This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive or negative. Ideas from linear regression can be applied here, but we will instead overview a different, but still beautiful family of techniques based on linear classification.

This is perhaps the central problem in data analysis. For instance, you may want to predict:

- will a sports team win a game?
- will a politician be elected?
- will someone like a movie?
- will someone click on an ad?
- will I get a job? (If you can build a good classifier, then probably yes!)

Each of these is typically solved by building a general purpose classifier (about sports or movies etc), then applying it to the problem in question.

9.1 Linear Classifiers

Our input here is a point set \(X \subseteq \mathbb{R}^d \), where each element \(x_i \in X \) also has an associated label \(y_i \). And \(y_i \in \{-1, +1\} \).

Like in regression, our goal is prediction and generalization. We assume each \((x_i, y_i) \sim \mu\); that is, each data point pair, is drawn iid from some fixed but unknown distribution. Then our goal is a function \(g : \mathbb{R}^d \to \mathbb{R} \), so that if \(y_i = +1 \), then \(g(x_i) \geq 0 \) and if \(y_i = -1 \), then \(g(x_i) \leq 0 \).

We will restrict that \(g \) is linear. For a data point \(x \in \mathbb{R}^d \), written \(x = (x^{(1)}, x^{(2)}, \ldots, x^{(d)}) \) we enforce that

\[
g(x) = \alpha_0 + x^{(1)}\alpha_1 + x^{(2)}\alpha_2 + \ldots + x^{(d)}\alpha_d = \alpha_0 + \sum_{j=1}^{d} x^{(j)}\alpha_j,
\]

for some set of scalar parameters \(\alpha = (\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_d) \). Typically, different notation is used: we set \(b = \alpha_0 \) and \(w = (w_1, w_2, \ldots, w_d) = (\alpha_1, \alpha_2, \ldots, \alpha_d) \in \mathbb{R}^d \). Then we write

\[
g(x) = b + x^{(1)}w_1 + x^{(2)}w_2 + \ldots + x^{(d)}w_d = \langle w, x \rangle + b.
\]

We can now interpret \((w, b)\) as defining a halfspace in \(\mathbb{R}^d \). Here \(w \) is the normal of that halfspace boundary (the single direction orthogonal to it) and \(b \) is the distance from the origin \(0 = (0, 0, \ldots, 0) \) to the halfspace boundary in the direction \(w/\|w\| \). Because \(w \) is normal to the halfspace boundary, \(b \) is also distance from the closest point on the halfspace boundary to the origin (in any direction).

We typically ultimately use \(w \) as a unit vector, but it is not important since this can be adjusted by changing \(b \). Let \(w, b \) be the desired halfspace with \(\|w\| = 1 \). Now assume we have another \(w', b' \) with \(\|w'\| = \beta \neq 1 \) and \(w = w'/\|w'\| \), so they point in the same direction, and \(b' \) set so that they define the same halfspace. This implies \(b' = b/\beta \). So the normalization of \(w \) can simply be done post-hoc without changing any structure.

Recall, our goal is \(g(x) \geq 0 \) if \(y = +1 \) and \(g(x) \leq 0 \) if \(y = -1 \). So if \(x \) lies directly on the halfspace then \(g(x) = 0 \).
Example: Linear Separator in \mathbb{R}^2

Here we show a set $X \in \mathbb{R}^2$ of 13 points with 6 labeled $+$ and 7 labeled $-$. A linear classifier perfectly separates them. It is defined with a normal direction w (pointing towards the positive points) and an offset b.

Using techniques we have already learned, we can immediately apply two approaches towards this problem.

Linear classification via linear regression. For each data points $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$, we can immediately represent x_i as the value of d explanatory variables, and y_i as the single dependent variable. Then we can set up a $n \times (d + 1)$ matrix \tilde{X}, where the ith row is $(1, x_i)$; that is the first coordinate is 1, and the next d coordinates come from the vector x_i. Then with a $y \in \mathbb{R}^n$ vector, we can solve for

$$\alpha = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y$$

we have a set of $d + 1$ coefficients $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_d)$ describing a linear function $g : \mathbb{R}^d \to \mathbb{R}$ defined

$$g(x) = \langle \alpha, (1, x) \rangle.$$

Hence $b = \alpha_0$ and $w = (\alpha_1, \alpha_2, \ldots, \alpha_d)$. For x such that $g(x) > 0$, we predict $y = +1$ and for $g(x) < 0$, we predict $y = -1$.

