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Using Existential Theory of the Reals to Bound VC Dimension
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Abstract

We provide new bounds on the VC dimension of range
spaces beyond logical compositions of polynomials and
other discrete geometric shapes. Our results address the
VC dimension of a seemingly simple class of range spaces
we call inflated polynomials, which are defined as the
Minkowski sum of a polynomial and a ball; in R2 with
degree p the VC dimension is Θ(p), and in Rd the bound
is O(dpO(d)). This addresses natural questions on learn-
ability in the adversarially-robust setting for polynomial
classifiers and of polynomially-defined trajectories. We
use a connection between algebraic geometry and classic
circuit-based approaches of bounding the VC dimension
to derive our results. We believe this connection and our
general results may find other applications in learning
theory, range searching, and other aspects of computa-
tional geometry where the VC dimension plays a key
role.

1 Introduction

This paper studies the VC dimension and learnability
of regions defined by offsets from polynomial curves and
surfaces, which we call inflated polynomials. These off-
sets are no longer polynomial and so little to nothing is
known about the learnability of a large family of classes
that arise this way. We provide new VC dimension
bounds for this family of objects by a connection to
the existential theory of the reals. Application of these
inflated polynomials are broad and we highlight impli-
cations in sweeping out the region around a polynomial
curve and in adversarially-robust learning.
The Vapnik-Chervonenkis-dimension (VC dimen-

sion) [37] is the central combinatorial complexity score
for a range space or a function class. It intricately ties
into many aspects of learning theory [1] where it bounds
how many data samples are needed to learn over a func-
tion class, model theory [2, 4] where it ties into the rich
structure of algebraic geometry, big data [15] where it
governs the size and runtime for creating coresets, com-
putational geometry [19, 5] where it describes the size
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of a hitting set, and data structures [8] where it char-
acterizes a class of ranges that admit a near-linear size
data structure which allows for sub-linear time range
queries. In this paper, we significantly generalize the
approaches to analyze function classes defined through
non-polynomial and existential formulations.

Inflated polynomials. In particular, in this paper we
focus on ranges defined by the Minkowski sum of a
Euclidean ball and a polynomial; we call these inflated
polynomials. A simple example of an inflated parabola in
R2 is shown in Figure 1. In particular, observe that the
boundary of this shape is not a polynomial, as clearly
evidenced by the cusp point, directly above the minimum.
Thus, due to this non-polynomial nature, among other
complexities, the VC dimension of such shapes have no
known bound [9]. Let us highlight two other grounded
scenarios where such questions arise.

Figure 1: The inflated
polynomial, shown in
blue, of (x − 1)2 with
radius r.

First, consider learning
a polynomial classifier ro-
bustly, in the sense that
it should protect against
adversarial examples [35].
Typically, the goal is to
learn a classifier so no, or
few, correctly labeled exam-
ples can cross the decision
boundary with small per-
turbations. While this is
perhaps most problematic
in complex classifiers [35,
18], learnability of robust
classifiers has mostly been studied formally [34, 14, 29,
25, 16, 10] for linear (or near-linear) classifiers and/or
when data classes have specific and known (uniform,
Gaussian, accurate under Gaussian noise) distributions.
While polynomial (and other kernel classifiers) can be
“linearized” so the inner-product acts as a linear dot-
product, this distance no longer measures the amount
of perturbation required in the input space needed for a
data point to cross the decision boundary. In particular,
one goal is to learn a perfect polynomial classifier so that
no data points are within a distance r of the decision
boundary (measured using Euclidean distance in the
input space). As we elaborate in Section 4, the number
of samples needed to ensure that such a perfect and
r-robust polynomial classifier on the sample will ensure
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at most ε-fraction of all data (with probability 1 − δ)
will be at least a distance r from the polynomial decision
boundary is O(νε log ν

εδ ), where ν is the VC dimension of
the inflated polynomial around the decision boundary.

