
5 Linear Regression

We introduce the basic model of linear regression. It builds a linear model to predict one variable from
one other variable or from a set of other variables. We will demonstrate how this simple technique can
extend to building potentially much more complex polynomial models. Then we will introduce the central
and extremely powerful idea of cross-validation. This method fundamentally changes the statistical goal of
validating a model, to characterizing the data.

5.1 Simple Linear Regression
We will begin with the simplest form of linear regression. The input is a set of n 2-dimensional data points
(X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The ultimate goal will be to predict the y values using only the
x-values. In this case x is the explanatory variable and y is the dependent variable.

The notation (X, y), with a uppercase X and lowercase y will become clear later since it will commonly
generalize to multidimensional settings for the x-part, but stay 1-dimensional (or otherwise simple) for the
y part.

In order to do this, we will “fit” a line through the data of the form

y = `(x) = ax + b,

where a (the slope) and b (the intercept) are parameters of this line. The line ` is our “model” for this input
data.

Example: Fitting a line to height and weight

Consider the following data set that describes a set of heights and weights.

height (in) weight (lbs)
66 160
68 170
60 110
70 178
65 155
61 120
74 223
73 215
75 235
67 164
69 ?

Note that in the last entry, we have a height of 69, but we do not have a weight. If we were to guess
the weight in the last column, how should we do this?
We can draw a line (the red one) through the data points. Then we can guess the weight for a data
point with height 69, by the value of the line at height 69 inches: about 182 pounds.

Measuring error. The purpose of this line is not just to be close to all of the data (for this we will have to
wait for PCA and dimensionality reduction). Rather, its goal is prediction; specifically, using the explanatory
variable x to predict the dependent variable y.

41

In particular, for every value x 2 R, we can predict a value ŷ = `(x). Then on our dataset, we can
examine for each xi how close ŷi is to yi. This difference is called a residual:

ri = |yi � ŷi| = |yi � `(xi)|.

Note that this residual is not the distance from yi to the line `, but the distance from yi to the corresponding
point with the same x-value. Again, this is because our only goal is prediction of y. And this will be
important as it allows all of the techniques to be immune to the choice of units (e.g., inches or feet, pounds
or kilograms)

So the residual measures the error of a single data point, but how should we measure the overall error of
the entire data set? The common approach is the sum of squared errors:

SSE((X, y), `) =
nX

i=1

r2i =
nX

i=1

(yi � ŷi)
2 =

nX

i=1

(yi � `(xi))
2.

Why is this the most common measure? Here are 3 explanations?

• The sum of squared errors was the optimal result for a single point estimator under Gaussian noise
using Bayesian reasoning, when there was assumed Gaussian noise (See T2). In that case the answer
was simply the mean of the data.

• If you treat the residuals as a vector r = (r1, r2, . . . , rn), then the standard way to measure total size

of a vector r is through its norm krk, which is most commonly its 2-norm krk = krk2 =
qP

n

i=1 r2
i
.

The square root part is not so important (it does not change which line ` minimizes this error), so
removing this square root, we are left with SSE.

• For this specific formulation, there is a simple closed form solution (which we will see next) for `.
And in fact, this solution will generalize to many more complex scenarios.

There are many other formulations of how best to measure error for the fit of a line (and other models),
but we will not cover them in this class.

Solving for `. To solve for the line which minimizes SSE((X, y), `) there is a very simply solution, in
two steps. Calculate averages x̄ = 1

n

P
n

i=1 xi and ȳ = 1
n

P
n

i=1 yi, and create centered n-dimension vectors
X̄ = (x1 � x̄, x2 � x̄, . . . , xn � x̄) for all x-coordinates and Ȳ = (y1 � ȳ, y2 � ȳ, . . . , yn � ȳ) for all
y-coordinates.

1. Set a = hȲ , X̄i/kX̄k2

2. Set b = ȳ � ax̄

This defines `(x) = ax + b.
We will provide the proof for why this is the optimal solution for the high-dimensional case (in short, it

can be shown by expanding out the SSE expression, taking the derivative, and solving for 0). We will only
provide some intuition here.