However, this approach is optimizing the wrong problem. It is minimizing how close our predictions $g(x)$ is to -1 or $+1$, by minimizing the sum of squared errors. But our goal is to minimize the number of mispredicted values, not the numerical value.
Example: Linear Regression for Classification

We show 6 positive points and 7 negative points in \mathbb{R}^d mapped to \mathbb{R}^{d+1}. All of the d-coordinates are mapped to the x-axis. The last coordinate is mapped to the y-axis and is either $+1$ (a positive points) or -1 (a negative points). Then the best linear regression fit is shown, and the points where it has y-coordinate 0 defines the boundary of the halfspace. Note, despite there being a linear separator, this method misclassifies two points because it is optimizing the wrong measure.

Linear classification via gradient descent. Since, the linear regression SSE cost function is not the correct one, what is the correct one? We might define a cost function Δ

$$
\Delta(g, (X, y)) = \sum_{i=1}^{n} (1 - \mathbb{1}(\text{sign}(y_i) = \text{sign}(g(x_i))))
$$

which uses the identity function $\mathbb{1}$ (defined $\mathbb{1}(\text{TRUE}) = 1$ and $\mathbb{1}(\text{FALSE}) = 0$) to represent the number of misclassified points. This is what we would like to minimize.

Unfortunately, this function is discrete, so it does not have a useful (or well-defined) gradient. And, it is also not convex. Thus, encoding g as a $(d + 1)$-dimensional parameter vector $(b, w) = \alpha$ and running gradient descent is not feasible.

However, most classification algorithms run some variant of gradient descent. To do so we will use a different cost function as a proxy for Δ, called a *loss function*. We explain this next.

9.1.1 Loss Functions

To use gradient descent for classifier learning, we will use a proxy for Δ called a loss functions \mathcal{L}. These are sometimes implied to be convex, and their goal is to approximate Δ. And in most cases, they are decomposable, so we can write

$$
\mathcal{L}(g, (X, y)) = \sum_{i=1}^{n} \ell_i(g, (x_i, y_i))
$$

$$
= \sum_{i=1}^{n} \ell_i(z_i) \text{ where } z_i = y_i g(x_i).
$$

Note that the clever expression $z_i = y_i g(x_i)$ handles when the function $g(x_i)$ correctly predicts the positive or negative example in the same way. If $y_i = +1$, and correctly $g(x_i) > 0$, then $z_i > 0$. On the other hand, if $y_i = -1$, and correctly $g(x_i) < 0$, then also $z_i > 0$. For instance, the desired cost function, Δ is written

$$
\Delta(z) = \begin{cases}
0 & \text{if } z \geq 0 \\
1 & \text{if } z < 0.
\end{cases}
$$
Most loss functions $l_i(z)$ which are convex proxies for Δ mainly focus on how to deal with the case $z_i < 0$ (or $z_i < 1$). The most common ones include:

- hinge loss: $l_i = \max(0, 1 - z)$
- smoothed hinge loss: $l_i = \begin{cases}
0 & \text{if } z \geq 1 \\
(1 - z)^2/2 & \text{if } 0 < z < 1 \\
\frac{1}{2} - z & \text{if } z \leq 0
\end{cases}$
- squared hinge loss: $l_i = \max(0, 1 - z)^2$
- logistic loss: $l_i = \ln(1 + \exp(-z))$

The hinge loss is the closest convex function to Δ; in fact it strictly upper bounds Δ. However, it is non-differentiable at the “hinge-point,” (at $z = 1$) so it takes some care to use it in gradient descent. The smoothed hinge loss and squared hinge loss are approximations to this which are differentiable everywhere. The squared hinge loss is quite sensitive to outliers (similar to SSE). The smoothed hinge loss (related to the Huber loss) is a nice combination of these two loss functions.

The logistic loss can be seen as a continuous approximation to the ReLU (rectified linear unit) loss function, which is the hinge loss shifted to have the hinge point at $z = 0$. The logistic loss also has easy-to-take derivatives (does not require case analysis) and is smooth everywhere. Minimizing this loss for classification is called logistic regression.

9.1.2 Cross Validation and Regularization

Ultimately, in running gradient descent for classification, one typically defines the overall cost function f also using a regularization term $r(\alpha)$. For instance $r(\alpha) = \|\alpha\|^2_2$ is easy to use (has nice derivatives) and $r(\alpha) = \|\alpha\|_1$ (the L_1 norm) induces sparsity (for reasons not covered in this text). In general, the regularizer typically penalizes larger values of α, resulting in some bias, but less over-fitting of the data.