Second, consider a drone which moves through a neigh-
borhood and transmits malicious computer code to Wi-Fi
routers. We do not know the exact drone trajectory, but
can model it as a polynomial curve of degree p, and
know it is most effective within 30 meters. Thus its
affected range is an inflated polynomial curve. How
many Wi-Fi routers in the neighborhood do we need
to randomly inspect to accurately estimate the drone
path (i.e., we can predict the probability of malicious
code within ε, with probability 1− δ)? The number of
samples is O( 1

ε2 (ν+log 1
δ )) where ν is the VC dimension

of this inflated polynomial.

Results and techniques. In this paper we develop a
family of techniques to bound the VC dimension of
complex range spaces and apply them to the inflated
polynomials and existentially defined sets. We build on
traditional techniques for bounding the VC dimension [1,
17], which prior-to-this-work were restricted to polynomi-
ally defined sets, a few other specific options like sigmoid,
and their compositions. This approach provides a set
of simple operations and bounds the VC dimension by
the number of such operations needed to determine in-
clusion in the set in question. For our work, as in [17],
we combine this approach with a distinct set of tools
from decision algorithms in logic, algebraic geometry,
and the existential theory of the reals. While ultimately
the proofs are simple; they rely on an observation that
the computation model associated with most algebraic
geometry is compatible with the simple operations of [1].
This allows us to bound the VC dimension of inflated
polynomials and existentially-defined sets. Our main
result is as follows:

Theorem 1 The VC dimension of inflated polynomi-
als in Rd of degree p is O(dpO(d)), and for univariate
polynomials, the bound is Θ(p).

This provides the specific bound needed to address the
two applications (polynomial path learning for detecting
Wi-Fi manipulation and adversarially robust polynomial
separators) highlighted above. In particular, for adver-
sarially robust learning, we view this as an essential step
in how to link the geometry of the decision boundary to
the input space.

2 Background, Definitions, and Prior Work

As this paper unites several technical areas, we start
with a fair number of definitions.

Polynomials. Central to our study are real polynomials,
that is polynomials with real coefficients. When there are
d variables x1, . . . , xd, we denote these as R[x1, . . . , xd].
The degree of the polynomial is the maximum sum of
exponents of the variables in any monomial. Such poly-
nomials define functions f from Rd → R. Hence they can
also be viewed as d-dimensional objects in Rd+1 which
divide Rd+1 into 3 sets. For (x1, . . . , xd, y) ∈ Rd+1 with
x = (x1, . . . , xd), then it can be “below” if y < f(x),
“above” if y > f(x), or “on” if y = f(x).

The Minkowski sum between two sets A,B ⊂ Rd+1

is the set of all pairwise additions between A and B,
{a + b | a ∈ A, b ∈ B}, and is denoted A ⊕ B. Let
Md

p be the set of all these inflated polynomials con-
structed as the Minkowski sum of the points “on" a
polynomial (the set A) and a ball (the set B). Let
Bdr be the set of d-dimensional balls with radius r.
That is, Md

p = {P ⊕ B | B ∈ Bd+1
r , r ∈ R, P ∈

R[x1, . . . , xd] of degree at most p}.

Range spaces and VC dimension. A range space is
a tuple (X,R), where X is called the ground set and
R is called the range set, where all sets in the range
set are a subset of the ground set. R is often defined
in terms of geometric objects. R could be the set of
disks for X = R2, intervals on X = R, linear halfspaces
on X = Rd, or as points below (or on) polynomials in
X = Rd. When X ⊂ Rd is set of points, then these
example ranges R are the induced subset of X contained
in some such shape.
Similar to a restriction over a family of functions to

a subset of the domain, we will define the projection of
range space R onto Y ⊂ X as R|Y := {R ∩ Y | R ∈ R}.
For a range space (X,R), if the projection R|Y contains
all subsets of Y , then R shatters Y . The VC dimension
of (X,R) is the maximum cardinality of any shattered
subset of X.
In this paper we mostly consider real ground sets

X = Rd or X ⊂ Rd, in which case a range space is
defined by its range sets, and thus for simplicity we refer
to the VC dimension of range sets, where the real ground
set and corresponding range space are implicit. Simple
examples of VC dimension ν include: for disks in R2

then ν = 3, for intervals in R2 then ν = 2, for linear
halfspaces in Rd then ν = d+ 1, and for polynomials of
degree p in Rd then ν = O(dp). For polynomials of any
degree in Rd then ν is unbounded – it is infinite.

