9 Classification

This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive or negative. Ideas from linear regression can be applied here, but we will instead overview a different, but still beautiful family of techniques based on linear classification.

This is perhaps the central problem in data analysis. For instance, you may want to predict:

- will a sports team win a game?
- will a politician be elected?
- will someone like a movie?
- will someone click on an ad?
- will I get a job? (If you can build a good classifier, then probably yes!)

Each of these is typically solved by building a general purpose classifier (about sports or movies etc), then applying it to the person in question.

9.1 Linear Classifiers

Our input here is a point set \(X \subset \mathbb{R}^d \), where each element \(x_i \in X \) also has an associated label \(y_i \). And \(y_i \in \{-1, +1\} \).

Like in regression, our goal is prediction and generalization. We assume each \((x_i, y_i) \sim \mu\); that is, each data point pair, is drawn iid from some fixed but unknown distribution. Then our goal is a function \(g : \mathbb{R}^d \to \mathbb{R} \), so that if \(y_i = +1 \), then \(g(x_i) \geq 0 \) and if \(y_i = -1 \), then \(g(x_i) \leq 0 \).

We will restrict that \(g \) is linear. For a data point \(x \in \mathbb{R}^d \), written \(x = (x^{(1)}, x^{(2)}, \ldots, x^{(d)}) \) we enforce that

\[
g(x) = \alpha_0 + x^{(1)}\alpha_1 + x^{(2)}\alpha_2 + \ldots + x^{(d)}\alpha_d = \alpha_0 + \sum_{j=1}^{d} x^{(j)}\alpha_j,
\]

for some set of scalar parameters \(\alpha = (\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_d) \). Typically, different notation is used: we set \(b = \alpha_0 \) and \(w = (w_1, w_2, \ldots, w_d) = (\alpha_1, \alpha_2, \ldots, \alpha_d) \in \mathbb{R}^d \). Then we write

\[
g(x) = b + x^{(1)}w_1 + x^{(2)}w_2 + \ldots + x^{(d)}w_d = \langle w, x \rangle + b.
\]

We can now interpret \((w, b)\) as defining a halfspace in \(\mathbb{R}^d \). Here \(w \) is the normal of that halfspace boundary (the single direction orthogonal to it) and \(b \) is the distance from the origin \(\mathbf{0} = (0, 0, \ldots, 0) \) to the halfspace boundary in the direction \(w/\|w\| \). Because \(w \) is normal to the halfspace boundary, \(b \) is also distance from the closest point on the halfspace boundary to the origin (in any direction).

We typically ultimately use \(w \) as a unit vector, but it is not important since this can be adjusted by changing \(b \). Let \(w, b \) be the desired halfspace with \(\|w\| = 1 \). Now assume we have another \(w', b' \) with \(\|w'\| = \beta \neq 1 \) and \(w = w'/\|w'\| \), so they point in the same direction, and \(b' \) set so that they define the same halfspace. This implies \(b' = b/\beta \). So the normalization of \(w \) can simply be done post-hoc without changing any structure.

Recall, our goal is \(g(x) \geq 0 \) if \(y = +1 \) and \(g(x) \leq 0 \) if \(y = -1 \). So if \(x \) lies directly on the halfspace then \(g(x) = 0 \).
Example: Linear Separator in \mathbb{R}^2

Here we show a set $X \in \mathbb{R}^2$ of 13 points with 6 labeled $+$ and 7 labeled $-$. A linear classifier perfectly separates them. It is defined with a normal direction w (pointing towards the positive points) and an offset b.

Using techniques we have already learned, we can immediately apply two approaches towards this problem.

Linear classification via linear regression. For each data points $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$, we can immediately represent x_i as the value of d explanatory variables, and y_i as the single dependent variable. Then we can set up a $n \times (d + 1)$ matrix M, where the ith row is $(1, x_i)$; that is the first coordinate is 1, and the next d coordinates come from the vector x_i. Then with a $y \in \mathbb{R}^n$ vector, we can solve for

$$\alpha = (M^T M)^{-1} M^T y$$

we have a set of $d + 1$ coefficients $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_d)$ describing a linear function $g : \mathbb{R}^d \rightarrow \mathbb{R}$ defined

$$g(x) = \langle \alpha, (1, x) \rangle.$$

Hence $b = \alpha_0$ and $w = (\alpha_1, \alpha_2, \ldots, \alpha_d)$. For x such that $g(x) > 0$, we predict $y = +1$ and for $g(x) < 0$, we predict $y = -1$.