First lets examine the intercept

b =
1

n

nX

i=1

(yi � axi) = ȳ � ax̄

This setting of b ensures that the line y = `(x) = ax + b goes through the point (x̄, ȳ) at the center of the
data set since ȳ = `(x̄) = ax̄ + b.

Math for Data copyright: Jeff M. Phillips

Second, to understand how the slope a is chosen, it is illustrative to reexamine the dot product as

a =
hȲ , X̄i
kX̄k2

=
kȲ k · kX̄k · cos ✓

kX̄k2
=

kȲ k
kX̄k

cos ✓,

where ✓ is the angle between the n-dimensional vectors Ȳ and X̄ . Now in this expression, the kȲ k/kX̄k
captures how much on (root-squared) average Ȳ increases as X̄ does (the rise-over-run interpretation of
slope). However, we may want this to be negative if there is a negative correlation between X̄ and Ȳ , or
really this does not matter much if there is no correlation. So the cos ✓ term captures the correlation after
normalizing the units of X̄ and Ȳ .
import numpy as np

x = np.array([66, 68, 65, 70, 65, 62, 74, 70, 71, 67])

y = np.array([160, 170, 159, 188, 150, 120, 233, 198, 201, 164])

ave_x = np.average(x)

ave_y = np.average(y)

#first center the data points
xc = x - ave_x

yc = y - ave_x

a = xc.dot(yc)/xc.dot(xc)

b = ave_y - a*ave_x

print a, b

#or with scipy
from scipy import polyfit

(a,b)=polyfit(x,y,1)

print a, b

#predict weight at x=69
w=a*69+b

5.2 Linear Regression with Multiple Explanatory Variables
Magically, using linear algebra, everything extends gracefully to using more than one explanatory vari-
ables. Now consider a data set (X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)} where each data point has
xi = (xi,1, xi,2, . . . , xi,d) 2 Rd and yi 2 R. That is there are d explanatory variables, as the coordi-
nates of xi, and one dependent variable in yi. We would now like to use all of these variables at once to
make a single (linear) prediction about the variable yi. That is, we would like to create a model

ŷ = M↵(xi) = M↵(xi,1, xi,2, . . . , xi,d) = ↵0 +
dX

j=1

↵jxi,j

= ↵0 + ↵1xi,1 + ↵2xi,2 + . . . + ↵dxi,d.

= h↵, (1, xi,1, xi,2, . . . , xi,d)i = h↵, (1, xi)i.

In the above equivalent notations ↵0 serves the purpose of the intercept b, and all of the ↵is replace the single
coefficient a in the simple linear regression. Indeed, we can write this model as a dot product between the
(d + 1)-dimensional vectors ↵ = (↵0, ↵1, . . . , ↵d) and (1, xi,1, xi,2, . . . , xi,d) = (1, xi). As promised, the
magic of linear algebra has allowed us to describe a more complex linear model M↵. Next we will see how
to solve it.

Math for Data copyright: Jeff M. Phillips

Example: Predicting customer value

A website specializing in dongles (dongles-r-us.com) wants to predict the total dollar amount that
visitors will spend on their site. It has installed some software that can track three variables:

• time (the amount of time on the page in seconds): X1,
• jiggle (the amount of mouse movement in cm): X2, and
• scroll (how far they scroll the page down in cm): X3.

Also, for a set of past customers they have recorded the
• sales (how much they spend on dongles in cents): y.

We see a portion of their data set here with n = 11 customers:

time: X1 jiggle: X2 scroll: X3 sales: y
232 33 402 2201
10 22 160 0

6437 343 231 7650
512 101 17 5599
441 212 55 8900
453 53 99 1742
2 2 10 0

332 79 154 1215
182 20 89 699
123 223 12 2101
424 32 15 8789

To build a model, we recast the data as an 11 ⇥ 4 matrix X = [1, X1, X2, X3]. We let y be the
11-dimensional column vector.