2.1 Sample Complexity

For a domain X consider a classifier function h : X →
{0, 1}, it maps any element x ∈ X to either 0 or 1. Then
given a probability distribution µ on Z = X × {0, 1},
the error of h with respect to µ, written erµ(h), is the
probability that (x, y) ∼ µ such that h(x) 6= y. The
goal of classification, for some family of classifiers H and
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some µ, is to find an h ∈ H with erµ(h) as small as
possible.

The other side of this seeks to minimize the number of
samples required to achieve a certain error on a learned
classifier h ∈ H for some family H. For a set of m
samples P = (x1, y1), . . . , (xm, ym) drawn i.i.d. from µ,
let µP be the sample distribution induced by this set.
Let ε, δ ∈ (0, 1). The sample complexity is defined as
the smallest m such that erµP

(h) ≤ erµ(h) + ε holds
with probability at least 1 − δ for all h ∈ H. Then
for parameters ε, δ ∈ (0, 1) we seek to minimize m so
that for all h ∈ H we have erµP

(h) ≤ erµ(h) + ε, with
probability at least 1− δ. Since this condition holds for
h∗ := infh∈H erµP

(h), we can then “learn” h∗ on P and
know it will ε-approximately hold (with probability at
least 1− δ) on µ.
The family of classifiers H defines a range set, and

when X ⊂ Rd, the VC dimension ν of this range space
(X,H) determines the sample complexity m. Vapnik
and Chervonenkis [37] and refined by [23, 1] show that
m = O( 1

ε2 (ν + log 1
δ )) samples are sufficient.

When a perfect classifier h exists, one where erµ(h) =
0, the sample complexity is lower; using only m =
O(νε log ν

εδ ) samples is sufficient [20].

2.2 Methods of Bounding VC Dimension

There are two powerful methods for bounding complex
range spaces. The first is via composition arguments,
where we break (via unions and intersections) a complex
range space into simple ranges for which bounds are
known, and then bound the complex range by aggregat-
ing the effect of the simple ranges. The second is via
circuit arguments, where computing set inclusion within
a computational framework is used to derive an upper
bound for the range space.

Composition argument. Let (X,R1), . . . , (X,Rs) be
a set of range spaces with VC dimension ν1, . . . , νs,
respectively. Let f(r1, . . . , rs) be a function defined
element-wise over the domain X (i.e., unions and inter-
sections), that maps any s-tuple of sets r1 ∈ R1, . . . , rs ∈
Rs into a subset of X. That is, f corresponds with
a fixed logical formula (i.e., composed of ∨s and ∧s)
over s binary values determined by if x ∈ X is in
each range ri. A element x ∈ X is in the com-
posite range f(r1, . . . , rs) if the logical function re-
turns 1. This process defines a composition range set
R⊕ = {f(r1, . . . , rs) | r1 ∈ R1, . . . , rs ∈ Rs}. Har-
Peled [19][Theorem 5.22] shows for the VC dimension
of the associated range space (X,R⊕) is bounded by
O(sν(1 + log s)) where ν = max{νi}si=1.

Circuit argument. Goldberg and Jerrum [17], and
slightly generalized to this form [1][Theorem 8.4], uses a
circuit of simple operations, defined to consist of

• the arithmetic operations +,−,×, and / on real
numbers,
• jumps conditioned on >,≥, <,≤,= and 6= as com-

parisons of real numbers, and
• output 0 or 1.

Then suppose ha is a function from Rd to {0, 1} param-
eterized by a ∈ Rk. Let ha define a range Ha = {x ∈
X ⊂ Rd | ha(x) = 1} from the associated family of
ranges H = {Ra | a ∈ Rk}. Suppose that ha can be
computed by an algorithm that takes as input the pair
(x, a) ∈ Rd × Rk and returns ha(x) after no more than t
simple operations. Then the VC dimension of (Rd,H) is
at most 4d(t+ 2).
While this approach (perhaps in combination with

composition arguments) seems like it can be applied
to handle most geometrically defined range spaces (say
including inflated polynomials), there is an important
omission from the simple operations: the square root
operation. A square root is needed, for instance, to
encode distance in a radius r ball. More importantly,
simple composition arguments cannot be made, since an
inflated polynomial is a union of an infinite number of
these balls. Towards addressing some such goals (with
respect to range spaces defined by polynomial curves),
[13][Lemma 12] provides a special case where one can
handle a square root inside of the circuit argument:
Consider values a, b, c, d ∈ R with b, d ≥ 0, then one
can compute the truth values of a+