The regularizer $r(\alpha)$ is combined with a loss function $\mathcal{L}(g_\alpha, (X, y)) = \sum_{i=1}^n l_i(g_\alpha, (x_i, y_i))$ as

$$f(\alpha) = \mathcal{L}(g_\alpha, (X, y)) + \eta r(\alpha),$$

where $\eta \in \mathbb{R}$ is a regularization parameter that controls how drastically to regularize the solution.

Note that this function $f(\alpha)$ is still decomposable, so one can use batch, incremental, or most commonly stochastic gradient descent.

Cross-validation. Backing up a bit, the true goal is not minimizing f or \mathcal{L}, but predicting the class for new data points. For this, we again assume all data is drawn iid from some fixed but unknown distribution. To evaluate how well out results generalizes, we can use cross-validation (holding out some data from the training, and calculating the expected error of Δ on these held out “testing” data points).

We can also choose the regularization parameter η by choosing the one that results in the best generalization on the test data after training using each on some training data.
9.2 Perceptron Algorithm

Of the above algorithms, generic linear regression is not solving the correct problem, and gradient descent methods do not really use any structure of the problem. In fact, as we will see we can replace the linear function $g_\alpha(x) = \langle \alpha, (1, x) \rangle$ with any function g (even non-linear ones) as long as we can take the gradient.

Now we will introduce the perceptron algorithm which explicitly uses the linear structure of the problem. (Technically, it only uses the fact that there is an inner product – which we will exploit in generalizations.)

Simplifications: For simplicity, we will make several assumptions about the data. First we will assume that the best linear classifier (w^*, b^*) defines a halfspace whose boundary passes through the origin. This implies $b^* = 0$, and we can ignore it. This is basically equivalent to (for data point $(x'_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ using $x_i = (1, x'_i) \in \mathbb{R}^d$ where $d' + 1 = d$.

Second, we assume that for all data points (x_i, y_i) that $\|x_i\| \leq 1$ (e.g., all data points live in a unit ball). This can be done by choosing the point $x_{\text{max}} \in X$ with largest norm $\|x_{\text{max}}\|$, and dividing all data points by $\|x_{\text{max}}\|$ so that point has norm 1, and all other points have smaller norms.

Finally, we assume that there exists a perfect linear classifier. One that classifies each data point to the correct class. There are variants to deal with the cases without perfect classifiers, but are beyond the scope of this text.

The algorithm. Now to run the algorithm, we start with some normal direction w (initialized as any positive point), and then add mis-classified points to w one at a time.

Algorithm 9.2.1 Perceptron(X, y)

\begin{itemize}
\item Initialize $w = y_i x_i$ for any $(x_i, y_i) \in (X, y)$
\item repeat
\item \hspace{1em} For any (x_i, y_i) such that $y_i \langle x_i, w \rangle < 0$ (is mis-classified) : update $w \leftarrow w + y_i x_i$
\item \hspace{1em} until (no mis-classified points \ or \ T steps)
\item return $w / \|w\|$
\end{itemize}

Basically, if we find a mis-classified point (x_i, y_i) and $y_i = +1$, then we set $w = w + x_i$. This “pushes” w more in the direction of x_i, but also makes it longer. Having w more in the direction of w, tends to make it have dot-product (with a normalized version of w) closer to 1.

Similar, if we find a mis-classified point (x_i, y_i) with $y_i = -1$, the we set $w = w - x_i$; this pushes the negative of w more towards x_i, and thus w more away from x_i, and thus its dot product more likely to be negative.
Implementation Hints:
To implement the Perceptron algorithm, inside the inner loop we need to find some misclassified point \((x_i, y_i)\), if one exists. This can require another implicit loop. A common approach would be to, for some ordering of points \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\) keep an iterator index \(i\) that is maintained outside the repeat-until loop. It is modularly incremented every step: it loops around to \(i = 1\) after \(i = n\). That is, the algorithm keeps cycling through the data set, and updating \(w\) for each misclassified point if observes.

Algorithm: Perceptron\((X, y)\)
\[
\text{Initialize } w = y_i x_i \text{ for any } (x_i, y_i) \in (X, y); \quad \text{Set } i = 1; t = 0; \text{LAST-UPDATE} = 1 \\
\text{repeat} \\
\quad \text{if } (y_i \langle x_i, w \rangle < 0) \\
\quad \quad w \leftarrow w + y_i x_i \\
\quad \quad t = t + 1; \quad \text{LAST-UPDATE} = i \\
\quad i = i + 1 \mod n \\
\text{until } (t = T \quad \text{or} \quad \text{LAST-UPDATE} = i) \\
\text{return } w \leftarrow w/\|w\| \\
\]

