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Abstract

Given a set P of n points in Rd, an ε-kernel K ⊆ P approximates the directional width of P
in every direction within a relative (1 − ε) factor. In this paper we study the stability of ε-kernels
under dynamic insertion and deletion of points to P and by changing the approximation factor ε. In
the first case, we say an algorithm for dynamically maintaining a ε-kernel is stable if at most O(1)
points change in K as one point is inserted or deleted from P . We describe an algorithm to main-
tain an ε-kernel of size O(1/ε(d−1)/2) in O(1/ε(d−1)/2 + log n) time per update. Not only does our
algorithm maintain a stable ε-kernel, its update time is faster than any known algorithm that main-
tains an ε-kernel of size O(1/ε(d−1)/2). Next, we show that if there is an ε-kernel of P of size
κ, which may be dramatically less than O(1/ε(d−1)/2), then there is an (ε/2)-kernel of P of size
O(min{1/ε(d−1)/2, κbd/2c logd−2(1/ε)}). Moreover, there exists a point set P in Rd and a parame-
ter ε > 0 such that if every ε-kernel of P has size at least κ, then any (ε/2)-kernel of P has size
Ω(κbd/2c). 1
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1 Introduction

With recent advances in sensing technology, massive geospatial data sets are being acquired at an unprece-
dented rate in many application areas, including GIS, sensor networks, robotics, and spatial databases. Real-
izing the full potential of these data sets requires developing scalable algorithms for analyzing and querying
them. Among many interesting algorithmic developments to meet this challenge, there is an extensive
amount of work on computing a “small summary” of large data sets that preserves certain desired properties
of the input data and on obtaining a good trade-off between the quality of the summary and its size. A
coreset is one example of such approximate summaries. Specifically, for an input set P and a function f ,
a coreset C ⊆ P is a subset of P (with respect to f ) with the property that f(C) approximates f(P ). If a
small-size coreset C can be computed quickly (much faster than computing f(P )), then one can compute
an approximate value of f(P ) by first computing C and then computing f(C). This coreset-based approach
has been successfully used in a wide range of geometric optimization problems over the last decade. See [2]
for a survey.

ε-kernels. Agarwal et al. [1] introduced the notion of ε-kernels and proved that it is a coreset for many
functions. For any direction u ∈ Sd−1, let P [u] = arg maxp∈P 〈p, u〉 be the extreme point in P along
u; ω(P, u) = 〈P [u] − P [−u], u〉 is called the directional width of P in direction u. For a given ε > 0,
K ⊂ P ⊂ Rd is called an ε-kernel of P if

〈P [u]−K[u], u〉 ≤ εω(P, u)

for all directions u ∈ Sd−1.2 For simplicity, we assume ε ∈ (0, 1), because for ε ≥ 1, one can choose
a constant number of points to form an ε-kernel, and we assume d is constant. By definition, if X is an
ε-kernel of P and K is a δ-kernel of X , then K is a (δ + ε)-kernel of P .

Agarwal et al. [1] showed that there exists an ε-kernel of size O(1/ε(d−1)/2) and it can be computed in
time O(n + 1/ε3d/2). The running time was improved by Chan [6] to O(n + 1/εd−3/2) (see also [12]).
In a number of applications, the input point set is being updated periodically, so algorithms have also been
developed to maintain ε-kernels dynamically. Agarwal et al. [1] had described a data structure to maintain an
ε-kernel of size O(1/ε(d−1)/2) in (log(n)/ε)O(d) time per update. The update time was recently improved
by Chan [7] to O((1/ε(d−1)/2) log n + 1/εd−3/2). His approach can also maintain an ε-kernel of size
O((1/εd) log n) with update time O(log n). If only insertions are allowed (e.g. in a streaming model), the
size of the data structure can be improved to O(1/ε(d−1)/2) [3, 13].

In this paper we study two problems related to the stability of ε-kernels: how ε-kernels change as we
update the input set or vary the value of ε.

Dynamic stability. Since the aforementioned dynamic algorithms for maintaining an ε-kernel focus on
minimizing the size of the kernel, changing a single point in the input set P may drastically change the
resulting kernel. This is particularly undesirable when the resulting kernel is used to build a dynamic data
structure for maintaining another information. For example, kinetic data structures (KDS) based on coresets
have been proposed to maintain various extent measures of a set of moving points [2]. If an insertion or
deletion of an object changes the entire summary, then one has to reconstruct the entire KDS instead of
locally updating it. In fact, many other dynamic data structures for maintaining geometric summaries also
suffer from this undesirable property [4, 9, 11].

We call an ε-kernel s-stable if the insertion or deletion of a point causes the ε-kernel to change by at
most s points. For brevity, if s = O(1), we call the ε-kernel to be stable. Chan’s dynamic algorithm can

2This is a slightly stronger version of the definition than defined in [1] and an ε-kernelK gives a relative (1+2ε)-approximation
of ω(P, u) for all u ∈ Sd−1 (i.e. ω(K,u) ≤ ω(P, u) ≤ (1 + 2ε)ω(K,u)).
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be adapted to maintain a stable ε-kernel of size O((1/εd−1) log n); see Lemma 2.6 below. An interesting
question is whether there is an efficient algorithm for maintaining a stable ε-kernel of size O(1/ε(d−1)/2),
as points are being inserted or deleted. Maintaining a stable ε-kernel dynamically is difficult for two main
reasons. First, for an input set P , many algorithms compute ε-kernels in two or more steps. They first
construct a large ε-kernel K ′ (e.g. see [1, 7]), and then use a more expensive algorithm to create a small
ε-kernel of K ′. However, if the first algorithm is unstable, then K ′ may change completely each time P is
updated. Second, all of the known ε-kernel algorithms rely on first finding a “rough shape” of the input set
P (e.g., finding a small box that contains P ), estimating its fatness [5]. This rough approximation is used
crucially in the computation of the ε-kernel. However, this shape is itself very unstable under insertions or
deletions to P . Overcoming these difficulties, we prove the following in Section 2:

Theorem 1.1. Given a parameter 0 ≤ ε ≤ 1, a stable ε-kernel of size O(1/ε(d−1)/2) of a set of n points in
Rd can be maintained under insertions and deletions in O(1/ε(d−1)/2 + log n) time.

Note that the update time of maintaining an ε-kernel of size O(1/ε(d−1)/2) is better than that in [7].

Approximation stability. If the size of an ε-kernel K is O(1/ε(d−1)/2), then decreasing ε changes K
quite predictably. However, this is the worst-case bound, and it is possible that the size of K may be quite
small, e.g., O(1), or in general much smaller than the 1/ε(d−1)/2 maximum (efficient algorithms are known
for computing ε-kernels of near-optimal size [2]). Then how much can the size increase as we reduce the
allowable error from ε to ε/2? For any ε > 0, let κ(P, ε) denote the minimum size of an ε-kernel of P .
Unlike many shape simplification problems, in which the size of simplification can change drastically as we
reduce the value of ε, we show (Section 3) that this does not happen for ε-kernels and that κ(P, ε/2) can be
expressed in terms of κ(P, ε).