However, this approach is optimizing the wrong problem. It is minimizing how close our predictions $g(x)$ is to -1 or $+1$, by minimizing the sum of squared errors. But our goal is to minimize the number of mispredicted values, not the numerical value.
Example: Linear Regression for Classification

We show 6 positive points and 7 negative points in \mathbb{R}^d mapped to \mathbb{R}^{d+1}. All of the d-coordinates are mapped to the x-axis. The last coordinate is mapped to the y-axis and is either $+1$ (a positive points) or -1 (a negative points). Then the best linear regression fit is shown, and the points where it has y-coordinate 0 defines the boundary of the halfspace. Note, despite there being a linear separator, this method misclassifies two points because it is optimizing the wrong measure.

Linear classification via gradient descent. Since, the linear regression SSE cost function is not the correct one, what is the correct one? We might define a cost function Δ

$$\Delta(g, (X, y)) = \sum_{i=1}^{n} (1 - \mathbb{1}(\text{sign}(y_i) = \text{sign}(g(x_i))))$$

which uses the identity function $\mathbb{1}$ (defined $\mathbb{1}(\text{TRUE}) = 1$ and $\mathbb{1}(\text{FALSE}) = 0$) to represent the number of misclassified points. This is what we would like to minimize.

Unfortunately, this function is discrete, so it does not have a useful (or well-defined) gradient. And, it is also not convex. Thus, encoding g as a $(d+1)$-dimensional parameter vector $(b, w) = \alpha$ and running gradient descent is not feasible.

However, most classification algorithms run some variant of gradient descent. To do so we will use a different cost function as a proxy for Δ, called a *loss function*. We explain this next.

9.1.1 Loss Functions

To use gradient descent for classifier learning, we will use a proxy for Δ called a *loss functions* \mathcal{L}. These are sometimes implied to be convex, and their goal is to approximate Δ. And in most cases, they are *decomposable*, so we can write

$$\mathcal{L}(g, (X, y)) = \sum_{i=1}^{n} \ell_i(g, (x_i, y_i))$$

where $\ell_i(z_i) = y_i g(x_i)$.

Note that the clever expression $z_i = y_i g(x_i)$ handles when the function $g(x_i)$ correctly predicts the positive or negative example in the same way. If $y_i = +1$, and correctly $g(x_i) > 0$, then $z_i > 0$. On the other hand, if $y_i = -1$, and correctly $g(x_i) < 0$, then also $z_i > 0$. For instance, the desired cost function, Δ is written

$$\Delta(z) = \begin{cases} 0 & \text{if } z \geq 0 \\ 1 & \text{if } z < 0. \end{cases}$$
Most loss functions $\ell_i(z)$ which are convex proxies for Δ mainly focus on how to deal with the case $z_i < 0$ (or $z_i < 1$). The most common ones include:

- hinge loss: $\ell_i = \max(0, 1 - z)$
- smoothed hinge loss: $\ell_i = \begin{cases} 0 & \text{if } z \geq 1 \\ (1 - z)^2/2 & \text{if } 0 < z < 1 \\ z - \frac{1}{2} & \text{if } z \leq 0 \end{cases}$
- squared hinge loss: $\ell_i = \max(0, 1 - z)^2$
- logistic loss: $\ell_i = \ln(1 + \exp(-z))$

The hinge loss is the closest convex function to Δ; in fact it strictly upper bounds Δ. However, it is non-differentiable at the “hinge-point,” (at $z = 1$) so it takes some care to use it in gradient descent. The smoothed hinge loss and squared hinge loss are approximations to this which are differentiable everywhere. The squared hinge loss is quite sensitive to outliers (similar to SSE). The smoothed hinge loss (related to the Huber loss) is a nice combination of these two loss functions.

The logistic loss can be seen as a continuous approximation to the ReLU (rectified linear unit) loss function, which is the hinge loss shifted to have the hinge point at $z = 0$. The logistic loss also has easy-to-take derivatives (does not require case analysis) and is smooth everywhere. Minimizing this loss for classification is called logistic regression.

9.1.2 Cross Validation and Regularization

Ultimately, in running gradient descent for classification, one typically defines the overall cost function f also using a regularization term $r(\alpha)$. For instance $r(\alpha) = \|\alpha\|^2$ is easy to use (has nice derivatives) and $r(\alpha) = \|\alpha\|_1$ (the L_1 norm) induces sparsity (for reasons not covered in this text). In general, the regularizer typically penalizes larger values of α, resulting in some bias, but less over-fitting of the data.