X =

2

666666666666666664

1 232 33 402
1 10 22 160
1 6437 343 231
1 512 101 17
1 441 212 55
1 453 53 99
1 2 2 10
1 332 79 154
1 182 20 89
1 123 223 12
1 424 32 15

3

777777777777777775

y =

2

666666666666666664

2201
0

7650
5599
8900
1742

0
1215
699
2101
8789

3

777777777777777775

The goal is to learn the 4-dimensional column vector ↵ = [↵0; ↵1; ↵2, ↵3] so

y ⇡ X↵.

Setting ↵ = (XTX)�1XT y obtains (roughly) ↵0 = 2626, ↵1 = 0.42, ↵2 = 12.72, and ↵3 =
�6.50. This implies an average customer with no interaction on the site generates ↵0 = $2.62.
That time does not have a strong effect here (only a coefficient ↵1 at only 0.42), but jiggle has a
strong correlation (with coefficient ↵2 = 12.72, this indicates 12 cents for every centimeter of mouse
movement). Meanwhile scroll has a negative effect (with coefficient ↵3 = �6.5); this means that
the more they scroll, the less likely they are to spend (just browsing dongles!).

Math for Data copyright: Jeff M. Phillips

Given a data point xi = (xi,1, xi,2, . . . , xi,d), we can again evaluate our prediction ŷi = M(xi) using
the residual value ri = |yi � ŷi| = |yi = M(xi)|. And to evaluate a set of n data points, it is standard to
consider the sum of squared error as

SSE(X, y, M) =
nX

i=1

r2i =
nX

i=1

(yi � M(xi))
2.

To obtain the coefficients which minimize this error, we can now do so with very simple linear algebra.

First we construct a n ⇥ (d + 1) data matrix X̃ = [1, X1, X2, . . . , Xd], where the first column 1 is the
n-dimensional all ones column vector [1; 1; . . . ; 1]. Each of the next d columns is a column vector Xj ,
where xi,j = Xi,j is the ith entry of Xj and represents the jth coordinate of data point xi. Then we let y
be a n-dimensional column vector containing all the dependent variables. Now we can simply calculate the
(d + 1)-dimensional column vector ↵ = (↵0, ↵1, . . . , ↵d) as

↵ = (X̃T X̃)�1X̃T y.

Let us compare to the simple case where we have 1 explanatory variable. The (X̃T X̃)�1 term replaces the
1

kX̄k2 term. The X̃T y replaces the dot product hȲ , X̄i. And we do not need to separately solve for the

intercept b, since we have created a new column in X̃ of all 1s. For any dependent data values, we multiply
the found coefficient ↵0 by an imaginary 1 data value.

Often the matrices X and X̃ are used interchangeably, and hence we drop the˜from X̃ in most situations.
We can either simply treat all data points xi as one-dimension larger (with always a 1 in the first coordinate),
or we can fit a model on the original matrix X and ignore the offset parameter ↵0, which is then by default
0. The former approach, where each xi is just assumed one dimension larger is more common since it
automatically handles the offset parameter.

Math for Data copyright: Jeff M. Phillips

Geometry of the Normal Equations

Why does ↵ = (XTX)�1XT y minimize the sum of squared errors:

SSE(X, y, M) =
nX

i=1

r2i =
nX

i=1

(yi � h↵, (1, xi)i)2?

Fixing the data X and y, and representing M by its parameters ↵, we can consider a function S(↵) =
SSE(X, y, M). Then we observe that S(↵) is a quadratic function in ↵, and it is convex (see T6), so
its minimum is when the gradient is 0. This will be true when each partial derivative is 0. Let Xi,j

be the jth coordinate of xi and set to 0 each partial derivative:

0 =
dS(↵)

d↵j

= 2
nX

i=1

ri
dri
d↵j

= 2
nX

i=1

ri(�Xi,j) = 2
nX

i=1

(yi � hxi, ↵i)(�Xi,j)

We can rearrange this into the normal equations

nX

i=1

Xi,jhxi, ↵i =
nX

i=1

Xi,jyi for all j 2 {1, 2, . . . , d}

(XTX)↵ = XT y.