Theorem 1.2. For any point set P and for any ε > 0,

κ(P, ε/2) = O(min{κ(P, ε)bd/2c logd−2(1/ε), 1/ε(d−1)/2}).

Moreover, there exist a point set P and some ε > 0 such that κ(P, ε/2) = Ω(κ(P, ε)bd/2c).

2 Dynamic Stability

In this section we describe an algorithm that proves Theorem 1.1. The algorithm is composed of a sequence
of modules, each with certain property. We first define the notion of anchor points and fatness of a point
set and describe two algorithms for maintaining stable ε-kernels with respect to a fixed anchor: one of them
maintains a kernel of size O(1/εd−1) and the other of size O(1/ε(d−1)/2); the former has smaller update
time. Next, we briefly sketch how Chan’s algorithm [7] can be adapted to maintain a stable ε-kernel of
size O(1/ε(d−1) log n). Then we describe the algorithm for updating anchor points and maintaining a stable
kernel as the anchors change. Finally, we put these modules together to obtain the final algorithm. We make
the following simple observation, which will be crucial for combining different modules.

Lemma 2.1 (Composition Lemma). If K is an s-stable ε-kernel of P and K ′ is an s′-stable ε′-kernel of K,
then K ′ is an (s · s′)-stable (ε+ ε′)-kernel of P .

Anchors and fatness of a point set. We call a point set P β-fat if

max
u,v∈Sd−1

ω(P, u)/ω(P, v) ≤ β.
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If β is a constant, we sometimes just say that P is fat. An arbitrary point set P can be made fat by applying
an affine transform: we first choose a set of d + 1 anchor points A = {a0, a1, . . . , ad} using the following
procedure of Barequet and Har-Peled [5]. Choose a0 arbitrarily. Let a1 be the farthest point from a0. Then
inductively, let ai be the farthest point from the flat span(a0, . . . , ai−1). (See Figure 1.) The anchor points
A define a bounding box IA with center at a0 and orthogonal directions defined by vectors from the flat
span(a0, . . . , ai−1) to ai. The extents of IA in each orthogonal direction is defined by placing each ai on a
bounding face and extending IA the same distance from a0 in the opposite direction. Next we perform an
affine transform TA on P such that the vector from the flat span(a0, . . . , ai−1) to ai is equal to ei, where
e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). This ensures that TA(P ) ⊆ TA(IA) = [−1, 1]d.
The next lemma shows that TA(P ) is fat.

Lemma 2.2. For all u ∈ Sd−1 and for βd ≤ 2dd5/2d!,

ω(TA(A), u) ≤ ω(TA(P ), u) ≤ ω(TA(IA), u) ≤ βd · ω(TA(A), u). (2.1)

Proof. The first two inequalities follow by A ⊂ P ⊂ IA. The third follows from a lemma in [8].

a0

a1

a2

IA H

e

Figure 1. Anchor points A = {a0, a1, a2}, rectangle IA, and transform TA applied to P ; square H, two-dimensional grid
G, and one-dimensional grid Ge on the edge e of H.

Agarwal et al. [1] show ifK is an ε-kernel of P , then T (K) is an ε-kernel of T (P ) for any affine transform
T , which implies that one can compute an ε-kernel of T (P ). We will need the following generalization of
the definition of ε-kernel. For two points sets P and Q, a subset K ⊆ P is called an ε-kernel of P with
respect to Q if 〈P [u]−K[u], u〉 ≤ εω(Q, u) for all u ∈ Sd−1.

Stable ε-kernels for a fixed anchor. Let A be a set of anchor points of P , as described above. We
describe algorithms for maintaining stable ε-kernels (with respect toA) under the assumption thatA remains
a set of anchor points of P , i.e., A ⊆ P ⊂ IA, as P is being updated by inserting and deleting points. In
view of the above discussion, without loss of generality, we assume IA = [−1,+1]d and denote it by H.
As for the static case [1, 6], we first describe a simpler algorithm that maintains a stable ε-kernel of size
O(1/εd−1), and then a more involved one that maintains a stable ε-kernel of size O(1/ε(d−1)/2).

Set δ = ε/
√
d and draw a d-dimensional grid G inside H of size δ, i.e., the side-length of each grid cell

is at most δ; G has O(1/δd) cells. For each grid cell τ , let Pτ = P ∩ τ . For a point x ∈ H lying in a grid
cell τ , let x̂ be the vertex of τ nearest to the origin; we can view x being snapped to the vertex x̂. For each
facet f of H, G induces a (d − 1)-dimensional grid Gf on f ; G contains a column of cells for each cell in
Gf . For each cell ∆ ∈ Gf , we choose (at most) one point of P as follows: let τ be the nonempty grid cell
in the column of G corresponding to ∆ that is closest to f . We choose an arbitrary point from Pτ ; if there is
no nonempty cell in the column, no point is chosen. Let Lf be the set of chosen points. Set L =

⋃
f∈H Lf .

Agarwal et al. [1] proved that L is an ε-kernel of P . Insertion or deletion of a point in P affects at most one
point in Lf , and it can be updated in O(log(1/ε)) time. Hence, we obtain the following:
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Lemma 2.3. Let P be a set of n points in Rd, let A ⊆ P be a set of anchor points of P , and let 0 < ε < 1
be a parameter. P can be preprocessed in O(n + 1/εd−1) time, so that a (2d)-stable ε-kernel of P with
respect to A of size O(1/εd−1) can be maintained in O(log 1/ε) time per update provided that A remains
an anchor set of P .

Agarwal et al. [1] and Chan [6] have described algorithms for computing an ε-kernel of sizeO(1/ε(d−1)/2).
We adapt Chan’s algorithm to maintain a stable ε-kernel with respect to a fixed anchorA. We begin by men-
tioning a result of Chan that lies at the heart of his algorithm.

Lemma 2.4 (Chan [6]). Let E ∈ N, Eτ ≤ F ≤ E for some 0 < τ < 1, and P ⊆ [0 : E]d−1 ×R a set of at
most n points. For all grid points b ∈ [0 : F ]d−1×R, the nearest neighbors of each b in P can be computed
in time O(n+ Ed−2F ).