The margin. To understand why the perceptron works, we need to introduce the concept of a margin. Given a classifier \((w, b)\), the margin is
\[
\gamma = \min_{(x_i, y_i) \in X} y_i(\langle w, x_i \rangle + b).
\]
Its the minimum distance of any data point \(x_i\) to the boundary of the halfspace. In this sense the optimal classifier (or the maximum margin classifier) \((w^*, b^*)\) is the one that maximizes the margin
\[
(w^*, b^*) = \arg \max_{(w, b)} \min_{(x_i, y_i) \in X} y_i(\langle w, x_i \rangle + b) \\
\gamma^* = \min_{(x_i, y_i) \in X} y_i(\langle w^*, x_i \rangle + b^*).
\]

A max-margin classifier, is one that not just classifies all points correctly, but does so with the most “margin for error.” That is, if we perturbed any data point or the classifier itself, this is the classifier which can account for the most perturbation and still predict all points correctly. It also tends to generalize (in the cross-validation sense) to new data better than other perfect classifiers.
For a set X of 13 points in \mathbb{R}^2, and a linear classifier defined with (w, b). We illustrate the margin in pink. The margin $\gamma = \min(x_i, y_i) y_i (\langle w, x_i \rangle + b)$. The margin is drawn with an $\epsilon \epsilon$ for each support point.

The maximum margin classifier (w^*, b^*) for $X \subset \mathbb{R}^d$ can always be defined uniquely by $d + 1$ points (at least one negative, and at least one positive). These points $S \subset X$ are such that for all $(x_i, y_i) \in S$

$$\gamma^* = y_i \langle w^*, x_i \rangle + b.$$

These are known as the support points, since they “support” the margin strip around the classifier boundary.
Geometry of Why Perceptron Works

Here we will show that after at most \(T = (1/\gamma^*)^2 \) steps (where \(\gamma^* \) is the margin of the maximum margin classifier), then there can be no more misclassified points.

To show this we will bound two terms as a function of \(t \), the number of mistakes found. The terms are \(\langle w, w^* \rangle \) and \(\|w\|^2 = \langle w, w \rangle \); this is before we ultimately normalize \(w \) in the return step.

First we can argue that \(\|w\|^2 \leq t \), since each step increases \(\|w\|^2 \) by at most 1:

\[
\langle w + y_i x_i, w + y_i x_i \rangle = \langle w, w \rangle + (y_i)^2 \langle x_i, x_i \rangle + 2y_i \langle w, x_i \rangle \leq \langle w, w \rangle + 1 + 0.
\]

This is true since each \(\|x_i\| \leq 1 \), and if \(x_i \) is mis-classified, then \(y_i \langle w, x_i \rangle \) is negative.

Second, we can argue that \(\langle w, w^* \rangle \geq t \gamma^* \) since each step increases it by at least \(\gamma^* \). Recall that \(\|w^*\| = 1 \):

\[
\langle w + y_i x_i, w^* \rangle = \langle w, w^* \rangle + (y_i) \langle x_i, w^* \rangle \geq \langle w, w^* \rangle + \gamma^*.
\]

The inequality follows from the margin of each point being at least \(\gamma^* \) with respect to the max-margin classifier \(w^* \).

Combining these facts (\(\langle w, w^* \rangle \geq t \gamma^* \) and \(\|w\|^2 \leq t \)) together we obtain

\[
t \gamma^* \leq \langle w, w^* \rangle \leq \langle w, \frac{w}{\|w\|} \rangle = \|w\| \leq \sqrt{t}.
\]

Solving for \(t \) yields \(t \leq (1/\gamma^*)^2 \) as desired.

9.3 Kernels

It turns out all we need to get any of the above perceptron machinery to work is a well-defined (generalized) inner-product. For two vectors \(p = (p_1, \ldots, p_d), x = (x_1, \ldots, x_d) \in \mathbb{R}^d \), we have always used as the inner product:

\[
\langle p, x \rangle = \sum_{i=1}^{d} p_i \cdot x_i.
\]

However, we can define inner products more generally as a kernel \(K(p, x) \). For instance, we can use the following non-linear functions

- \(K(p, x) = \exp(-\|p - x\|^2/\sigma^2) \) for the Gaussian kernel, with bandwidth \(\sigma \),
- \(K(p, x) = \exp(-\|p - x\|/\sigma) \) for the Laplace kernel, with bandwidth \(\sigma \), and
- \(K(p, x) = (\langle p, x \rangle + c)^r \) for the polynomial kernel of power \(r \), with control parameter \(c > 0 \).