√
b ≤ c+

√
d and

a+
√
b ≥ c+

√
d using O(1) simple operations. However,

restricting to this use of the square root, to apply this
to general range sets in a metric space where the square
root is needed, such as inflated polynomials, one would
need to perform this comparison at an infinite number of
points, or a composition of an infinite number of sets. So
we will still require more powerful machinery from the
existential theory of the reals in real algebraic geometry.

2.3 Algorithms in Real Algebraic Geometry

We next focus on the interpretation of algebraic geome-
try through the perspective of solutions to polynomial
systems. We will mostly follow notation from [3].

P-atoms for P-formulas. For our purposes (specifying
the field to be R), a P-atom is a polynomial equality
or inequality; if P ∈ R[x1, . . . , xd] then the options are
P = 0, P 6= 0, P > 0, or P < 0. Similarly, a P-formula
is a combination of ∧,∨,¬,∀,∃ with P-atoms to form
a logical statement. For example a P-formula could
be ∀x∃y(x2y + 2 > 0 ∧ y ≤ 0). A semialgebraic set is
a finite union of polynomial equalities and polynomial
inequalities. For instance, x2 − y ≤ 0 ∪ x − y > 0 is a
semialgebraic set in the plane (R2). In [3] they detail a
large number of algorithms on real polynomials. We will
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use two key results from this work: Tarski queries and
existential decidability over a subset of P-formulas.

Arithmetic operations for algebraic geometry. As de-
tailed in [4], the complexity of algorithms within alge-
braic geometry is given in terms of specified allowable
arithmetic operations between elements of a chosen set.
These operations and a chosen set define the structure
of an algorithm. The structures which concern us are a
ring, an integral domain, and an ordered integral domain.
A ring structure defines the allowable operations to be
+,−,×, and = 0, where = 0 is the unary operation of
deciding if an element in the ring is zero. An integral
domain structure defines, in addition to the ring struc-
ture, exact division /, between two elements given that
division will be in the integral domain. An ordered inte-
gral domain structure defines, in addition to the integral
domain structure, comparison between elements with
>,=, and < operations.
Importantly, R is an ordered integral domain, and

the “simple operations” in the circuit argument [17, 1]
include all allowable arithmetic operations for a ordered
integral domain. Hence a bound on arithmetic operations
provides a bound on simple operations.

Univariate Tarski queries. The first real algebraic ge-
ometry result we use is Pollack’s [3] Algorithm 9.5 for
counting roots of a univariate polynomial. The cited
form includes an extra parameter Q ∈ R[x] that repre-
sents a more general query called a Tarski query. By tak-
ing Q = 1 then a Tarski query is equivalent to computing
the number of roots as given in Sturm’s theorem,1 which
is specifically for univariate polynomials. Ultimately, a
univariate Tarski query can take in a univariate poly-
nomial P ∈ R[x] \ {0} (that is, not including the trivial
0 polynomial), it outputs the number of elements in
{x ∈ R | P (x) = 0} using O(p+ 1) simple operations.

Decidability. Next we will use a result regarding decid-
ability, specifically over the language that is the theory
of real closed fields. The Tarski–Seidenberg Theorem im-
plies that the theory of the real closed fields is decidable.
Yet it was only with Collins’s [11] use of cylindrical alge-
braic decomposition that a doubly exponential bound
was found. There is a simpler problem which only allows
for existential quantifiers. This problem is known as
the existential theory of the reals, with the first singly
exponential complexity provided by Renegar [31].

Consider first-order logical statements in the following
form: ∃x1, . . .∃xd F (x1, . . . , xd) where F (x1, . . . , xd) is
a quantifier free P-formula. Determining if that state-
ment is true or false is called the decision problem for the
existential theory of the reals. When P ⊂ R[x1, . . . , xd]
is a finite set of s polynomials each of degree at most

1see Theorem 2.50 and Theorem 2.61 in [3]

p, then there is an algorithm to decide the truth of
∃x1, . . . ,∃xd F (x1, . . . , xd) using sd+1pO(d) simple oper-
ations.