We now set γ =
√
ε/c for a constant c > 1 to be used in a much sparser grid than with δ. Let C =

[−2,+2]d and f be a facet of C. We draw a (d − 1)-dimensional grid on f of size γ. Assuming f lies on
the plane xd = −2, we choose a set Bf = {(i1γ, . . . , id−1γ,−2) ∈ Zd | −d2/γe ≤ i1, . . . , id−1 ≤ d2/γe}
of grid points. For a subset X ⊆ P and a point b, we define ψ(X, b) = arg minx∈X ‖x̂− b‖, i.e., the point
in X such that the snapped point is nearest to b. For a set R, ψ(X,R) = {ψ(X, r) | r ∈ R}. There is a
one to one mapping between the faces of C and H, so we also use f to denote the corresponding facet of H.
Let Lf be the set of points chosen in the previous algorithm corresponding to facet f of H for computing
an (ε/2)-kernel of P . Set Gf = ψ(Lf , Bf ). Chan showed that G =

⋃
f∈CGf is an (ε/2)-kernel of L

and thus an ε-kernel of P . Scaling G and Bf appropriately and using Lemma 2.4, Gf can be computed in
O(n+ 1/εd−3/2) time. Hence, G can be computed in O(n+ 1/εd−3/2) time.

Note that ψ(Lf , b) can be the same for many points b ∈ Bf , so insertion or deletion of a point in P
(and thus in Lf ) may change Gf significantly, thereby making G unstable. We circumvent this problem
by introducing two new ideas. First, ψ(Lf , Bf ) is computed in two stages, and second it is computed in
an iterative manner. We describe the construction and the update algorithm for f ; the same algorithm is
repeated for all facets.

We partition H intoO(1/γd−1) boxes: for J = 〈i1. . . . , id−1〉 ∈ [−1/γ, 1/γ]d−1∩Zd−1, we define HJ =
[i1γ, (i1 +1)γ]×· · ·× [id−1γ, (id−1 +1)γ]× [−1,+1]. We maintain a subsetX ⊆ Lf . Initially, we setX =
Lf . Set XJ = X ∩ HJ . We define a total order on the points of Bf . Initially, we sort Bf in lexicographic
order, but the ordering will change as insertions and deletions are performed on P . Let 〈b1, . . . , bu〉 be
the current ordering of Bf . We define a map ϕ : Bf → Lf as follows. Suppose ϕ(b1), . . . , ϕ(bi−1)
have been defined. Let Ji = arg minJ ‖ψ̂(XJ , bi) − bi‖; here ψ̂(·) denotes the snapped point of ψ(·).
We set ϕ(bi) = ψ(XJi , bi). We delete ϕ(bi) from X (and from XJi) and recompute ψ̂(XJi , Bf ). Set
Kf = {ϕ(b) | b ∈ Bf} and K =

⋃
f Kf . Computing Ji and ϕ(bi) takes O(1/ε(d−1)/2) time, and, by

Lemma 2.4, ψ(XJi , Bf ) can be computed in O(|XJ |+ 1/γd−2 · 1/γ) = O(1/ε(d−1)/2) time.
It can be proved that the map ϕ and the set Kf satisfy the following properties:

(P1) ϕ(bi) 6= ϕ(bj) for i 6= j,
(P2) ϕ(bi) = ψ(Lf \ {ϕ(bj) | j < i}, bi),
(P3) Kf ⊇ ψ(Lf , Bf ).

Indeed, (P1) and (P2) follow from the construction, and (P3) follows from (P2). (P3) immediately implies
that K is an ε-kernel of P . Next, we describe the procedures for updating Kf when Lf changes. These
procedures maintain (P1)–(P3), thereby ensuring that the algorithm maintains an ε-kernel.

Inserting a point. Suppose a point p is inserted into Lf . We add p to X . Suppose p ∈ HJ . We recompute
ψ(XJ , Bf ). Next, we update ϕ(·) and K as follows. We maintain a point ξ ∈ Lf . Initially, ξ is set to p.
Suppose we have processed b1, . . . , bi−1. Let η ∈ Lf be the current ϕ(bi). If ‖ξ̂ − bi‖ ≤ ‖η̂ − bi‖, then
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we swap ξ and ϕ(bi), otherwise neither ξ nor ϕ(bi) is updated. We then process bi+1. After processing all
points of Bf if ξ = p, i.e., no ϕ(bi) is updated, we stop. Otherwise, we add p to Kf and delete ξ from
Kf . The insertion procedure makes at most two changes in Kf , and it can be verified that (P1)-(P3) are
maintained.

Deleting a point. Suppose p is deleted from Lf . Suppose p ∈ HJ . If p 6∈ Kf , then p ∈ X . We delete p
from X and XJ and recompute ψ(XJ , B). If p ∈ Kf , i.e., there is a bi ∈ B with p = ϕ(bi), then p 6∈ X .
We delete p from Kf and K, recompute ϕ(bi), and add the new ϕ(bi) to Kf . Let ϕ(bi) ∈ HJ ; we remove
ϕ(bi) from XJ and recompute ψ(XJ , Bf ). We modify the ordering of Bf by moving bi from its current
position to the end. This is the only place where the ordering of Bf is modified. Since bi is now the last
point in the ordering of Bf , the new ϕ(bi) does not affect any other ϕ(bj). The deletion procedure also
makes at most two changes in Kf and maintains (P1)–(P3).

Finally, insertion or deletion of a point in P causes at most one insertion plus one deletion in Lf , therefore
we can conclude the following:

Lemma 2.5. Let P be a set of n points in Rd, A a set of anchor points of P , and 0 < ε < 1 a parameter. P
can be preprocessed in O(n+ 1/εd−1) time into a data structure so that a stable ε-kernel of P with respect
to A of size O(1/ε(d−1)/2) can be maintained in O(1/ε(d−1)/2) time under insertion and deletion, provided
that A remains an anchor set of P .

Stabilizing Chan’s dynamic algorithm. We now briefly describe how Chan’s [7] dynamic ε-kernel
algorithm can be adapted so that it maintains a stable ε-kernel of size O((1/εd−1) log n). He bypasses the
need of fixed anchors by partitioning P into h = O(log n) layers 〈P1, . . . , Ph〉, where P1 is the inner-most
layer and Ph is the outer-most layer, |Pi| ≥ γ

∑h
j=i+1 |Pj | for a constant γ > 1, and |Ph| = 1/εd−1. P1 is

constructed first, and then the rest of the layers are constructed recursively with the remaining points. For
each set Pi (for i < h) there exists a set of pointsAi which serve as anchor points for Pi in the sense that they
define a bounding box IAi (i.e., Pi ⊂ IAi). Furthermore, for all u ∈ Sd−1 we have ω(Ai, u) ≤ ω(Pi+1, u),
and this remains true for α|Pi| insertions or deletions to P for a constant 0 ≤ α ≤ 1. After α|Pi| updates in
P , the layers Pi, Pi+1, . . . , Ph are reconstructed. Also at this point layers Pj , Pj+1, . . . , Pi−1 will need to be
reconstructed if layer Pj is scheduled to be reconstructed in fewer than α|Pi| updates. We set Kh = Ph, and
for i < h, an ε-kernel Ki of Pi with respect to Ai is maintained using Lemma 2.3. The set K =

⋃h
i=1Ki is

an ε-kernel of P ; |K| = O((1/εd−1) log n).
When a new point p is inserted into P , it is added to the outermost layer Pi, i.e., i is the largest such value,

such that p ∈ IAi . If a point is inserted into or deleted from Pi, we update Ki using Lemma 2.3. The update
time follows from the following lemma.