Are these linear classifiers? No. In fact, this is how you model various forms of non-linear classifiers. The “decision boundary” is no longer described by the boundary of a halfspace. For the polynomial kernel, the boundary must now be a polynomial surface of degree \(r \). For the Gaussian and Laplace kernel it can be even more complex; the \(\sigma \) parameter essentially bounds the curvature of the boundary.
9.3.1 The Dual: Mistake Counter

To use a more general kernel within the Perceptron algorithm, we need a different interpretation of how to keep track of the weight vector \(w \). Recall, that each step we increment \(w \) by \(y_i x_i \) for some misclassified data point \((x_i, y_i)\). Instead we will maintain a length \(n \) vector \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \), where \(\alpha_i \) represents the number of times that data point \((x_i, y_i)\) has been misclassified. That we can rewrite

\[
w = \sum_{i=1}^{n} \alpha_i y_i x_i.
\]

That is, instead of directly maintaining \(w \), we maintain a length \(n \) set of counters \(\alpha \), and keep track of which signed data points \(y_i x_i \) to be added to reconstruct \(w \) as needed. Now in the linear case the function \(g \), applied to a new data point \(p \in \mathbb{R}^d \) becomes

\[
g(p) = \langle w, p \rangle = \left\langle \sum_{i=1}^{n} \alpha_i y_i x_i, p \right\rangle = \sum_{i=1}^{n} \alpha_i y_i \langle x_i, p \rangle.
\]

This seems wasteful to keep such a large vector \(\alpha \in \mathbb{R}^n \) around, especially if the number of data points \(n \) becomes very large. In contrast, the size of the original version \(w \in \mathbb{R}^d \) does not change as the dataset increases. However, we only need to keep track of the non-zero elements of \(\alpha \), and if we run perceptron, there are at most \((1/\gamma^*)^2\) of these. So this is not significantly more space, depending on the relationship between \(d \) and \(1/\gamma^* \).

The beauty of this form, is that now we can easily replace \(\langle x_i, p \rangle \) with any other kernel \(K(x_i, p) \). That is, the function \(g(p) \) now becomes generalized to

\[
g(p) = \langle w, p \rangle = \sum_{i=1}^{n} \alpha_i y_i K(x_i, p).
\]

Note this \(g \) is precisely a kernel density estimate, with some elements having negative weights (if \(y_i = -1 \)). Then a point \(p \) is classified as positive if \(g(p) > 0 \) and negative otherwise.

9.3.2 Feature Expansion

If the margin is small, the data is not separable, or we simply do not want to deal with the unknown size of a mistake counter, there is another option to use these non-linear kernels. We can take all data, and apply a non-linear transformation to a higher-dimensional space so the problem is linear again.

For a polynomial kernel, on \(d \)-dimensional data points, this is equivalent to the polynomial regression expansion, described in Chapter 5.3. For a two dimensional data point \(p = (p_1, p_2) \), we map this to a 5-dimensional space

\[
p \mapsto q = (q_1 = p_1, q_2 = p_2, q_3 = p_1^2, q_4 = p_1 p_2, q_5 = p_2^2).
\]

Then we search over a 6-dimensional parameter space \((b, w) \) with \(w = (w_1, w_2, w_3, w_4, w_5) \) and (with an abuse of notation, since the dimension of \(w \) is not \(d \)) the kernel defined \(K(p, w) = \langle q, w \rangle \). More specifically, the \(z \) associated with a data point \((p, y)\) as input to a loss function \(\ell(z) \) is defined

\[
z = y \cdot (K(p, w) + b) = y \cdot \langle q, w \rangle + b.
\]

Note that the number of free parameters in the feature expansion version of the polynomial kernel is larger than when retaining the kernel in the form \(K(x, p) = \langle (x, p) + b \rangle^r \), when it is only \(d + 1 \). In particular,
when \(p \in \mathbb{R}^d \) and the polynomial degree \(r \) is large, then this dimensionality can get high very quickly; the dimension of \(q \) is \(O(q^r) \).

Such expansion is also possible for many other radius basis kernel (e.g., Gaussian, Laplace), but it is only approximate and randomized. Usually it requires the dimensionality of \(q \) to be about 100 or more to get a faithful representation.

Like in the case of regression, overfitting can be an issue. However, this effect can be mostly controlled by the regularization term. In the case of the polynomial kernel limiting the polynomial degree \(r \), prevents too complex a model. With the Gaussian and Laplace, and other similar kernels, the increased dimensionality does not lead to overfitting, but too small a value of \(\sigma \) may. In both cases these parameters (\(r \) and \(\sigma \)) can be appropriately chosen with cross-validation.