3 New VC Dimension Bounds

We begin with a two-dimensional bound for univariate
inflated polynomials, based on Tarski queries. Then we
generalize to d-dimensional inflated polynomials using
Renegar’s algorithm. We provide a lower bound of the
same order, which matches when d = 1.

3.1 Upper Bound of VC Dimension for Inflated
Polynomials

We first translate inflated polynomials into the lan-
guage of existential algebraic geometry. Consider range
space (Rd+1,Md

p), and a query point w ∈ Rd+1, and
inflated polynomial Pr ∈ Md

p. Then w is in Pr if and
only if ∃x0 ∈ P (Rd)(‖w − (x0, P (x0))‖2 ≤ r) where P
is the polynomial of the inflated polynomial Pr, and
(x0, P (x0)) is a point on that polynomial in Rd+1. A uni-
variate degree-p polynomial curve in R2 is an element of
(R2,M1

p), which is the domain of our first upper bound.

Theorem 2 The range space (R2,M1
p), where M1

p is
composed of only univariate inflated polynomials, has
VC dimension O(p).

Proof. We must find a point on the polynomial close
enough to w = (w1, w2). And ‖w − (x, P (x))‖2 ≤ r
implies (w1 − x)2 + (w2 − P (x))2 − r2 ≤ 0. Notice that
this is a polynomial inequality. As P is defined for all
R, the distance is unbounded from above and, due to
the squared terms, that the final polynomial has even
degree. Therefore, to determine if there exists an x that
satisfies the inequality (≤ 0) above it is sufficient to
count roots of the polynomial. That is, since the number
of roots is the number of times a set satisfies = 0, and it
is +∞ as x→ {−∞,+∞}, then if the number of roots
is non-zero, there must exist a point x where the ≤ 0
condition is satisfied. Using univariate Tarski queries,
we can count the real roots of univariate polynomials in
O(p+ 1) simple operations, with p the degree of P .

Then we can use the circuit argument with a bound on
the number of free variables d = 1 and depth in simple
operations of the circuit as t = O(p+ 1). Hence the VC
dimension is 4d(t+ 2) = O(p). �

Now we will generalize to multivariate polynomials by
using a decision algorithm.

Theorem 3 The range space (Rd+1,Md
p) of inflated

polynomials in Rd+1 has VC dimension O(dpO(d)).

Proof. Consider an inflated polynomial Pr of degree
p and fix w ∈ Rd+1. We must find a point x ∈ Rd
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on the polynomial close enough to w, satisfying ‖w −
(x, P (x))‖2 ≤ r, and equivalently (w1 − x1)2 + . . . +
(wd − xd)2 + (wd+1 − P (x))2 − r2 ≤ 0. As before this is
a polynomial inequality only with more free variables.
Now we will invoke the existential theory of the reals
decidability result of Renegar [31]. To do this we need
to write the inequality into the logical structure desired
by the algorithm.

(∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 = 0

∨ (w1 − x1)
2 + . . .+ (wd − xd)

2 + (wd+1 − P (x))2 − r2 < 0

)
≡ (∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 = 0

)
∨ (∃x1) . . . (∃xd)(
(w1 − x1)

2 + . . .+ (wd − xd)
2 + (wd+1 − P (x))2 − r2 < 0

)
Thus we have two d-variate polynomials we must eval-

uate. The existential theory of the reals algorithm takes
O(pO(d)) simple operations to evaluate for each P-atom.
Now we will use a circuit argument with d free vari-
ables/dimensions and t = pO(d) simple operations. Thus
the VC dimension for one P-atom is O(dpO(d)). Then
using a composition argument, we can combine these
together increasing the bound only a constant factor. �

3.2 Lower Bound of VC Dimension for Inflated Poly-
nomials via Interpolation

We show a lower bound of
(
d+p
p

)
where p is the degree

of the polynomial and d is the number of variables in
the polynomial. The proof uses that a polynomial P ∈
R[x1, . . . , xd] can uniquely interpolate

(
d+p
p

)
points in

Rd+1. With some perturbation, we can always shatter
sets of this size.