Lemma 2.6. For any 0 < ε < 1, an ε-kernel K of P of size O((1/εd−1) log n) can be maintained in
O(log n) time, and the number of changes in K at each update is O(1).

Proof. Recall that if the insertion or deletion of a point does not require reconstruction of any layers, the
update time is O(log n) and by Lemma 2.3, only O(1) changes occur in K. We start by bounding the
amortized time spent in reconstructing layers and their kernels.

The kernel Ki of Pi is rebuilt if at least α|Pi| updates have taken place since the last reconstruction, if
Kl needs to be rebuilt for some l < i, or if some Kj is rebuilt for j > i and Ki is scheduled to be rebuilt
in fewer than α|Pj | updates to P . These conditions imply that the ith layer is rebuilt after every α|Ph|2j
updates where j is the smallest integer such that |Pi| ≤ |Ph|2j . The third condition acts to coordinate the
rebuilding of the layers so that the ith layer is not rebuilt after fewer than α|Pi|/2 updates since its last
rebuild.
Kh is rebuilt after α/εd−1 updates. And |Pi| ≤ γh−i|Ph|. Since the entire system is rebuilt after

Θ(|P1|) = Θ(n) updates, we call this interval a round. We can bound the updates to K in a round by
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charging O(1/εd−1) each time a Ki is rebuilt, which occurs at most Θ(|P1|)2/α|Pi| = Θ(n/|Pi|) times in
a round.

h∑
i=1

O(n)
Ω(|Pi|)

·O(1/εd−1) ≤
h∑
i=1

O(n) ·O(1/εd−1)
Ω(γh−i|Ph|)

=
h∑
i=1

O(n)
Ω(γi)

= O(n).

Thus there are O(n) updates to the ε-kernel K for every Θ(n) updates to P . Thus, in an amortized sense,
for each update to P there are O(1) updates to K.

This process can be de-amortized by adapting the standard techniques for de-amortizing the update time
of a dynamic data structure [10]. If a kernel Ki is valid for k insertions or deletions to P , then we start
construction on the next kernel Ki after k/2 insertions or deletions have taken place since the last time Ki

was rebuilt. All insertions can be put in a queue and added to K by the time k/2 steps have transpired. All
deletions from old Ki to new Ki are then queued and removed from K before another k/2 insertions or
deletions. This can be done by performing O(1) queued insertions or deletions from K each insertion or
deletion from P .

Updating anchors. We now describe the algorithm for maintaining a stable ε-kernel when anchors of
P are no longer fixed and need to be updated dynamically. Roughly speaking, we divide P into inner and
outer subsets of points. The outer subset acts as a shield so that a stable kernel of the inner subset with
respect to a fixed anchor can be maintained using Lemma 2.3 or 2.5. When the outer subset can no longer
act as a shield, we reconstruct the inner and outer sets and start the algorithm again. We refer to the duration
between two consecutive reconstruction steps as an epoch. The algorithm maintains a stable kernel within
each epoch, and the amortized number of changes in the kernel because of reconstruction at the beginning
of a new epoch will be O(1). As above, we use the same de-amortization technique to make the ε-kernel
stable across epochs. We now describe the algorithm in detail.

In the beginning of each epoch, we perform the following preprocessing. Set α = 1/10 and compute
a α-kernel L of P of size O(log n) using Chan’s dynamic algorithm; we do not need the stable version
of his algorithm described above. L can be updated in O(log n) time per insertion/deletion. We choose a
parameterm, which is set to 1/εd−1 or 1/ε(d−1)/2. We create the outer subset of P by peeling offm “layers”
of anchor points A1, . . . , Am. Initially, we set P0 = P . Suppose we have constructed A0, . . . , Ai−1. Set
Pi−1 = P \

⋃i−1
j=1Aj , and L is an α-kernel of Pi−1. Next, we construct the anchor set Ai of L as described

earlier in this section. We set Pi = Pi−1 \ Ai and update L so that it is an α-kernel of Pi. Let A =
⋃
iAi,

A = Am, and PI = P \ A. Let H = (1 + α)IA. By construction PI ⊂ H. A forms the outer subset and
acts as a shield for PI , which is the inner subset. Set δ = ε/(2(1 + α)(βd)2), where βd is the constant in
Lemma 2.2.

If m = 1/εd−1 (resp. 1/ε(d−1)/2), we maintain a stable δ-kernel KI of PI with respect to A of size O(m)
using Lemma 2.3 (resp. Lemma 2.5). SetK = KI ∪A; |K| = O(m). We prove below thatK is an ε-kernel
of P . Let p be a point that is inserted into or deleted from P . If p ∈ H, then we update KI using Lemma 2.3
or 2.5. On the other hand, if p lies outside H, we insert it into or delete it from A. Once A has been updated
m times, we end the current epoch and discard the current K. We begin a new epoch and reconstruct A, PI ,
and KI as described above.

The preprocessing step at the beginning of a new epoch causes O(m) changes in K and there are at least
m updates in each epoch, therefore the algorithm maintains a stable kernel in the amortized sense. As above,
using a de-amortization technique, we can ensure that K is stable. The correctness of the algorithm follows
from the following lemma.

Lemma 2.7. K is always an ε-kernel of P .

Proof. It suffices to prove the lemma for a single epoch. Since we begin a new epoch after m updates in A,
there is at least one i such that Ai ⊆ A ⊆ K. Thus we can show that Ai ∪KI forms an ε-kernel of Ai ∪PI .
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For any direction u ∈ Sd−1

ω(KI , u) ≤ ω(PI , u) ≤ ω(KI , u) + 2(1 + α)δ · ω(A, u)
≤ ω(KI , u) + 2(1 + α)δβd · ω(PI , u) [via Lemma 2.2]

≤ ω(KI , u) + 2(1 + α)δβd · ω(Pi, u)
≤ ω(KI , u) + 2(1 + α)δβd · ω(Ii, u)
≤ ω(KI , u) + 2(1 + α)δ(βd)2 · ω(Ai, u) [via Lemma 2.2]

≤ ω(KI , u) + 2(1 + α)δ(βd)2 · ω(PI ∪Ai, u).

Thus, for any direction u ∈ Sd−1 the extreme point of PI ∪ Ai is either in PI or Ai. In the first case, KI

approximates the width within a factor of 2(1 +α)δ(βd)2 ·ω(PI ∪Ai, u) = ε ·ω(PI ∪Ai, u). In the second
case, the extreme point is in K because all of Ai is in K. Thus the set PI ∪Ai has an ε-kernel in K, and the
rest of the points are also in K, so K is an ε-kernel of the full set P .