The regularizer $r(\alpha)$ is combined with a loss function $\mathcal{L}(g_\alpha, (X, y)) = \sum_{i=1}^n \ell_i(g_\alpha, (x_i, y_i))$ as

$$f(\alpha) = \mathcal{L}(g_\alpha, (X, y)) + \eta r(\alpha),$$

where $\eta \in \mathbb{R}$ is a regularization parameter that controls how drastically to regularize the solution.

Note that this function $f(\alpha)$ is still decomposable, so one can use batch, incremental, or most commonly stochastic gradient descent.

Cross-validation. Backing up a bit, the true goal is not minimizing f or \mathcal{L}, but predicting the class for new data points. For this, we again assume all data is drawn iid from some fixed but unknown distribution. To evaluate how well out results generalizes, we can use cross-validation (holding out some data from the training, and calculating the expected error of Δ on these held out “testing” data points).

We can also choose the regularization parameter η by choosing the one that results in the best generalization on the test data after training using each on some training data.
9.2 Perceptron Algorithm

Of the above algorithms, generic linear regression is not solving the correct problem, and gradient descent
methods do not really use any structure of the problem. In fact, we could have replaced the linear function
g_α(x) = (α, (1, x)) with any function g (even non-linear ones) as long as we can take the gradient.

Now we will introduce the perceptron algorithm which explicitly uses the linear structure of the problem.
(technically, it only uses the fact that there is an inner product – which we will exploit in generalizations.)

Simplifications: For simplicity, we will make several assumptions about the data. First we will assume
that the best linear classifier (w*, b*) defines a halfspace whose boundary passes through the origin. This
implies b* = 0, and we can ignore it. This is basically equivalent to (for data point (x'i, y'i) ∈ Rd × R using
x'i = (1, x'i) ∈ Rd where d' + 1 = d.

Second, we assume that for all data points (x'i, y'i) that ∥x'i∥ ≤ 1 (e.g., all data point live in a unit ball).
This can be done by choosing the point x_max ∈ X with largest norm ∥x_max∥, and dividing all data points
by ∥x_max∥ so that point has norm 1, and all other points have smaller norms.

Finally, we assume that there exists a perfect linear classifier. One that classifies each data point to the
correct class. There are variants to deal with the cases without perfect classifiers, but which are beyond the
scope of this text.

The algorithm. Now to run the algorithm, we start with some normal direction w (initialized as any
positive point), and then add mis-classified points to w one at a time.

Algorithm 9.2.1 Perceptron(X)

Initialize w = y_i x_i for any (x_i, y_i) ∈ (X, y)
repeat
 For any (x_i, y_i) such that y_i < 0 (is mis-classified) : update w ← w + y_i x_i
until (no mis-classified points or T steps)
return w ← w/∥w∥

Basically, if we find a mis-classified point (x_i, y_i) and y_i = +1, then we set w = w + x_i. This "pushes" w
more in the direction of x_i, but also makes it longer. Having w more in the direction of w, tends to make it
have dot-product (with a normalized version of w) closer to 1.

Similar, if we find a mis-classified point (x_i, y_i) with y_i = -1, the we set w = w - x_i; this pushes the
negative of w more towards x_i, and thus w more away from x_i, and thus its dot product more likely to be
negative.

The margin. To understand why the perceptron works, we need to introduce the concept of a margin.
Given a classifier (w, b), the margin is

γ = min_{(x_i, y_i) ∈ X} y_i (⟨w, x_i⟩ + b).

Its the minimum distance of any data point x_i to the boundary of the halfspace. In this sense the optimal
classifier (or the maximum margin classifier) (w*, b*) is the one that maximizes the margin

(w*, b*) = arg max_{(w, b)} min_{(x_i, y_i) ∈ X} y_i (⟨w, x_i⟩ + b)

γ* = min_{(x_i, y_i) ∈ X} y_i (⟨w*, x_i⟩ + b*).

A max-margin classifier, is one that not just classifies all points correctly, but does so with the most
"margin for error." That is, if we perturbed any data point or the classifier itself, this is the classifier which
can account for the most perturbation and still predict all points correctly. It also tends to generalize (in the cross-validation sense) to new data better than other perfect classifiers.

