction of the release year
of songs from their audio features. It has over 500,000 rows
and d = 90 columns. We used a subset with N = 300, 000
rows, representing a N × d matrix (when running to the
end). This matrix has high rank.

Metrics. The efficiency and accuracy of the weighted heavy
hitters protocols are controlled with input parameter ε spec-
ifying desired error tolerance. We compare them on:

• Recall: The number of true heavy hitters returned by a
protocol over the correct number of true heavy hitters.

• Precision: The number of true heavy hitters returned
by a protocol over the total number of heavy hitters
returned by the protocol.

• err: Average relative error of the frequencies of the
true heavy hitters returned by a protocol.

• msg: Number of messages sent during a protocol.

For matrix approximation protocols, we used:

• err: Defined as ‖ATA−BTB‖2/‖A‖2F , where A is the
input matrix and B is the constructed low rank ap-
proximation to A. It is equivalent to the following:
max{x, ‖x‖=1}(‖Ax‖2 − ‖Bx‖2)/‖A‖2F .

• msg: Number of messages (scalar-form and vector-
form) sent during a protocol.

We observed that both the approximation errors and com-
munication costs of all methods are very stable with respect
to query time, by executing estimations at the coordinator
at randomly selected time instances. Hence, we only report
the average err from queries in the very end of the stream
(i.e., results of our methods on really large streams).

6.1 Distributed Weighted Heavy Hitters
We denote four protocols for tracking distributed weighted

heavy hitters as P1, P2, P3 and P4 respectively. As a base-
line, we could send all 107 stream elements to the coor-
dinator, this would have no error. All of our heavy hit-
ters protocols return an element e as heavy hitter only if
Ŵe/Ŵ ≥ φ − ε/2 while the exact weighted heavy hitter
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Figure 1: Results for distributed weighted heavy
hitters protocols on Zipfian distribution with
skew=2.

method which our protocols are compared against, returns
e as heavy hitter if fe(A)/W ≥ φ.

We set the heavy-hitter threshold φ to 0.05 and we varied
error guarantee ε in the range {5 × 10−4, 10−3, 5 × 10−3,
10−2, 5 × 10−2}. When the plots do not vary ε, we use the
default value of ε = 10−3. Also we varied number of sites
(m) from 10 to 100, otherwise we have as default m = 50.

All four algorithms prove to be highly effective in esti-
mating weighted heavy hitters accurately, as shown in recall
(Figure 1(a)) and precision (Figure 1(b)) plots. In particu-
lar, the recall values for all algorithms are constant 1.0.

Note that precision values dip, but this is because the true
heavy hitters have fe(A)/W above φ where our algorithms

only return a value if Ŵe/Ŵ ≥ φ−ε/2, so they return more
false positives as ε increases. For ε smaller than 0.01, all
protocols have a precision of 1.0.

When measuring (the measured) err as seen in Figure 1(c),
our protocols consistently outperform the error parameter ε.
The only exception is P4, which has slightly larger error than
predicted for very small ε; recall this algorithm is random-
ized and has a constant probability of failure. P1 has almost
no error for ε = 0.01 and below; this can be explained by
improved analysis for Misra-Gries [5] on skewed data, which
applies to our Zipfian data. Protocols P2 and P3 also greatly
underperform their guaranteed error.

The protocols are quite communication efficient, saving
several orders of magnitude in communication as shown in
Figure 1(d). For instance, all protocols use roughly 105 mes-
sages at ε = 0.01 out of 107 total stream elements. To
further understand different protocols, we tried to compare
them by making them using (roughly) the same number of
messages. This is achieved by using different ε values. As
shown in Figure 1(e); all protocols achieved excellent ap-
proximation quality, and the measured error drops quickly
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DataSet PAMAP, k = 30 MSD, k = 50
Method err msg err msg

P1 7.5859e-06 628537 0.0057 300195
P2 0.0265 10178 0.0695 6362

P3wor 0.0057 3962 0.0189 3181
P3wr 0.0323 25555 0.0255 22964
FD 2.1207e-004 629250 0.0976 300000
SVD 1.9552e-006 629250 0.0057 300000

Table 1: Raw numbers of PAMAP and MSD.

as we allocate more budget for the number of messages. In
particular, P2 is the best if fewer than 105 messages are
acceptable with P3 also shown to be quite effective. P1 per-
forms best if 106 messages are acceptable.

In another experiment, we tuned all protocols to obtain
(roughly) the same measured error of err = 0.1 to compare
their communication cost versus the upper bound on the
element weights (β). Figure 1(f) shows that they are all
robust to the parameter β; P2 or P3 performs the best.