The size of K starts at O(m) because both KI and A are of size O(m). At most m points are inserted
outside of IA and hence into A, thus the size of K = KI ∪ A is still O(m) after m steps. Then the epoch
ends.

Using Lemmas 2.3 and 2.5, we can bound the update time and conclude the following.

Lemma 2.8. For a set P of n points in Rd and a parameter 0 < ε < 1, there is a data structure that can
maintain a stable ε-kernel of P of size:

(a) O(1/ε(d−1)/2) under insertions and deletions in time O(nε(d−1)/2 + 1/ε(d−1)/2 + log n), or

(b) O(1/εd−1) in time O(nεd−1 + log n+ log(1/ε)).

Proof. We build an outer kernel of size O(m) in O(n + m log n) time. It lasts for Ω(m) insertions or
deletions, so its construction time can be amortized over that many steps, and thus it costs O(n/m+ log n)
time per insertion or deletion.

In maintaining the inner kernel the preprocessing time can be amortized over m steps, but the update time
cannot. In case (a) we maintain the inner kernel of size m = O(1/ε(d−1)/2) with Lemma 2.5. The update
time is O(nε(d−1)/2 + 1/ε(d−1)/2). In case (b) we maintain the inner kernel of size m = O(1/εd−1) with
Lemma 2.3. The update time is O(nεd−1 + log(1/ε)).

The update time can be made worst case using a standard de-amortization techniques [10]. More specif-
ically, we start rebuilding the inner and outer kernels after m/2 steps and spread out the cost over the next
m/2 steps. We put all of the needed insertions in a queue, inserting a constant number of points to K
each update to P . Then after the new kernel is built, we enqueue required deletions from K and perform a
constant number each update to P over the next m/2 steps.

Putting it together. For a point set P ⊂ Rd of size n, we can produce the best size and update
time tradeoff for stable ε-kernels by invoking Lemma 2.1 to compose three stable ε-kernel algorithms,
as illustrated in Figure 2. We first apply Lemma 2.6 to maintain a stable (ε/3)-kernel K1 of P of size
O(min{n, (1/εd−1) log n}) with update time O(log n). We then apply Lemma 2.8 to maintain a sta-
ble (ε/3)-kernel K2 of K1 of size O(1/εd−1) with update time O(|K1|εd−1 + log |K1| + log(1/ε)) =
O(log n+ log(1/ε)). Finally we apply Lemma 2.8 again to maintain a stable (ε/3)-kernel K of K2 of size
O(1/ε(d−1)/2) with update time O(|K2|ε(d−1)/2 + 1/ε(d−1)/2 + log |K2|) = O(1/ε(d−1)/2). K is a stable
ε-kernel of P of size O(1/ε(d−1)/2) with update time O(log n + 1/ε(d−1)/2). This completes the proof of
Theorem 1.1.
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K

1/ε(d−1)/2

K1

log(n)/εd−1

K2

1/εd−1

logn

n

P logn 1/ε(d−1)/2

Figure 2. Composing stable ε-kernel algorithms.

3 Approximation Stability

In this section we prove Theorem 1.2. We first give a short proof for the lower-bound and then a more
involved proof of the upper bound. For the upper bound, we first develop basic ideas and prove the theorem
in R2 and R3 before generalizing to Rd.

3.1 Lower Bound

Take a cyclic polytope with n vertices and Ω(nbd/2c) facets and convert it into a fat polytope P using standard
procedures [1]. For a parameter ε > 0, we add, for each facet f of P, a point pf that is ε far away from the
facet. Let P be the set of vertices of P together with the collection of added points. We choose ε sufficiently
small so that points in P are in convex position and all non-facet faces of P remain as faces of conv(P ).
Then the size of an optimal ε-kernel of P is at most n (by taking the vertices of P as an ε-kernel), but the
size of an optimal ε/2-kernel is at least the number of facets of P, because every point of the form pf has
to be present in the kernel. The first half of the lower bound is realized with O(1/ε(d−1)/2) evenly-spaced
points on a sphere, and hence the full lower bound is proved.

3.2 Upper Bound

By [1], it suffices to consider the case in which P is fat and the diameter of P is normalized to 1. Let K be
an ε-kernel of P of the smallest size. Let P = conv(K), and Pε = P⊕ εBd. We have P ⊆ conv(P ) ⊆ Pε
by the definition of ε-kernels. It suffices to show that there is a set K ′ ⊆ P such that for P′ = conv(K ′),
P′ ⊆ conv(P ) ⊆ P′ε/2, and |K ′| = O(|K|bd/2c logd−2(1/ε)) [1].

For convenience, we assume that K ′ is not necessarily a subset of points in P ; instead, we only require
K ′ to be a subset of points in conv(P ). By Caratheodory’s theorem, for each point x ∈ K, we can choose
a set Px ⊆ P of at most d+ 1 points such that x ∈ conv(Px). We set

⋃
x∈K′ Px as the desired (ε/2)-kernel

of P ; |
⋃
x∈K′ Px| ≤ (d+ 1)|K ′| = O(κ(P, ε)bd/2c logd−2(1/ε)).

Initially, we add a point into K ′ for each point in K. If p ∈ K lies on ∂ conv(P ), we add p to K ′.
Otherwise we project p onto ∂ conv(P ) in a direction in which p is maximal in K and add the projected
point to K ′. Abusing the notation slightly, we use P to denote the convex hull of these initial points. For
simplicity, we assume P to be a simplicial polytope.

Decomposition of Pε \ intr P. There are d types of simplices on ∂P. In R2 these are points and edges.
In R3 these are points, edges, and triangles. We can decompose Pε \ intr P into a set of regions, each region
σ(f) corresponding to a simplex f in P. For each simplex f in P let f∗ ⊆ Sd−1 denote the dual of f in the
Gaussian diagram of P. Recall that if f has dimension k (0 ≤ k ≤ d− 1), then f∗ has dimension d− 1− k.
The region Pε \ intr P is partitioned into a collection of |P| regions (where |P| is the number of faces of all
dimensions in P). Each simplex f in P corresponds to a region defined

σ(f) = {f + zu | 0 ≤ z ≤ ε, u ∈ f∗}.
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For a subsimplex τ ∈ f , we can similarly define a region σ(τ) = {τ + zu | 0 ≤ z ≤ ε, u ∈ f∗}. In R2,
there are two types of regions: point regions and edge regions. In R3, there are three types of regions: point
regions (see Figure 4(a)), edge regions (see Figure 4(b)), and triangle regions (see Figure 4(c)).

For convenience, for any point q = q̄ + z · u ∈ σ(f), where q̄ ∈ f, 0 ≤ z ≤ ε, and u ∈ f∗, we write
q = q̄[u, z] (which intuitively reads, the point whose projection onto f is q̄ and which is at a distance z
above f in direction u). We also write q[v] = q̄ + z · v (intuitively, q[v] is obtained by rotating q w.r.t. f
from direction u to direction v). Similarly, we write a simplex ∆̄[u, z] = ∆̄ ⊕ z · u, where ∆̄ is a simplex
inside f , 0 ≤ z ≤ ε, and u ∈ f∗, and write ∆[v] = ∆̄⊕ z · v.