Multiplying by the inverse gram matrix XTX on both sides reveals the desired ↵ = (XTX)�1XT y.
Geometry: To see why these are called the normal equations, consider a form

0 = (y � X↵)TX,

where 0 is the all-zeros vector in Rn. Thus for any vector v 2 Rn, then

0 = (y � X↵)TXv = hy � X↵, Xvi.

This includes when v = ↵; under this setting then Xv = X↵ = ŷ. Notice that r = y � X↵ is the
vector in Rn that stores all residuals (so y = ŷ + r). Then the normal equations implies that

0 = hy � X↵, X↵i = hr, ŷi;

that is, for the optimal ↵, the prediction ŷ and the residual vector r are orthogonal. Since ŷ = X↵
is restricted to the (d + 1)-dimensional span of the columns of X , and ↵ minimizes krk2, then this
orthogonality implies that r is the normal vector to this (d + 1)-dimensional subspace.

import numpy as np

from numpy import linalg as LA

directly
alpha = np.dot(np.dot(LA.inv(np.dot(X.T,X)),X.T),y.T)

or with LA.lstsq
alpha = LA.lstsq(X,y)[0]

Math for Data copyright: Jeff M. Phillips

5.3 Polynomial Regression
Sometimes linear relations are not sufficient to capture the true pattern going on in the data with even a
single dependent variable x. Instead we would like to build a model of the form:

ŷ = M2(x) = ↵0 + ↵1x + ↵2x
2

or more generally for some polynomial of degree p

ŷ = Mp(x) = ↵0 + ↵1x + ↵2x
2 + . . . + ↵px

p

= ↵0 +
pX

i=1

↵ix
i.

Example: Predicting Height and Weight with Polynomials

We found more height and weight data, in addition to the ones in the height-weight example above.

height (in) weight (lbs)
61.5 125
73.5 208
62.5 138
63 145
64 152
71 180
69 172

72.5 199
72 194

67.5 172

But can we do better if we fit with a polynomial?

Math for Data copyright: Jeff M. Phillips

Again we can measure error for a single data point (xi, yi) as a residual as ri = |ŷ � yi| = |M↵(xi) � yi|
and the error on n data points as the sum of squared residuals

SSE(P, M↵) =
nX

i=1

r2i =
nX

i=1

(Mp(xi) � yi)
2.

Under this error measure, it turns out we can again find a simple solution for the residuals ↵ = (↵0, ↵1, . . . , ↵p).
For each dependent variable data value x we create a (p + 1)-dimensional vector

v = (1, x, x2, . . . , xp).

And then for n data points (x1, y1), . . . , (xn, yn) we can create an n ⇥ (p + 1) data matrix

X̃p =

2

6664

1 x1 x2
1 . . . xp

1
1 x2 x2

2 . . . xp

2
...

...
...

. . .
...

1 xn x2
n . . . xp

n

3

7775
y =

2

6664

y1
y2
...

vn

3

7775
.

Then we can solve the same way as if each data value raised to a different power was a different dependent
variable. That is we can solve for the coefficients ↵ = (↵0, ↵1, ↵2, . . . , ↵n) as

↵ = (X̃T

p X̃p)
�1X̃T

p y.

5.4 Cross Validation

So how do we choose the correct value of p, the degree of the polynomial fit?

A (very basic) statistical (hypothesis testing) approach may be choose a model of the data (the best fit
curve for some polynomial degree p, and assume Gaussian noise), then calculate the probability that the
data fell outside the error bounds of that model. But maybe many different polynomials are a good fit?

In fact, if we choose p as n � 1 or greater, then the curve will polynomially interpolate all of the points.
That is, it will pass through all points, so all points have a residual of exactly 0 (up to numerical precision).
This is the basis of a lot of geometric modeling (e.g., for CAD), but bad for data modeling.