6.2 Distributed Matrix Tracking
The strong results for distributed weighted heavy hitter

protocols transfer over empirically to the results for dis-
tributed matrix tracking, but with slightly different trade-
offs. Again, we denote our three protocols by P1, P2, and P3
in all plots. As a baseline, we consider two algorithms: they
both send all data to the coordinator. One calls Frequent-
Directions (FD) [29], and second calls SVD which is op-
timal but not streaming. In all remaining experiments,
we have used default value ε = 0.1 and m = 50, unless
specified. Otherwise ε varied in range {5 × 10−3, 10−2, 5 ×
10−2, 10−1, 5× 10−1}, and m varied in range [10, 100].

Table 1 compares all algorithms, including SVD and FD
to compute rank k approximations of the matrices, with
k = 30 and k = 50 on PAMAP and MSD respectively. Since
err values for the two offline algorithms are minuscule for
PAMAP, it indicates it is a low rank matrix (less than 30),
where as MSD is high rank, since error remains, even with
the best rank 50 approximation from the SVD method.

Note that P3wor and P3wr refer to Protocol 3, with-
out replacement and with replacement sampling strategies,
respectively. As predicted by the theoretical analysis, we
see that P3wor outperforms P3wr in both settings, always
having much less error and many fewer messages. Moreover,
P3wor will gracefully shift to sending all data deterministi-
cally with no error as ε becomes very small. Hence we only
use P3wor elsewhere, labeled as just P3.

Also note that P1 in the matrix scenario is far less effec-
tive; although it achieves very small error, it sends as many
messages (or more) as the naive algorithms. Little compres-
sion is taking place by FD at distributed sites before the
squared norm threshold is reached.

Figures 2(a) and 3(a) show as ε increases, error of proto-
cols increases too. In case of P3 this observation is justified
by the fact P3 samples O((1/ε2) log(1/ε)) elements, and as
ε increases, it samples fewer elements, hence results in a
weaker estimation of true heavy directions. In case of P2,
as ε increases, they allocate a larger error slack to each site
and sites communicate less with the coordinator, leading to
a coarse estimation. Note that again P1 vastly outperforms
its error guarantees, this time likely explained via the im-
proved analysis of Frequent-Directions [21].

Figures 2(b) and 3(b) show number of messages of each
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Figure 2: Experiments for PAMAP dataset
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Figure 3: Experiments for MSD dataset

protocol vs. error guarantee ε. As we see, in large values of
ε (say for ε > 1/m = 0.02), P2 typically uses slightly more
messages than P3. But as ε decreases, P3 surpasses P2 in
number of messages. This confirms the dependency of their
asymptotic bound on ε (1/ε2 vs. 1/ε). P1 generally sends
much more messages than both P2 and P3.

Next, we examined the number of sites (m). Figures 2(c)
and 3(c) show that P2 and P3 used more communication
as m increases, showing a linear trend with respect to m.
P1 shows no trend since its communication depends solely
on the total weight of the stream. Note that P1 sends its
whole sketch, hence fix number of messages, whenever it
reaches the threshold. As expected, the number of sites does
not have significant impact on the measured approximation
error in any protocol; see Figures 2(d) and 3(d).

We also compared the performance of protocols by tun-
ing the ε parameter to achieve (roughly) the same measured
error. Figure 4 shows their communication cost (#msg) vs
the err. As shown, protocols P1, P2, and P3 incur less error
with more communication and each works better in various
regimes of the err versus msg trade-off. P1 works the best
when the smallest error is required, but more communica-
tion is permitted. Even though its communication is the
same as the naive algorithms in these examples, it allows
each site and the coordinator to run small space algorithms.
For smaller communication requirements (several of orders
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Figure 4: Comparing the two protocols: msg vs. err
of magnitude smaller than the naive methods), then either
P2 or P3 are recommended. P2 is deterministic, but P3 is
slightly easier to implement. Note that since MSD is high
rank, and even the naive SVD or FD do not achieve really
small error (e.g. 10−3), it is not surprising that our algo-
rithms do not either.

7. CONCLUSION
We provide the first protocols for monitoring weighted

heavy hitters and matrices in a distributed stream. They are
backed by theoretical bounds and large-scale experiments.
Our results are based on important connections we estab-
lish between the two problems. Interesting open problems
include, but are not limited to, extending our results to the
sliding window model, and investigating distributed matri-
ces that are column-wise distributed (i.e., each site reports
values from a fixed column in a matrix).
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