9.3.3 Support Vector Machines

A more general way to work with complex kernels is called a support vector machine or SVM. Like with the illustration of the margin for linear classifiers, there are a small number of data points which determine the margin, the support vectors. Just these points are enough to determine the optimal margin.

In the case of complex non-linear kernels (e.g., Gaussians), all of the points may be support vectors. Worse, the associated linear expanded space, the result of complete variable expansion, is actually infinite! This means, the true weight vector \(w \) would be infinite as well, so there is no feasible way to run gradient descent on its parameters.

However, in most cases the actual number of support vectors is small. Thus it will be useful to represent the weight vector \(w \) as a linear combination of these support vectors, without every explicitly constructing them. Consider a linear expansion of a kernel \(K \) to an \(m \)-dimensional space (think of \(m \) as being sufficiently large that it might as well be infinite). However, consider if there are only \(k \) support vectors \(\{s_1, s_2, \ldots, s_k\} \subset X \) where \(X \) is the full data set. Each support vector \(s_i \in \mathbb{R}^d \) has a representation \(q_i \in \mathbb{R}^m \). But the normal vector \(w \in \mathbb{R}^m \) can be written as a linear combination of the \(q_i \)'s; that is, for some parameters \(\alpha_1, \alpha_2, \ldots, \) we must be able to write

\[
 w = \sum_{i=1}^{k} \alpha_i q_i
\]

Thus, given the support vectors \(\{s_1, \ldots, s_k\} \) we can represent \(w \) in the span of \(S \) (and the origin), reparametrized as a \(k \)-dimensional vector \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k) \). This \(\alpha \) vector is precisely the mistake counter for only the support vectors (the non-zero components), although in this case the coordinates need not be integers.

More concretely, we can apply this machinery without ever constructing the \(q_i \) vectors. Each can be implicitly represented as the function \(q_i = K(s_i, \cdot) \). Recall, we only ever need to use the \(q_i \) in \(\langle q_i, w \rangle \). And we can expand \(w \) to

\[
 w = \sum_{i=1}^{k} \alpha_i q_i = \sum_{i=1}^{k} \alpha_i K(s_i, \cdot).
\]

Given this expansion, if we consider a special class of kernels called “reproducing kernels” which include Gaussian and Laplace, then we have a super-cool property:

\[
 K(w, p) = \sum_{i=1}^{k} \alpha_i K(s_i, p).
\]

Ultimately, for a data point \((p, y) \), the \(z \) in the loss function \(\ell(z) \) is defined

\[
 z = y K(w, p) = y \sum_{i=1}^{k} \alpha_i K(s_i, p).
\]
There are multiple ways to actually optimize SVMs: the task of finding the support vectors $S = \{s_1, \ldots, s_k\}$, and assigning their weights $\alpha = \{\alpha_1, \ldots, \alpha_k\}$. One is to run the kernelized Perceptron algorithm, as outlined above. Alternatively, given a fixed set of support vectors S, one can directly optimize over α using gradient descent, including any loss function and regularizer as before with linear classifiers. Thus, if we do not know S, we can just assume $S = X$, the full data set. Then we can apply standard gradient descent over $\alpha \in \mathbb{R}^n$. As mentioned, in most cases, most α_i values are 0 (and those close enough to 0 can often be rounded to 0). Only the points with non-zero weights are kept as support vectors.

Alternatively, stochastic gradient descent works like perceptron, and may only use a fraction of the data points. If we use a version of Hinge Loss, only misclassified points or those near the boundary have a non-zero gradient. The very strongly classified points have zero gradient, and the associated α_i coordinates may remain 0. The proper choice of loss function, and regularizer, can induces sparsity on the α values; and the data points not used are not support vectors.

9.4 kNN Classifiers

Now for something completely different. There are many ways to define a classifier, and we have just touched on some of them. These include decision trees (which basically just ask a series of yes/no questions and are very interpretable) to deep neural networks (which are more complex, far less interpretable, but can achieve more accuracy). We will describe one more simple classifier.

The k-NN classifier (or k-nearest neighbors classifier) works as follows. Choose a scalar parameter k (it will be far simpler to choose k as an odd number, say $k = 5$). Next define a majority function $\text{maj}: \{-1, +1\}^k \rightarrow \{-1, +1\}$. For a set $Y = (y_1, y_2, \ldots, y_k) \in \{-1, +1\}^k$ it is defined

$$
\text{maj}(Y) = \begin{cases}
+1 & \text{if more than } k/2 \text{ elements of } Y \text{ are } +1 \\
-1 & \text{if more than } k/2 \text{ elements of } Y \text{ are } -1.
\end{cases}
$$

Then for a data set X where each element $x_i \in X$ has an associated label $y_i \in \{-1, +1\}$, define a k-nearest neighbor function $\phi_{X,k}(q)$ that returns the k points in X which are closest to a query point q. Next let sign report y_i for any input point x_i; for a set of inputs x_i, it returns the set of values y_i.