Example: Margin of Linear Classifier

For a set X of 13 points in \mathbb{R}^2, and a linear classifier defined with (w, b). We illustrate the margin in pink. The margin $\gamma = \min(x_i, y_i) y_i (\langle w, x_i \rangle + b)$. The margin is drawn with an \leftrightarrow for each support point.

The maximum margin classifier (w^*, b^*) for $X \subset \mathbb{R}^d$ can always be defined uniquely by $d + 1$ points (at least one negative, and at least one positive). These points $S \subset X$ are such that for all $(x_i, y_i) \in S$

$$\gamma^* = y_i (\langle w^*, x_i \rangle + b).$$

These are known as the support points, since they “support” the margin strip around the classifier boundary.

Why perceptron works. We claim that after at most $T = (1/\gamma^*)^2$ steps (where γ^* is the margin of the maximum margin classifier), then there can be no more mis-classified points.

To show this we will bound two terms as a function of t, the number of mistakes found. The terms are $\langle w, w^* \rangle$ and $\|w\|^2 = \langle w, w \rangle$; this is before we ultimately normalize w in the return step.

First we can argue that $\|w\|^2 \leq t$, since each step increases $\|w\|^2$ by at most 1:

$$\langle w + y_i x_i, w + y_i x_i \rangle = \langle w, w \rangle + (y_i)^2 \langle x_i, x_i \rangle + 2y_i \langle w, x_i \rangle \leq \langle w, w \rangle + 1 + 0.$$

This is true since each $\|x_i\| \leq 1$, and if x_i is mis-classified, then $y_i \langle w, x_i \rangle$ is negative.

Second, we can argue that $\langle w, w^* \rangle \geq t \gamma^*$ since each step increases it by at least γ^*. Recall that $\|w^*\| = 1$

$$\langle w + y_i x_i, w^* \rangle = \langle w, w^* \rangle + (y_i) \langle x_i, w^* \rangle \geq \langle w, w^* \rangle + \gamma^*.$$

The inequality follows from the margin of each point being at least γ^* with respect to the max-margin classifier w^*.

Combining these facts ($\langle w, w^* \rangle \geq t \gamma^*$ and $\|w\|^2 \leq t$) together we obtain

$$t \gamma^* \leq \langle w, w^* \rangle \leq \langle w, \frac{w}{\|w\|} \rangle = \|w\| \leq \sqrt{t}.$$

Solving for t yields $t \leq (1/\gamma^*)^2$ as desired.
9.3 Kernels

It turns out all we need to get any of the above perceptron machinery to work is a well-defined (generalized) inner-product. For two vectors \(p = (p_1, \ldots, p_d), x = (x_1, \ldots, x_d) \in \mathbb{R}^d \), we have always used as the inner product:

\[
\langle p, x \rangle = \sum_{i=1}^{d} p_i \cdot x_i.
\]

However, we can define inner products more generally as a kernel \(K(p, x) \). For instance, we can use

- \(K(p, x) = \exp(-||p - x||^2/\sigma^2) \) for the Gaussian kernel, with bandwidth \(\sigma \),
- \(K(p, x) = \exp(-||p - x||/\sigma) \) for the Laplace kernel, with bandwidth \(\sigma \), and
- \(K(p, x) = (\langle p, x \rangle + c)^r \) for the polynomial kernel of power \(r \), with control parameter \(c > 0 \).

Then we define our classification function

\[
g(x) = K(x, w) + b.
\]

If \(g(x) > 0 \), we classify \(x \) as positive, and if \(g(x) < 0 \), we classify \(x \) as negative.

Specifically for perceptron, we check \(y_i K(x_i, w) > 0 \) to see if \((x_i, y_i) \) is mis-classified, and still simply add \(w \leftarrow w + y_i x_i \) as before.

Are these linear classifiers? No. In fact, this is how you model various forms of non-linear classifiers. The “decision boundary” is no longer described by the boundary of a halfspace. For the polynomial kernel, the boundary must now be a polynomial surface of degree \(r \). For the Gaussian and Laplace kernel it can be even more complex; the \(\sigma \) parameter essentially bounds the curvature of the boundary.

Feature Expansion and Gradient Descent? With kernels, we often want to run the gradient descent version of the problem. It is more general, it can directly add regularizers, it can directly handle non-separable cases, and may in some cases be slightly more efficient.