Theorem 4 The lower bound of the VC dimension of
(Rd+1,Md

p) is
(
d+p
p

)
.

Proof. Given (Rd+1,Md
p) consider X, a set of points

in Rd+1 where |X| =
(
d+p
p

)
points such that the sample

matrix’s determinant, as in [33], is nonzero. Let Z be a
non empty element of the power set of X. To intersect
all points in Z and none in X \ Z we interpolate over
Z and

(
d+p
p

)
− |Z| perturbed points in X \ Z. We will

perturb these points by adding ε to the final coordinate
of the points in X \ Z. Let Pr ∈ Md

p and P be the
polynomial at the center of Pr. Recall that polynomial
P is a function from Rd → R. If we then interpolate
using Lagrange interpolation detailed in [33] over the Z
and the perturbed points of X \ Z the function will not
interpolate the original points of X \ Z. We know that

perturbing these points does not affect the existence of
the interpolant since changing the final coordinate of
our set does not change the determinant of the sample
matrix. We can then take r sufficiently small so that Pr
does not contain any element of X \ Z. Therefore as we
can interpolate any subset of

(
d+p
p

)
points in this way

the VC dimension of the range space must be at least(
d+p
p

)
. �

If we are dealing with univariate polynomials then the
curve lives in R2 and can shatter

(
1+p
p

)
= p+ 1 points by

the above theorem. Note that this is a lower bound due
to the fact that we are not using the expressiveness of
the radius of the inflated polynomial to our advantage.
Yet as the modification of the radius affects the inflated
polynomial globally, not just locally, its expressiveness
is limited.

Comment on tightness. We have an upper bound and
a lower bound on the VC dimension of the inflated
polynomial range space (Rd+1,Md

p). When p is constant
then

(
d+p
p

)
= Θ(dp) and when d is constant, then

(
d+p
p

)
=(

d+p
d

)
= Θ(pd). So for constant d, we have upper bound

of O(pO(d)) and lower bound of Ω(pd). For d = 1, we
have established Θ(p) VC dimension.

4 Application in Robust Adversarial Learning

We highlight an application in robust adversarial learn-
ing. Others implications can be found in Appendix A
and by connecting to results in coresets [15], hitting
sets [5], and range searching [8].

Adversarial attacks on classifiers refers to when some-
one makes small perturbations to input data so it fools
a classifier. This phenomenon has been demonstrated
in images, question answering, voice recognition, among
other areas [35, 7, 34, 18]. Current defenses against
adversarial robustness [24, 6, 12, 26, 27, 29] may have
undesirable consequences, such as decreasing test accu-
racy, leading some to investigate a potential trade-off
between accuracy and robustness [39, 36]. Yet, further
investigation on robustness prevention methods and the
separability of image datasets show that accuracy and
robustness are obtainable for real-life data [38, 30]. Also,
random smoothing of a classifier, a defense in which
you randomly sample around points within the data to
build robustness [10, 32, 22] has been effective in low
dimensions yet may be untenable in high dimension [21].
To formalize this problem, we need to consider a

classifier h : Rd → {−1, 1}. Let Bγ(x) = {x′ ∈ Rd |
‖x′ − x‖2 ≤ γ} be the l2 ball of radius γ around x,
which describes the allowable perturbations around a
data point x ∈ Rd. We say a point (x, y) ∈ Rd ×{−1, 1}
is γ-safe from h if all x′ ∈ Bγ(x) has that h(x′) = y; this
implies it is sufficiently far from the decision boundary.
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The γ-error can be measured on a distribution µ as the
probability a sample (x, y) ∼ µ is not γ-safe.
Prior work has defined a few notions of adversarial

robustness. [14] considers the expected minimum Eu-
clidean distance γ of a point x to decision boundary of h,
formally: E(x,y)∼µ[minx′∈Rd ‖x′− x‖2 such that h(x′) 6=
y.] This line of work uses specific function classes (some
linear and quadratic classifiers) H, which can use the
value h(x) to upper bound the expected perturbation
radius γ for specific distributions (e.g., µ is Gaussian or
uniform for each class). [34] defines robust classification
error as the probability of drawing a γ-safe point from
µ, mostly focusing on l∞ perturbations. They show
for linear models on Gaussian mixture distributions µ
that more samples are needed to generalize wrt robust
classifiers error than just classification error.