Math for Data copyright: Jeff M. Phillips

Example: Simple polynomial example

Consider the simple data set of 9 points

x 1 2 3 4 5 6 7 8 9
y 4 6 8.2 9 9.5 11 11.5 12 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8}. Believe your eyes, for p = 8, the curve
actually passes through each and every point exactly.

Recall, our goal was for a new data point with only an x value to predict its y-value. Which do you
think does the best job?

Generalization and Cross-Validation. Our ultimate goal in regression is generalization (how well do we
do on new data), not SSE! Using some error measure (SSE) to fit a line or curve, is a good proxy for what
we want, but in many cases (as with polynomial regression), it can be abused. We want to know how our
model will generalize to new data. How would we measure this without new data?

The solution is cross-validation. In the simplest form, we randomly split our data into training data (on
which we build a model) and testing data (on which we evaluate our model). The testing serves to estimate
how well we would do on future data which we do not have.

• Why randomly?: Because you do not want to bias the model to do better on some parts than other in
how you choose the split. Also, since we assume the data elements come iid from some underlying
distribution, then the test data is also iid if you chose it randomly.

• How large should the test data be?: It depends on the data set. Both 10% and 33% are common.

Let (X, y) be the full data set (with n rows of data), and we split it into data sets (Xtrain, ytrain) and
(Xtest, ytest) with ntrain and ntest rows, respectively. With n = ntrain + ntest. Next we build a model with the
training data, e.g.,

↵ = (XT

trainXtrain)
�1XT

trainytrain.

Math for Data copyright: Jeff M. Phillips

Then we evaluate the model M↵ on the test data Xtest, often using SSE(Xtest, ytest, M↵) as

SSE(Xtest, ytest, M↵) =
X

(xi,yi)2(Xtest,ytest)

(yi � M↵(xi))
2 =

X

(xi,yi)2(Xtest,ytest)

(yi � h(xi; 1), ↵i)2.

We can use the testing data for two purposes:

• To estimate how well our model would perform on new data, yet unseen. That is the predicted residual
of a new data point is precisely SSE(Xtest, ytest, M↵)/ntest.

• To choose the correct parameter for a model (which p to use)?

Its important to keep in mind that we should not use the same (Xtest, ytest) to do both tasks. If we choose
a model with (Xtest, ytest), then we should reserve even more data for predicting the generalization error.
When using the test data to choose a model parameter, the it is being used to build the model; thus evaluating
generalization with this same data can suffer the same fate as testing and training with the same data.

So how should we choose the best p? We calculate models M↵p for each value p on the same training
data. Then calculate the model error SSE(Xtest, ytest, M↵p) for each p, and see which has the smallest value.
That is we train on (Xtrain, ytrain) and test(evaluate) on (Xtest, ytest).

Example: Simple polynomial example with Cross Validation

Now split our data sets into a train set and a test set:

train: x 2 3 4 6 7 8
y 6 8.2 9 11 11.5 12

test: x 1 5 9
y 4 9.5 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8} generating model M↵p on the test data.
We then calculate the SSE(xtest, ytest, M↵p) score for each (as shown):

And the polynomial model with degree p = 2 has the lowest SSE score of 2.749. It is also the
simplest model that does a very good job by the “eye-ball” test. So we would choose this as our
model.

Math for Data copyright: Jeff M. Phillips

Leave-one-out Cross Validation. But, not training on the test data means that you use less data, and your
model is worse! You don’t want to waste this data!

If your data is very large, then leaving out 10% is not a big deal. But if you only have 9 data points it can
be. The smallest the test set could be is 1 point. But then it is not a very good representation of the full data
set.