We will proceed to prove the upper bound as follows. For each type of region σ(f) we place a bounded
number of points from σ(f)∩ conv(P ) into K ′ and then prove that all points in σ(f)∩ conv(P ) are within
a distance ε/2 from some point in P′ = conv(K ′). We begin by introducing three ways of “gridding”
σ(f) and then use these techniques to directly prove results for several base cases, which illustrate the main
conceptual ideas. These base cases will already be enough to prove the results in R2 and R3. Finally we
generalize this to Rd using an involved recursive construction. We set a few global values: δ = ε/12d,
θ = 2 arcsin(δ/2ε), and ρ = δ/ε.

1: Creating layers. For a point q = q̄[u, z] ∈ σ(f) we classify it depending on the value z = |q − q̄|.
If z ≤ ε/2, then q is already within ε/2 of P. We then divide the range [ε/2, ε] into a constant
H = (ε/2)/δ number of cases using H = {h1 = ε/2, h2 = ε/2 + δ, . . . , hH = ε − δ}. If
z ∈ [hi, hi+1), then we set qhi = q̄[u, hi]. We define Ψf,hi ⊂ σ(f) ∩ conv(P ) to be the set of points
that are a distance exactly hi from f .

2: Discretize angles. We create a constant size θ-net Uf,h = {u1, u2, . . .} ⊂ f∗ of directions with the
following properties. (1) For each q = q̄[u, h] ∈ Ψf,h there is a direction ui ∈ Uf,h such that the
angle between u and ui is at most θ. (2) For each ui ∈ Uf,h there is a point pi = p̄i[ui, h] ∈ Ψf,h; let
Nf,h = {pi | i ≥ 1}. Uf,h is constructed by first taking a (θ/2)-net Uf of f∗, then for each u′i ∈ Uf
choosing a point pi = q̄i[ui, h] ∈ Ψf,h where ui is within an angle θ/2 of u′i (if one exists), and finally
placing ui in Uf,h.

3: Exponential grid. Define a set D = {d0, d1 = (1 + ρ)d0, . . . , dm = (1 + ρ)md0} of distances where
dm < 1 and d0 = δ, so m = O(log 1/ε). For a face f ∈ P, let any r ∈ σ(f) be called a support
point of f . Let p1, . . . , pk be the vertices of the k-simplex f . For each pj , and each di ∈ D (where
di < ||pj − r̄||), let pj,i be the point at distance di from pj on the segment pj r̄. For each boundary
facet F of f , define a sequence of at most m simplices F0, F1, . . . ∈ conv(F ∪ r̄), each a homothet of
F , so the vertices of Fi lie on segments pj r̄ where pj ∈ ∂F (see Figure 5(a)). The translation of each
Fi is defined so it intersects a point pj,i (where pj ∈ ∂F ) and is as close to F as possible. This set of
(k − 1)-simplices for each F defines the exponential grid Gr,f . The full grid structure is revealed as
this is applied recursively on each Fi.

The exponential grid Gr,∆ on a simplex ∆ has two important properties for a point q ∈ ∆:

(G1) If q ∈ conv(F ∩ r̄) lies between boundary facet F and F0, let q0 be the intersection of the line
segment qr̄ with F0; then ||q − q0|| ≤ d0 = δ.

(G2) If q ∈ conv(F ∩ r̄) lies between Fi−1 and Fi and the segment qr̄ intersects Fi at qi, let qF be
the intersection of F with the ray −→rq; then ||qi − q||/||qi − qF || ≤ ρ = δ/ε.

We now describe how to handle certain simple types of regions: where f is a point or an edge. These will
be handled the same regardless of the dimension of the problem, and they (the edge case in particular) will
be used as important base cases for higher dimensional problems.
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Point regions. Consider a point region σ(p). For each h ∈ H create θ-net Up,h for Ψp,h, so Np,h are the
corresponding points where each pi = p[h, ui] ∈ Np,h has ui ∈ Up,h. Put each Np,h in K ′.

q̄ = p
θ

qh

q′
qFor any point q = q̄[u′, z] ∈ σ(p) ∩ conv(P ), let q′ = q̄[u, h] where h ∈ H is the largest

value such that h ≤ z and u ∈ Up,h is the closest direction to u′; set qh = q̄[u′, h] = q′[u′].
First ||q−qh|| ≤ δ because z−h ≤ δ. Second ||qh−q′|| ≤ δ because the angle between u′ and
u is at most θ, and they are rotated about the point p. Thus ||q− q′|| ≤ ||q− qh||+ ||qh− q′|| ≤
2δ ≤ ε/2.

Lemma 3.1. For a point region σ(p), there exists a constant number of points Kp ⊂ σ(p) ∩
conv(P ) such that all points q ∈ σ(p) ∩ conv(P ) are within a distance ε/2 of conv(Kp).

Edge regions. Consider an edge region σ(e) for an edge e of P. Orient e along the x-axis. For each
h ∈ H and u ∈ Ue,h, let Ψe,h,u be the set of points in Ψe,h within an angle θ of u. For each Ψe,h,u, we add
to Ke the (two) points of Ψe,h,u with the largest and smallest x-coordinates, denoted by p+

h,u and p−h,u.

h

e

u

p−h,u

p+
h,u

qh

q′
Ψe,h,u

q′′

(a) σ(e) in R3 (b) top view of σ(e) at height h

Figure 3. Illustration of 2 points in K′ for edge case with specific h ∈ H and u ∈ Ue,h,θ.

For any point q = q̄[v, z] ∈ σ(e) ∩ conv(P ), there is a point q′′ = q̄[u, h] such that h ∈ H is the largest
value less than z and u ∈ Ue,h is the closest direction to v. Furthermore, ||q−q′′|| ≤ ||q−qh||+||qh−q′′|| ≤
(z − h) + 2ε sin(θ/2) = δ + δ = 2δ. We can also argue that there is a point q′ = q̄[u′, z′] ∈ p−h,up

+
h,u,

because if q̄ has smaller x-coordinate than p̄−h,u or larger x-coordinate than p̄+
h,u, then q′ cannot be in Ψe,h,u.

Clearly the angle between u and u′ is less than θ. This also implies that h− z′ < δ. Thus ||q′′ − q′|| ≤ 2δ,
implying ||q − q′|| ≤ 4δ ≤ ε/2.

Lemma 3.2. For an edge region σ(e), there existsO(1) pointsKe ⊂ σ(e)∩conv(P ) such that for any point
q = q̄[z, v] ∈ σ(e)∩ conv(P ) there is a point p = q̄[h, u] ∈ conv(Ke) such that z−h ≤ 2δ, ||v−u|| ≤ 2δ,
and, in particular, ||q − p|| ≤ 4δ ≤ ε/2.