The simple way to do this is with feature expansion. For a polynomial kernel, on \(d \)-dimensional data points, this is equivalent to the polynomial regression expansion, described in Chapter 5.3. For a two dimensional data point \(p = (p_1, p_2) \), we map this to a 5-dimensional space

\[
p \mapsto q = (q_1 = p_1, q_2 = p_2, q_3 = p_1^2, q_4 = p_1 p_2, q_5 = p_2^2).
\]

Then we search over a 6-dimensional parameter space \((b, w) \) with \(w = (w_1, w_2, w_3, w_4, w_5) \) and (with an abuse of notation) the kernel defined \(K(p, w) = \langle q, w \rangle \). More specifically, the \(z \) associated with a data point \((p, y) \) as input to a loss function \(\ell(z) \) is defined

\[
z = y \cdot (K(p, w) + b) = y \cdot (\langle q, w \rangle + b).
\]

When \(p \in \mathbb{R}^d \) and the polynomial degree \(r \) is large, then this can get high-dimensional very quickly. The dimension of \(q \) is \(O(q^r) \).

Such expansion is also possible for many other radius basis kernel (e.g., Gaussian, Laplace), but it is only approximate. Usually it requires the dimensionality of \(q \) to be about 100 or more to get a faithful representation.

Like in the case of regression, overfitting can be an issue. However, this effect can be mostly controlled by the regularization term.
Support Vector Machines. A more direct way to work with complex kernels is called a support vector machine or SVM. Like with the illustration of the margin for linear classifiers, there are a small number of data points which determine the margin, the support vectors. Just these points are enough to determine the optimal margin.

In the case of complex non-linear kernels (e.g., Gaussians), all of the points may be support vectors. Worse, the associated linear space, the result of complete variable expansion, is actually infinite! This means, the true weight vector would w would be infinite as well, so there is no feasible way to run gradient descent on its parameters.

However, in most cases the actual number of support vectors is small. This means that we can represent weight vector w as a linear combination of these support vectors, without every explicitly constructing them. For a concrete example of conceptually what is going on, consider a linear expansion of a kernel K to an m-dimensional space (think of m as being sufficiently large that it might as well be infinite). However, consider if there are only k support vectors $\{s_1, s_2, \ldots, s_k\} \subset X$ where X is the full data set. Each support vector $s_i \in \mathbb{R}^d$ has a representation $q_i \in \mathbb{R}^m$. But the normal vector $w \in \mathbb{R}^m$ can be written as a linear combination of the q_is; that is we must be able to write

$$w = \sum_{i=1}^{k} \omega_i q_i \quad \text{where} \quad \sum_{i=1}^{k} \omega_i = 1 \quad \text{and each} \quad \omega_i \geq 0.$$

Thus, given the support vectors $\{s_1, \ldots, s_k\}$ we can represent w as a k-dimensional vector $\omega = (\omega_1, \omega_2, \ldots, \omega_k)$.

More concretely, we can apply this machinery without ever constructing the q_i vectors. Each can be implicitly represented as the function $q_i = K(s_i, \cdot)$. Recall, we only ever need to use the q_i in $\langle q_i, w \rangle$. And we can expand w to

$$w = \sum_{i=1}^{k} \omega_i q_i = \sum_{i=1}^{k} \omega_i K(s_i, \cdot).$$

Given this expansion, if we consider a special class of kernels called “reproducing kernels” which include Gaussian and Laplace, then we can also write

$$K(x, w) = \sum_{i=1}^{k} \omega_i K(s_i, x).$$

Ultimately, for a data point (x, y), the z in the loss function $\ell(z)$ is defined

$$z = y(K(x, w) + b) = y(b + \sum_{i=1}^{k} \omega_i K(s_i, x)).$$

There are multiple ways to actually optimize SVMs: the task of finding the support vectors $S = \{s_1, \ldots, s_k\}$, and assigning their weights $\omega = \{\omega_1, \ldots, \omega_k\}$. Given a fixed set of support vectors S, one can directly optimize over ω using gradient descent, including any loss function and regularizer as before with linear classifiers. Thus, if we consider all X as possible support vectors S, we can apply standard gradient descent. As mentioned, in most cases, most ω_i values are 0 (and those close enough to 0 can often be rounded to 0). Only the points with non-zero weights are kept as support vectors.