The alternative is to create n different training sets, each of size n�1 (X1,train, X2,train, . . . , Xn,train), where
Xi,train contains all points except for xi, which is a one-point test set. Then we build n different models
M1, M2, . . . , Mn, evaluate each model Mi on the one test point xi to get an error Ei = (yi � Mi(xi))2, and
average their errors E = 1

n

P
n

i=1 Ei. Again, the parameter with the smallest associated average error E is
deemed the best. This allows you to build a model on as much data as possible, while still using all of the
data to test.

However, this requires roughly n times as long to compute as the other techniques, so is often too slow
for really big data sets.

Math for Data copyright: Jeff M. Phillips

import matplotlib as mpl

mpl.use(’PDF’)

import matplotlib.pyplot as plt

import scipy as sp

import numpy as np

import math

from numpy import linalg as LA

def plot_poly(x,y,xE,yE,p):

plt.scatter(x,y, s=80, c="blue")

plt.scatter(xE,yE, s=20, c="green")

plt.axis([0,10,0,15])

s=sp.linspace(0,10,101)

coefs=sp.polyfit(x,y,p)

ffit = np.poly1d(coefs)

plt.plot(s,ffit(s),’r-’,linewidth=2.0)

#evaluate on xE, yE
resid = ffit(xE)

RSSE = LA.norm(resid-yE)

SSE = RMSE * RMSE

title = "degree %s fit | SSE %0.3f" % (p, SSE)

plt.title(title)

file = "CVpolyReg%s.pdf" % p

plt.savefig(file, bbox_inches=’tight’)

plt.clf()

plt.cla()

train data
xT = np.array([2, 3, 4, 6, 7, 9])

yT = np.array([6, 8.2, 9, 11, 11.5, 11.2])

#test data
xE = np.array([1, 5, 8])

yE = np.array([4, 9.5, 12])

p_vals = [1,2,3,4,5,8]

for i in p_vals:

plot_poly(xT,yT,xE,yE,i)

Math for Data copyright: Jeff M. Phillips

Exercises

We will use a dataset found here:
http://www.cs.utah.edu/˜jeffp/teaching/FoDA/D3.csv

Q5.1: Let the first column of the data set be the explanatory variable x, and let the fourth column be the
dependent variable y. [That is: ignore columns 2 and 3 for now]

1. Run simple linear regression to predict y from x. Report the linear model you found. Predict
the value of y for new x values 0.3, for 0.5, and for 0.8.

2. Use cross-validation to predict generalization error, with error of a single data point (x, y) from
a model M as (M(x) � y)2. Describe how you did this, and which data was used for what.

3. On the same data, run polynomial regression for p = 2, 3, 4, 5. Report polynomial models for
each. With each of these models, predict the value of y for a new x values of 0.3, for 0.5, and
for 0.8.

4. Cross-validate to choose the best model. Describe how you did this, and which data was used
for what.

Q5.2: Now let the first three columns of the data set be separate explanatory variables x1, x2, x3. Again
let the fourth column be the dependent variable y.

• Run linear regression simultaneously using all three explanatory variables. Report the lin-
ear model you found. Predict the value of y for new (x1,x2,x3) values (0.3, 0.4, 0.1), for
(0.5, 0.2, 0.4), and for (0.8, 0.2, 0.7).

• Use cross-validation to predict generalization error; as usual define the error of a single data
point (x1, x2, x3, y) from a model M as (M(x1,x2,x3) � y)2. Describe how you did this,
and which data was used for what.

Q5.3: Consider a data set (X, y) where X 2 Rn⇥3; and its decomposition into a test (Xtest, ytest) and a
training data set (Xtrain, ytrain). Assume that Xtrain is not just a subset of X , but also prepends a
columns of all 1s. We build a linear model

↵ = (XT

trainXtrain)
�1XT

trainytrain.

where ↵ 2 R4. The test data (Xtest, ytest) consists of two data points: (x1, y1) and (x2, y2), where
x1, x2 2 R3. Explain how to use (write a mathematical expression) this test data to estimate the
generalization error. That is, if one new data point arrives x, how much squared error would we
expect the model ↵ to have compared to the unknown true value y?

Math for Data copyright: Jeff M. Phillips