3.2.1 Approximation Stability in R2

For K ⊂ P ∈ R2 there are |K| points and edges in P. Thus combining Lemmas 3.1 and 3.2 |K ′|/|K| =
O(1) and we have proven Theorem 1.2 for d = 2.

Theorem 3.1. For any point set P ∈ R2 and for any ε > 0 we have κ(P, ε/2)/κ(P, ε) = O(1).

3.2.2 Approximation Stability in R3

Construction of K ′. Now consider K ⊂ P ∈ R3 and the point regions, edge regions, and triangle
regions in the decomposition of Pε \ intr P (see Figure 4). By Lemmas 3.1 and 3.2 we can add O(|K|)
points to K ′ to account for all point and edge regions. We can now focus on the O(|K|) triangle regions.

Consider a triangle region σ(t) for a triangle t in P (see Figure 5(a)), t∗ consists of a single direction,
the one normal to t. Let r be the highest point of σ(t) ∩ conv(P ) in direction t∗. We add r to K ′ and we
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f

ε
f

ε f
ε

(a) f is a vertex of P (b) f is an edge of P (c) f is a facet of P

Figure 4. Illustration of regions in the partition of Pε \ intr P in three dimensions.

create an exponential grid Gr,t with r as the support point. For each edge e ∈ Gr,t and h ∈ H we add the
intersection of e[t∗, h] with the boundary of σ(t) ∩ conv(P ) to K ′, as shown in Figure 5(b). Thus, in total
we add O(|K| log(1/ε)) points to K ′.

e = F

r̄
p1

p2

p3

r

r̄

r

e

r

q̄e

q

qh

r̄

h

p
q′′

(a) σ(t) with r and Gr,t (b) Subtriangle te of σ(t) (c) Slice of (b) through r, q

Figure 5. Illustration to aid correctness of approximation of triangle regions in R3.

Proof of correctness. Consider any point q = q̄[t∗, z] ∈ σ(t)∩conv(P ) and associate it with a boundary
edge e of t such that q̄ ∈ conv(e ∪ r̄). Let qh = q̄[t∗, h] where h ∈ H is the largest height such that h ≤ z.
If segment q̄r̄ does not intersect any edge ei parallel to e in Gr,t, let p̄ = r̄. Otherwise, let ei be the first
segment parallel to e in Gr,t intersected by the ray −→̄qr̄, and let p̄ be the intersection. Let p = p̄[t∗, h] which
must be in conv(K ′) by construction. If ei = e0, then by (G1) we have ||qh − p|| = ||q̄ − p̄|| ≤ δ, thus
||q − p|| ≤ 2δ ≤ ε/2 and we are done. Otherwise, let q̄e be the intersection of e with ray −→̄rq̄. By (G2)
||p̄− q̄||/||p̄− q̄e|| ≤ ρ = δ/ε. Thus, q′′ = q̄[t∗, h− ερ] is below the segment q̄ep (see Figure 5(c)) and thus
q′′ ∈ conv(K ′) since triangle pp̄q̄e is in conv(K ′). Finally, ||q− q′′|| = ||q− qh||+ ||qh− q′′|| ≤ 2δ ≤ ε/2.
This proves Theorem 1.2 for d = 3.

Theorem 3.2. For any point set P ∈ R3 and for any ε > 0 we have κ(P, ε/2)/κ(P, ε) = O(log 1/ε).

3.2.3 Approximation Stability in Rd

Construction of K ′. The number of regions in the decomposition of Pε\intr P is |P| = O(|K|bd/2c) [14].
For each region σ(f), we choose a set Kf of O(logd−2(1/ε)) points such that conv(Kf ) ⊆ conv(P ) ∩
σ(f) ⊆ conv(Kf )⊕ (ε/2)Bd. Then we set K ′ =

⋃
f Kf .

When f is a 0- or 1-simplex, we apply Lemmas 3.1 and 3.2. Otherwise, to construct Kf we create a
recursive exponential grid on f . Specifically, for all h ∈ H and u ∈ Uf,h we choose a point r = r̄[u, h] ∈
σ(f)∩conv(P ) and construct an exponential gridGr,f with r as the support point. Next, for each ∆ ∈ Gr,f
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we recursively construct exponential grids. That is, for all h′ ∈ H and u′ ∈ U∆,h′ we choose another
support point r′ = r̄′[u′, h′] and construct an exponential grid Gr′,∆ on ∆. At each iteration the dimension
of the simplex in the exponential grids drops by one. We continue the recursion until we get 1-simplices.
Let Gf be the union of all exponential grids.

Let e be a 1-simplex in Gf . For each height h ∈ H and direction u ∈ Ue,h we choose two points as
described in the construction the edge region and add them to Kf . We also place the support point of each
∆ ∈ Gf into Kf . By construction, for a k-simplex f , Gf contains O(logk−1(1/ε)) simplices and thus
|Kf | = O(logk−1(1/ε)). Hence |K ′| = O(|K|bd/2c logd−2(1/ε)).

Proof of correctness. Let f be a k-face of P (0 ≤ k ≤ d − 1). We need to show for any point
q = q̄[u, z] ∈ conv(P ) ∩ σ(f), there is a point p ∈ conv(Kf ) (specifically p′′k) such that ||q − p|| ≤ ε/2.

Before describing the technical details (mainly left to the appendix), we first provide some intuition
regarding the proof. For any q ∈ conv(P ) ∩ σ(f) we first consider qk = q̄[u, h] where h ∈ H is the
largest h < z. If qk ∈ conv(Kf ) we are done. If qk /∈ conv(Kf ), we need to find a “helper point” qk−1

for qk. If qk−1 /∈ conv(Kf ) we need to recursively find a “helper point” qk−2 for qk−1, and so on until
qm ∈ conv(Kf ). Tracing back along the recursion, we can then prove that qk (and hence q) has a nearby
point in conv(Kf ). Note that we do not prove qj is near qj−1. Formally:

Lemma 3.3. We can construct a sequence of helper points qj = q̄j [uj , hj ] and simplices ∆j ∈ Gf with the
following invariants: We can construct a sequence of helper points qj = q̄j [uj , hj ] and simplices ∆j ∈ Gf
with the following invariants:

(I1) qj ∈ conv(P );
(I2) hj ∈ H and hj − hj+1 ≤ δ (for j 6= k);
(I3) q̄j ∈ ∆j ∈ Gf and the dimension of ∆j is j; and
(I4) ‖uj − uj+1‖ ≤ 2θ (for j 6= k).