Our work, extends this to more general distributions,
more complex (polynomial) classifiers, and to Euclidean
perturbations. An important point to make is that while
polynomials can be linearized to a higher-dimensional
space so whether a point is classified correctly by the
polynomial is preserved, this does not preserve the dis-
tance to the decision boundary, and so such techniques
cannot be directly applied to understand the learnability
of these polynomial classification problems.
Let Hp = {sgn ◦ h | h ∈ Pp} where Pp = {f ∈

R[X1, . . . , Xd] : deg(f) ≤ p}. The key insight is to
describe a range space (Rd×{−1, 1},Rp) derived from Pp
and a robustness parameter γ > 0. Each function h ∈ Hp
maps to a function g : Rd × {−1, 1} → {−1, 1}, where
g(x, y) = 1 if and only if (x, y) is γ-safe with respect to
h. This takes on two cases, if y = +1, then h(x) must be
positive and x not in the γ-inflated polynomial around
the decision boundary. Similarly, if y = −1, then h(x)
must be negative and x not in the γ-inflated polynomial.

Lemma 5 The VC dimension of (Rd × {−1, 1},Rp) is
O(p) for d = 1 and O(dpO(d)) for d > 1.

Proof. We can apply the composition argument detailed
in Section 2.2 to the two d-dimensional ranges considered:
at y = +1 the complement of an inflated polynomial
and a polynomial, and at y = −1 the complement of an
inflated polynomial and a polynomial, all of degree p; see
example in Figure 2. All of these ranges are derived from
the same polynomial f ∈ R[X1, . . . , Xd], but this only
restricts the range space and does not increase the VC
dimension. For the composition of a constant number
of range spaces, the VC dimension is asymptotically the
max of them. The stated bounds follow from the inflated
polynomial bounds in Theorem 2 and Theorem 3. �

Next we analyze the learnability of polynomial classi-
fiers which are γ-robust; those deemed successful on data
which is γ-safe. The previous lemma demonstrated that
such classifiers can be characterized with range spaces

Figure 2: Decomposition of robust polynomial classifica-
tion into ranges.

with bounded VC dimension, and directly linked to that
for inflated polynomials.
We first focus on non-agnostic learning, where 0 er-

ror can be achieved on a sample from family H. The
non-agnostic robust sample complexity of a family H, a
parameter γ > 0, and a distribution µ is the size of the
smallest iid sample P = {(xi, yi)} ⊂ µ so that for any
h ∈ H with γ-error of zero on µP , then with probability
at least 1− δ, it has at most γ-error of ε on µ.

Theorem 6 For any γ > 0, the non-agnostic robust
sample complexity is O(pε log p

εδ ) for univariate polyno-

mials of degree at most p and O(pd
O(d)

ε log pdO(d)

εδ ) for
d-variate polynomials of degree at most p.

Proof. Let any function g ∈ Rp have g(x, y) = 1 iff the
point (x, y) ∈ Rd × {−1, 1} is γ-safe. By assumption of
the theorem there is a function g ∈ Rp with erµP

(g) = 0
on a sample P . Then by bounding the VC dimension in
Lemma 5 and applying the non-agnostic bound of [20],
we obtain the claimed result. �

We can also apply this to agnostic settings, where we
cannot guarantee a perfect classifier. The agnostic robust
sample complexity of a family H, a parameter γ > 0,
and a distribution µ is the size of the smallest iid sample
P{(xi, yi)} ⊂ µ so that for any h ∈ H with γ-error of
η on µP , then with probability at least 1− δ, it has at
most γ-error of η + ε on µ. By the same argument as in
Theorem 6 but applying the more general bound of [23],
we obtain the following result which has no assumptions
on the distribution µ.