Alternatively, stochastic gradient descent works like perceptron, and may only use a fraction of the data points. As a result it induces sparsity on the ω values, the data points not used are not support vectors.
9.4 kNN Classifiers

Now for something completely different. There are many ways to define a classifier, and we have just touched on some of them. These include decision trees (which basically just ask a series of yes/no questions and are very interpretable) to deep neural networks (which are more complex, far less interpretable, but can achieve more accuracy). We will describe one more simple classifier.

The k-NN classifier (or k-nearest neighbors classifier) works as follows. Choose a scalar parameter k (it will be far simpler to choose k as an odd number, say $k = 5$). Next define a majority function $\text{maj} : \{-1, +1\}^k \rightarrow \{-1, +1\}$. For a set $Y = (y_1, y_2, \ldots, y_k) \in \{-1, +1\}^k$ it is defined

$$\text{maj}(Y) = \begin{cases} +1 & \text{if more than } k/2 \text{ elements of } Y \text{ are } +1 \\ -1 & \text{if more than } k/2 \text{ elements of } Y \text{ are } -1. \end{cases}$$

Then for a data set X where each element $x_i \in X$ has an associated label $y_i \in \{-1, +1\}$, define a k-nearest neighbor function $\phi_{X,k}(q)$ that returns the k points in X which are closest to a query point q. Next let sign report y_i for any input point x_i; for a set of inputs x_i, it returns the set of values y_i.

Finally, the k-NN classifier is

$$g(q) = \text{maj}(\text{sign}(\phi_{X,k}(q))).$$

That is, it finds the k-nearest neighbors of query point q, and considers all of the class labels of those points, and returns the majority vote of those labels.

A query point q near many other positive points will almost surely return $+1$, and symmetrically for negative points. This classifier works surprisingly well for many problems but relies on a good choice of distance function to define $\phi_{X,k}$.

Unfortunately, the model for the classifier depends on all of X. So it may take a long time to evaluate on a large data set X. In contrast the functions g for all methods above take $O(d)$ time to evaluate for points in \mathbb{R}^d, and thus are very efficient.

9.5 Neural Networks

A neural network is a learning algorithm intuitively based on how a neuron works in the brain. A neuron takes in a set of inputs $x = (x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$, weights each input by a corresponding scalar $w = (w_1, w_2, \ldots, w_d)$ and “fires” a signal if the total weight $\sum_{i=1}^d w_i x_i$ is greater than some threshold b.

A neural network, is then just a network or graph of these neurons. Typically, these are arranged in layers. In the first layer, there may be d input values x_1, x_2, \ldots, x_d. These may provide the input to t neurons (each neuron might use fewer than all inputs). Each neuron produces an output y_1, y_2, \ldots, y_t. These outputs then serve as the input to the second layer, and so on.

In a neural net, typically each x_i and y_i is restricted to a range $[-1, 1]$. Since a linear function does not guarantee this of its output, to achieve this at the output of each node, they typically add an activation function $\phi(y)$. Common ones are

- hyperbolic tangent: $\phi(y) = \tanh(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}}$
• sigmoid: \(\phi(y) = \frac{1}{1+e^{-y}} = \frac{e^y}{e^y + 1} \)

• ReLu: \(\phi(y) = \max(0, x) \)

Note that the ReLu only enforces the output is in \([0, \infty)\) not \([0, 1]\).

Once the connections are determined, then the goal is to learn the weights on each neuron so that for a given input, a final neuron fires if the input satisfies some pattern (e.g., the input are pixels to a picture, and it fires if the picture contains a car). This is theorized to be “loosely” how the human brain works. Although, deep nets have pretty much diverged from attempts to replicate the structure of the human brain.

Given a data set \(X \) with labeled data points \((x, y) \in X \) (with \(x \in \mathbb{R}^d \) and \(y \in \{-1, +1\} \)), we already know how to train a single neuron so for input \(x \) it tends to fire if \(y = 1 \) and not fire if \(y = -1 \). It is just a linear classifier. So, we can use the perceptron algorithm, or gradient descent with a well-chosen loss function!

However, for neural networks to attain more power than simple linear classifiers, they need to be at least two layers. Many amazing advances have come from so-called “deep neural networks” or ”deep learning” or ”deep nets” which are neural networks with many layers (say 20 or more). For these networks, the perceptron algorithm no longer works since it does not properly propagate across layers. However, a version of gradient descent called back-propagation can be used. Getting deep nets to work can be quite finicky. Their optimization function is not convex, and without various training tricks, it can be very difficult to find a good global set of weights. (The full details of this approach is well beyond the scope of this text.)