Proof. Set qk as above and ∆k = f . Assume that for an index j ≤ k, qj has been defined. Since (I1)
implies qj ∈ Ψ∆j ,h 6= ∅, there is a direction u′j−1 ∈ Uf,hj such that the angle between uj and u′j−1 is at
most θ. Let rj ∈ Kf be the support point of ∆j , given hj and u′j−1. Let F be the facet of ∆j such that
q̄j ∈ conv(F ∪ r̄j). If the segment q̄j r̄j does not intersect any simplex in the family of (j − 1) simplices
induced by F and rj , then let qj−1 = rj and terminate the recursion (see Figure 6(a)). Otherwise, let ∆j−1

be the first such simplex intersected by the ray −−→q̄j r̄j , and let q̄j−1 be the intersection point (see Figure 6(b)).

F

r̄
q̄j

∆j

F

r̄

q̄j

∆j

q̄j−1

∆j−1

∆j−1

qj

rj

q′j−1
qj−1

uj−1

u′j−1
uj

∆j

q̄j−1

(a) (b)

Figure 6. (a) Terminate early: qj−1 = rj . (b) Recursive case: q′j−1 lies on the segment qjrj .

To determine qj−1 we first find the direction uj−1, such that q′j−1 = q̄j−1[uj−1, z
′] lies on the segment

qjrj . Then hj−1 is determined as the maximum h ∈ H such that h ≤ z′. We can show (I1) is satisfied
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because q′j−1 must be in conv(P ) because qj and rj are, and then qj−1 = q̄j−1[uj−1, hj−1] lies on segment
q′j−1q̄

′
j−1. We show (I4) by ||uj − uj−1|| ≤ ||uj − u′j−1|| ≤ θ. Invariant (I2) follows because z′ ≥ hj cos θ

and thus hj − z′ ≤ hj(1− cos θ) ≤ ε(sin θ) ≤ δ. Invariant (I3) holds by construction.
Assume the recursion does not terminate early. At j = 1, since q1 ∈ conv(P ) and ∆1 is a line segment,

we can apply Lemma 3.2 to σ(∆1) and find a point q0 = q̄1[u0, h1] ∈ conv(Kf ) such that ||q1 − q0|| ≤ 2δ
and ||u1 − u0|| ≤ 2θ. This completes the description of the recursive definition of helper points.

Let qm be the last point defined in the sequence. By construction, qm ∈ conv(Kf ). For each m ≤ j ≤ k,
let pj = qj [um]. We have the following key lemma, which shows that pj is close to a point p′′j ∈ conv(Kf ).

Lemma 3.4. For each j ≥ m, there is a point p′j ∈ ∆j [um, hj ] such that

(1) ||p′j − pj || ≤ jδ; and
(2) p′′j = p′j − 2(j −m)δum ∈ conv(Kf ).

Proof. We prove the lemma by induction on j. For j = m, since pm = qm ∈ conv(Kf ), the claim is
trivially true by setting p′m = pm. Assume the claim is true for some j ≥ m. Now consider the case j + 1.
Let p̄F,j be the intersection of the ray−−−−→q̄j q̄j+1 with ∂f on facet F . Let xj+1 be the intersection of p̄F,j p̄′j with
the line passing through q̄j+1 and parallel to q̄j p̄′j (see Figure 7). There are two cases:

p̄F,j

p̄F,j ∂f
xj+1 = p̄′

j+1 p̄′
j

p̄′
j yp̄j+1 = q̄j+1

p̄j = q̄j

p′
j+1

p′
j

p′′
j

p′′
j+1

xj+1

Figure 7. The inductive step for proving ||p′j+1 − pj+1|| ≤ (j + 1)δ and p′′j+1 ∈ conv(Kf ).

Case 1: If ∆j (such that q̄j ∈ ∆j according to (I3)) is the closest facet to F , then qj+1 lies between F
and ∆j . Thus by (G1), we know that ||q̄j+1 − q̄j || ≤ δ. We set p′j+1 = p̄′j [um, hj+1]. As such,

||p′j+1 − pj+1|| = ||p̄′j − q̄j+1|| ≤ ||p̄′j − q̄j ||+ ||q̄j − q̄j+1|| ≤ jδ + δ = (j + 1)δ.

Moreover, since hj+1 − 2(j + 1 −m)δ ≤ hj − 2(j −m)δ, p′′j+1 lies on the segment p′′j p̄
′
j and therefore

p′′j+1 ∈ conv(Kf ).
Case 2: Otherwise. In this case, we have by (G2)

||p̄′j − xj+1||
||p̄′j − p̄F,j ||

=
||q̄j − q̄j+1||
||q̄j − p̄F,j ||

≤ ρ.

We set p′j+1 = xj+1[um, hj+1]. First observe that

||p′j+1 − pj+1|| = ||xj+1 − q̄j+1|| ≤ ||p̄′j − q̄j || ≤ δ.
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Furthermore, let y be the intersection of p̄F,jp′′j with p′j+1xj+1 (see Figure 7(right)). We then have

||p′j+1 − y|| ≤ (hj+1 − hj) + ||p′j − p′′j ||+ ρ · ||p′′j − p̄′j || < δ + 2(j −m)δ + δ = 2(j + 1−m)δ.

Therefore p′′j+1 lies below y and as such p′′j+1 ∈ conv(Kf ) since triangle p̄′j p̄F,jp
′′
j ∈ conv(Kf ).

We now complete the proof of Theorem 1.2 with the following lemma.

Lemma 3.5. ||q − p′′k|| ≤ ε/2.

Proof. For q = q̄[u, z] and qk = q̄[u, h], since h ≤ z ≤ h+ δ then ||q − qk|| ≤ δ.
Since pk = qj [um], then invariant (I4) implies that ||um−uk|| ≤ (k−m)2θ ≤ d2θ and hence ||pk−qk|| ≤

2ε sin((1/2)d2θ) ≤ ε2(dδ/ε) ≤ 2dδ.
Finally, for j = k, Lemma 3.4 implies that ||p′k − pk|| ≤ kδ ≤ dδ , that ||p′k − p′′k|| ≤ 2(k −m)δ ≤ 2dδ,

and p′′k ∈ conv(Kf ).
It follows that

||q − p′′k|| ≤ ||q − qk||+ ||qk − pk||+ ||pk − p′k||+ ||p′k − p′′k||
≤ δ + 2dδ + dδ + 2dδ
≤ 6dδ = ε/2,

as desired.

3.3 Remarks

(1) For d = 2, 3, κ(P, ε/2) is only a factor of O(1) and O(log(1/ε)), respectively, larger than κ(P, ε);
therefore, the sizes of optimal ε-kernels in these dimensions are relative stable. However, for d ≥ 4,
the stability drastically reduces in the worst case because of the superlinear dependency on κ(P, ε).

(2) Neither the upper nor the lower bound in the theorem is tight. For d = 3, we can prove a tighter lower
bound of Ω

(
κ(P, ε) log(1/(ε · κ(P, ε)))

)
. We conjecture in Rd that

κ(P, ε/2) = Θ
(
κ(P, ε)bd/2c logd−2(1/(ε(d−1)/2 · κ(P, ε)))

)
.
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