Finally, the k-NN classifier is

$$g(q) = \text{maj}(\text{sign}(\phi_{X,k}(q))).$$

That is, it finds the k-nearest neighbors of query point q, and considers all of the class labels of those points, and returns the majority vote of those labels.

A query point q near many other positive points will almost surely return +1, and symmetrically for negative points. This classifier works surprisingly well for many problems but relies on a good choice of distance function to define $\phi_{X,k}$.

Unfortunately, the model for the classifier depends on all of X. So it may take a long time to evaluate on a large data set X. In contrast the functions g for non-kernelized methods above take $O(d)$ time to evaluate for points in \mathbb{R}^d, and thus are very efficient.

9.5 Neural Networks

A neural network is a learning algorithm intuitively based on how a neuron works in the brain. A neuron takes in a set of inputs $x = (x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$, weights each input by a corresponding scalar $w = (w_1, w_2, \ldots, w_d)$ and “fires” a signal if the total weight $\sum_{i=1}^d w_i x_i$ is greater than some threshold b.

Math for Data copyright: Jeff M. Phillips
A neural network, is then just a network or graph of neurons like these. Typically, these are arranged in layers. In the first layer, there may be \(d \) input values \(x_1, x_2, \ldots, x_d \). These may provide the input to \(t \) neurons (each neuron might use fewer than all inputs). Each neuron produces an output \(y_1, y_2, \ldots, y_t \). These outputs then serve as the input to the second layer, and so on.

In a neural net, typically each \(x_i \) and \(y_i \) is restricted to a range \([−1, 1]\) or \([0, 1]\) or \([0, \infty)\), not just the two classes \(\{−1, +1\} \). Since a linear function does not guarantee this of its output, instead of a binary threshold, to achieve this at the output of each node, they typically add an activation function \(\phi(y) \). Common ones are

- **hyperbolic tangent**: \(\phi(y) = \tanh(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}} \in [−1, 1] \)
- **sigmoid**: \(\phi(y) = \frac{1}{1 + e^{-y}} = \frac{e^y}{e^y + 1} \in [0, 1] \)
- **ReLu**: \(\phi(y) = \max(0, y) \in [0, \infty) \).

These functions are not linear, and nor binary. They act as a “soft” version of binary. The hyperbolic tangent and sigmoid stretch values near 0 away from 0. Large values stay large (in the context of the range). So it makes most values almost on the boundaries of the range. And importantly, they are differentiable.

The ReLu has become very popular. It is not everywhere differentiable, but is convex. Its basically the most benign version of activation, and is more likely the original neuron, in that if the value \(y \) is negative, it gets snapped to 0. If its positive, it keeps its value.

A two-layer neural network is already a powerful way to build classifiers, and with enough neurons in the middle layer, is capable of learning any function. However, deep neural nets with 3 or often many more layers (say 20 or 100 or more) have become very popular due to their effectiveness in many tasks, ranging from image classification to language understanding. To be effective, typically, this requires heavy engineering in how the layers are defined, and how the connections between layers are made.

Once the connections are determined, then the goal is to learn the weights on each neuron so that for a given input, a final neuron fires if the input satisfies some pattern (e.g., the input are pixels to a picture, and it fires if the picture contains a car). This is theorized to be “loosely” how the human brain works. Although, neural nets have pretty much diverged in how they learn from attempts to replicate the structure and process of learning in the human brain.

Training. Given a data set \(X \) with labeled data points \((x, y) \in X \) (with \(x \in \mathbb{R}^d \) and \(y \in \{−1, +1\} \)), we already know how to train a single neuron so for input \(x \) it tends to fire if \(y = 1 \) and not fire if \(y = −1 \). It is just a linear classifier! So, we can use the perceptron algorithm, or gradient descent with a well-chosen loss function.

However, for neural networks to attain more power than simple linear classifiers, they need to be at least two layers, and are often deep (e.g., for “deep learning”) with 20, 100, or more layers. For these networks, the perceptron algorithm no longer works since it does not properly propagate across layers. However, a version of gradient descent called back-propagation can be used. In short, it computes the gradient across the edge weights in a network by chaining partial derivatives backwards through the network.

