Last Time ...

- Map Reduce
 - Overview
 - Matrix multiplication
 - Complexity theory
Today …

- Assignment 1 – deadline extended – due Oct 6
- Complexity theory for MapoReduce
- Page Rank
Complexity Theory for mapreduce
Reducer size & Replication rate

- **Reducer size** (q)
 - Upper bound on the number of values that are allowed to appear in the list associated with a single key
 - By making the reducer size small, we can force there to be many reducers
 - High parallelism \rightarrow low wall-clock time
 - By choosing a small q we can perform the computation associated with a single reducer entirely in the main memory of the compute node
 - Low synchronization (Comm/IO) \rightarrow low wall clock time

- **Replication rate** (r)
 - Number of (k, v) pairs produced by all the Map tasks on all the inputs, divided by the number of inputs
 - r is the average communication from Map tasks to Reduce tasks
Graph model for mapreduce problems

- Set of inputs
- Set of outputs
- many-many relationship between the inputs and outputs, which describes which inputs are necessary to produce which outputs.

- Mapping schema
 - Given a reducer size q
 - No reducer is assigned more than q inputs
 - For every output, there is at least one reducer that is assigned all input related to that output
Grouping for Similarity Joins

- Generalize the problem to p images
- g equal sized groups of $\frac{p}{g}$ images
- Number of outputs is $\binom{p}{2} \approx \frac{p^2}{2}$
- Each reducer receives $\frac{2p}{g}$ inputs (q)
- Replication rate $r = g - 1$

\[r = \frac{2p}{q} \]

- The smaller the reducer size, the larger the replication rate, and therefore higher the communication
 - communication \leftrightarrow reducer size
 - communication \leftrightarrow parallelism
1. Prove an upper bound on how many outputs a reducer with q inputs can cover. Call this bound $g(q)$

2. Determine the total number of outputs produced by the problem

3. Suppose that there are k reducers, and the i^{th} reducer has $q_i < q$ inputs. Observe that $\sum_{i=1}^{k} g(q_i)$ must be no less than the number of outputs computed in step 2

4. Manipulate inequality in 3 to get a lower bound on $\sum_{i=1}^{k} q_i$

5. 4 is the total communication from Map tasks to reduce tasks. Divide by number of inputs to get the replication rate

$$r \geq \frac{p}{q}$$
Matrix Multiplication

- Consider the one-pass algorithm → extreme case
- Lets group rows/columns into bands → \(g \) groups → \(n/g \) columns/rows
Matrix Multiplication

- Map:
 - for each element of M, N generate $g \ (k, v)$ pairs
 - Key is group paired with all groups
 - Value is (i, j, m_{ij}) or (i, j, n_{ij})

- Reduce:
 - Reducer corresponds to key (i, j)
 - All the elements in the i^{th} band of M and j^{th} band of N
 - Each reducer gets $n \binom{n}{g}$ elements from 2 matrices

$$q = \frac{2n^2}{g}, \quad r = g \quad \Rightarrow \quad r = \frac{2n^2}{q}$$
Lower bounds on Replication rate

1. Prove an upper bound on how many outputs a reducer with \(q \) inputs can cover. Call this bound \(g(q) \).

2. Determine the total number of outputs produced by the problem.

3. Suppose that there are \(k \) reducers, and the \(i^{th} \) reducer has \(q_i < q \) inputs. Observe that \(\sum_{i=1}^{k} g(q_i) \) must be no less than the number of outputs computed in step 2.

4. Manipulate inequality in 3 to get a lower bound on \(\sum_{i=1}^{k} q_i \).

5. 4 is the total communication from Map tasks to reduce tasks. Divide by number of inputs to get the replication rate.

- Each reducer receives \(k \) rows from \(M \) and \(N \rightarrow q = 2nk \) and produces \(k^2 \) outputs \(\rightarrow g(q) = \frac{q^2}{4n^2} \).