Theorem 7 For any γ > 0, the agnostic robust sample
complexity is O( 1

ε2 (p+log 1
δ )) for univariate polynomials

of degree at most p and O( 1
ε2 (pdO(d) + log 1

δ )) for d-
variate polynomials of degree at most p.

5 Conclusion & Discussion

This paper uses a combination of traditional techniques
of bounding VC dimension and algorithms in algebraic
geometry to bound the VC dimension of complex range
spaces. These techniques are useful for ranges defined
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with a combination of polynomials and existential quan-
tifiers, such as geometric ranges of all points within a
fixed Euclidean distance from an object. These apply
as long as the geometric object can be described as a
polynomial, or by n polynomial pieces. A key example
is the class of inflated polynomials; for one such range,
a point x0 is inside if there exists a ball, centered on the
defining polynomial, which contains x0. These results
have implications in range searching, hitting sets, and
learning on swept out polynomial curves, as well as in
adversarial learning.

`∞ perturbations. The applications to adversarially-
robust sample complexity we develop focus on how in-
flated polynomials correspond with robust classifiers,
which allow any `2 perturbation of data and still have
the correct classification. Other work in this subarea
has considered `∞ perturbations. We remark here that
the VC-dimension of a polynomial of degree p under `∞
perturbation may not require analysis with existential
theory of the reals. We claim that the Minkowski sum
of an `∞ ball with a polynomial of degree p in R2 can be
described as the composition of 4 polynomial classifiers
of degree p, and O(p) linear segments. Thus, since the
VC dimension of any one of the polynomial parts is O(p),
the composition of the O(p) linear parts is O(log p), and
the composition of these two aspects is O(p).
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A Additional Implications

Smoothed range spaces. Another application related
to robust adversarial learning is the idea of a “smoothed
range space” [28], where the misclassification error is
replaced around a binary decision boundary with a con-
tinuous function, where significantly misclassified points
are given a penalty of 1, but points close to the boundary
(under Euclidean distance) are given a penalty between 0
and 1 according to a continuous rate based on how close.
Zheng and Phillips [28] showed that the VC dimension of
the decision boundary expanded by a Euclidean distance
of r in all directions (i.e., inflated the decision boundary)
governs the sample complexity of this task. However,
this bound was unknown for polynomial decision bound-
aries [9] until this paper. The relevant VC dimension is
that of an inflated polynomial.

Inflated univariate spline classification. An inflated
spline is a polynomial spline that has been inflated with
radius r. A spline is a piecewise polynomial that pre-
serves stronger continuity between pieces. Suppose we
are unaware of an object’s (perhaps a person or vehi-
cle) location over time and that we make a modeling
assumption that the object is traveling along a piecewise
polynomial path. A piecewise polynomial curve, perhaps
a natural cubic spline, could be a more natural assump-
tion than a piecewise polygonal curve. Suppose there is
a low-flying unmanned aerial vehicle (UAV) with a radio
jamming device which is disrupting cellular and GPS
signals within r meters. We would like to approximate
the UAV’s trajectory over time. How many devices with
radio sensors (cell towers, GPS, etc.) do we need to test
(build a binary classifier) with up to 1− ε accuracy, to
induce the path the object took, with probability 1− δ.
It was previously unknown how many radio sensors are
required to be tested, yet in R2 with n polynomial pieces
each with bounded degree p we know now the bound
is m = O( 1

ε2 (np log n + log 1
δ )). The specific applica-

tion described in the Introduction with a polynomial
curve, has n = 1, so the specific bound in that case is
m = O( 1

ε2 (p+ log 1
δ )).

Theorem 8 If points x ∈ R2 within r distance of a uni-
variate polynomial spline are classified as 1 and points
outside r are classified as −1, then to induce a trajec-
tory with ε error, m = O( 1

ε2 (np log n + log 1
δ )) points

randomly chosen are sufficient, with probability 1− δ.

Proof. In R2, by Theorem 2, the VC dimension asso-
ciated with each piece is O(p), if its degree is bounded
by p. Now we must only apply a composition argument
over each piece to get the VC dimension. Therefore
we find the following bound O(np log n) where n is the
number of polynomial pieces used. Hence, the sample
complexity for learning on inflated polynomial splines is
m = O( 1

ε2 (np log n+ log 1
δ )). �
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