Training deep nets to work can be quite finicky. Their optimization function is not convex, and without various training tricks, it can be very difficult to find a good global set of weights. Indeed the best and “right” methods are an active research area.
Exercises

Q9.1: Consider the following “loss” function.
\[\ell_i(z_i) = (1 - z_i)^2 / 2, \]
where for a data point \((x_i, y_i)\) and prediction function \(f\), then
\[z_i = y_i \cdot f(x_i). \]
Predict how this might work within a gradient descent algorithm for classification.

Q9.2: Consider a data set \((X, y)\), where each data point \((x_{1,i}, x_{2,i}, y_i)\) is in \(\mathbb{R}^2 \times \{-1, +1\}\). Provide the pseudo-code for the Perceptron Algorithm using a polynomial kernel of degree 2. You can have a generic stopping condition, where the algorithm simply runs for \(T\) steps for some parameter \(T\).
(There are several correct ways to do this, but be sure to explain how to use a polynomial kernel clearly.)

Q9.3: Consider a set of 1-dimensional data points

\[
(x_1 = 0, y_1 = +1) \ (x_2 = 1, y_1 = -1) \ (x_3 = 2, y_1 = +1) \ (x_4 = 4, y_1 = +1) \\
(x_5 = 6, y_1 = -1) \ (x_6 = 7, y_1 = -1) \ (x_7 = 8, y_1 = +1) \ (x_8 = 9, y_1 = -1)
\]

Predict -1 or +1 using a kNN (k-nearest neighbor) classifier with \(k = 3\) on the following queries.

1. \(x = 3\)
2. \(x = 9\)
3. \(x = -1\)

Q9.4: Consider the following Algorithm 1, called the Double-Perceptron. We will run this on an input set \(X\) consisting of points \(X \in \mathbb{R}^{n \times d}\) and corresponding labels \(y \in \{-1, +1\}\).

\[
\text{Algorithm 9.5.1 Double-Perceptron}(X)
\]

\[
\text{Initialize } w = y_i x_i \text{ for any } (x_i, y_i) \in (X, y) \\
\text{repeat} \\
\quad \text{For any } (x_i, y_i) \text{ such that } y_i (x_i, w) < 0 \text{ (is mis-classified)} : \text{ update } w \leftarrow w + 2y_i x_i \\
\text{until (no mis-classified points} \quad \text{or} \quad T \text{ steps)} \\
\text{return } w \leftarrow w / ||w||
\]

For each of the following questions, the answer can be faster, slower, the same, or not at all. And should be accompanied with an explanation.

1. Compared with Algorithm 9.2.1 (Perceptron) in the notes, explain how this algorithm with converge.
2. Next consider transforming the input data set \(X\) (not the \(y\) labels) so that all coordinates are divided by 2. Now if we run Double-Perceptron how will the results compare to regular Perceptron (Algorithm 9.2.1) on the original data set \(X\).
3. Finally, consider taking the original data set \((X, y)\) and multiplying all entries in \(y\) by \(-1\), then running the original Perceptron algorithm. How will the convergence compare to running the same Perceptron algorithm, on the original data set.

Q9.5: Consider a matrix \(A \in \mathbb{R}^{n \times 4}\). Each row represents a customer (there are \(n\) customers in the database). The first column is the age of the customer in years, the second column is the number of days since the customer entered the database, the third column is the total cost of all purchases ever by the customer
in dollars, and the last column is the total profit in dollars generated by the customer. So each column has a different unit.

For each of the following operations, decide if it is reasonable or unreasonable.

1. Run simple linear regression using the first three columns to build a model to predict the fourth column.
2. Use \(k \)-means clustering to group the customers into 4 types using Euclidean distance between rows as the distance.
3. Use PCA to find the best 2-dimensional subspace, so we can draw the customers in a \(\mathbb{R}^2 \) in a way that has the least projection error.
4. Use the linear classification to build a model based on the first three columns to predict if the customer will make a profit +1 or not -1.

Q9.6: Consider a “loss” function, called an *double-hinged loss function*

\[
\ell_i(z) = \begin{cases}
0 & \text{if } z > 1 \\
1 - z & \text{if } 0 \leq z \leq 1 \\
1 & \text{if } z \leq 0.
\end{cases}
\]

where the overall cost for a dataset \((X, y)\), given a linear function \(g(x) = \langle (1, x), \alpha \rangle \) is defined

\[
\mathcal{L}(g, (X, y)) = \sum_{i=1}^{n} \ell_i(y_i \cdot g(x_i)).
\]

1. What problems might a gradient descent algorithm have when attempting to minimize \(\mathcal{L} \) by choosing the best \(\alpha \)?
2. Explain if the problem would be better or worse using stochastic gradient descent?