- \(n^2 \)

- \(\sum_{i=1}^{k} q_i^2 \geq 4n^4 \)

- \(\sum_{i=1}^{k} q_i \geq \frac{4n^4}{q} \)

\[
 r = \frac{1}{2n^2} \sum_{i=1}^{k} q_i = \frac{2n^2}{q}
\]
Matrix Multiplication

LET US REVISIT THE TWO-PASS APPROACH
Matrix-vector multiplication

- $n \times n$ matrix M with entries m_{ij}
- Vector \mathbf{v} of length n with values v_j
- We wish to compute
 \[x_i = \sum_{j=1}^{n} m_{ij} v_j \]

- If \mathbf{v} can fit in memory
 - Map: generate $(i, m_{ij} v_j)$
 - Reduce: sum all values of i to produce (i, x_i)
- If \mathbf{v} is too large to fit in memory? Stripes? Blocks?
- What if we need to do this iteratively?
Grouped two-pass approach

\[g^2 \text{ groups of } \frac{n^2}{g^2} \text{ elements each} \]

First pass: compute products of square \((I,J)\) of \(M\) with square \((J,K)\) of \(N\)

Second pass: \(\forall I, K\) sum over all \(J\)
Grouped two-pass approach

- Replication rate for map1 is $g \rightarrow 2gn^2$ total communication
- Each reducer gets $\frac{2n^2}{g^2} \rightarrow q = \frac{2n^2}{g^2} \rightarrow g = n\sqrt{\frac{2}{q}}$
- Total communication $\rightarrow 2\frac{\sqrt{2n^3}}{\sqrt{q}}$
- Assume map2 runs on same nodes as reduce1 \rightarrow no communication
- Communication $\rightarrow gn^2 \rightarrow \frac{\sqrt{2n^3}}{\sqrt{q}}$
- Total communication $\rightarrow 3\frac{\sqrt{2n^3}}{\sqrt{q}}$
Comparison

\[
\frac{n^4}{q} < \frac{n^3}{\sqrt{q}}
\]

If \(q \) is closer to the minimum of \(2n \), two pass is better by a factor of \(\Theta(\sqrt{n}) \).
Page Rank
Webpage quality ranking

- Inverted web indexes help locate matching pages of search words
 - But there are too many matches and humans can’t read all
- Both relevance and quality are important in web search
- What is a high-quality web page?
- How to identify a high-quality web page?
 - Hard to spam
- Related to identifying high-quality scientific publications
 - But much bigger dataset
Page Rank

Transition matrix

\[
M = \begin{bmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{bmatrix}
\]

\(\nu \rightarrow \) probability distribution for the location of a random surfer

\(\nu \leftarrow \frac{1}{n} \)

Iterate on \(\nu \leftarrow M\nu \)
Page Rank

- Markov process
 - Limiting distribution
 - will converge if
 - Strongly connected
 - No dead ends
- Limiting \(\mathbf{v} \) is an eigenvector of \(M \)
 - \(\mathbf{v} = \lambda M \mathbf{v} \)
 - \(\mathbf{v} \) is also the primary eigenvector
- Iterate a few times on \(\mathbf{v} \leftarrow M \mathbf{v} \) until \(\|v_{i+1} - v_i\| < \epsilon \)
Solving Linear Systems

- $Mx = y \Rightarrow x = M^{-1}y$

- Gaussian Elimination $\Rightarrow O(n^3)$
- Iterative approaches $\Rightarrow O(kn^2)$
 - For sparse systems $\Rightarrow O(kn)$
 - Use optimal solvers $\Rightarrow k$ independent of n
Structure of the Web

- Strongly Connected Component
- In Component
- Out Component
- Dead Ends
- Spider Traps
Dead Ends

- Remove dead ends from the graph
 - And incoming links
- Compute page-rank on strongly connected component
- Restore graph, retaining page ranks
- Use existing page ranks to compute ranks for dead-end nodes
Spider traps & Taxation

- modify the calculation of PageRank by allowing each random surfer a small probability of teleporting to a random page

\[v' = \beta M v + \frac{(1 - \beta)e}{n} \]

- \(\beta \) is a constant that represents the probability that the surfer follows a link on the page
- Approach will still be biased towards spider traps