
1

Model Checking Real Time Java
--- Wrap Up Report

NASA Ames Research Center
Robust Software Systems Group

Gary Lindstrom
Willem Visser

Peter C. Mehlitz

Outline
Review
• Motivation and approach

RTSJ implementation strategy
• In pure Java
• Exploiting JPF

Examples
• Multiprogramming operating system
• Cars crossing intersection

Status and To Do list
• Gleams in our eyes

2

What Is Real Time Java?

A Java extension supporting real time
applications
• Defined in Realtime Specification for

Java (RTSJ)
• New classes, e.g. RealtimeThread
• New semantics for existing classes,

e.g., java.lang.Thread
• No language extensions, e.g., new

syntax or keywords

Key Features of RTSJ

Threads
• Real time threads

User definable schedulers
• Default: priority based (32 levels)
• Priority inversion avoided by priority

inheritance
Events and event handlers
• Events bound to clocks and timers
• Or external happenings

3

Other Features of RTSJ

Memory areas
• Scoped, immortal, physical
• NoHeapRealtimeThreads not impeded by

GC
Asynchronous transfer of control (ATC)
• Asynchronous interrupt handling
• Within defined scopes

Those throwing
AsynchronousInterruptException

RTSJ Validation Challenges

More dynamic program behavior
• Consequence of no language extension
• Means more possible exceptions

Role of time complicates correctness
• Will a handler complete by its deadline?
• If not, will overrun events be generated?

How do we model environment in
which RTSJ code runs?

4

Model Checking RTSJ

System under test has 2 components
• Embedded code: RTSJ code itself

e.g., flight control software
• Embedding code: modeling environment

e.g., the airplane sensors and actuators
• Both can be complex and difficult to

specify
• Both must be tested and validated

RTSJ Under JPF

Option 1:
• Extend JPF JVM to support RTSJ

features
Custom scheduling, memory areas, ATC, …

Option 2:
• Don’t change JPF JVM
• Instead, add features external to JPF
• Bonus: will run under ordinary Java

5

RTSJ Under JPF (cont’d)

Example: custom schedulers
• Option 1: make JPF scheduler

programmable
But this is integral to JPF state management

• Option 2: constrain the JPF scheduler to
become deterministic

Run real time threads as coroutines
Define customized scheduler logic
externally

Our First Implementation
Follows Option 2

Requirements
• Discrete event simulation (DES)

framework models time
• 100% Java
• Runs under native Java or JPF

Native Java => speed, portability
JPF => value added

• Nondeterministic state exploration
• Cost modeling, using JPF JVM instrumentation

6

Key To External Scheduler:
Resource Objects

Focus of thread interactions
Serializes thread possession
• seize(): wait for resource to be free

Wait set is priority queue
Priority inheritance (PI) on holder thread

• release(): relinquish resource
Dynamic priority may decrease due to PI

Most vital application:
• The CPU, which for which threads contend
• This is how external scheduler mimics RTSJ

default scheduler

Native Java Implementation

DES
clock, event list

Embedded
threads, resources

Embedding
threads, nondeterminism

Native JVM

7

Simulation Cycle
public static void runSimulation(boolean randomize) {

try {
while (eventList.size() > 0) {

EventNotice en = eventList.dequeue(randomize);
synchronized (en.thread) {

// advance simulation time
clock.setTime(en.scheduledTime);

// notify en.thread of active phase to do
en.thread.activePhaseToDo = true;
en.thread.notify();

// wait until active phase is done
while (en.thread.activePhaseToDo) {

en.thread.wait();
}

}
}

} catch (Exception e) { …}
}

Sample Scheduling Primitive
public static void hold(RelativeTime t) {

try {
RealtimeThread currentThread =

(RealtimeThread)Thread.currentThread();
synchronized (currentThread) {

// schedule activation of this thread after hold period
activate(currentThread, clock.getTime().add(t));

// signal main thread to perform next event
currentThread.activePhaseToDo = false;
currentThread.notify();

// wait for hold to be over
currentThread.wait();

}
} catch (Exception e) { … }

}

8

JPF Implementation

Two layer architecture
• Native Java JVM layer

Runs start up program and JPF model
checker
Listeners logging execution costs

• JPF value-added JVM layer
State exploration
Property checking
Cost instrumentation

Native JVM

RTSJ / JPF Architecture

Control
Program

Builds
model,

logs
costs

DES
clock, event list

Embedded
threads, resources

Embedding
threads, nondeterminism

Native JVM

JPF JVM

Bytecode
logging

Logged
costs

Realtime
clock

9

Listener Utilization
public static void main(String args[]) {

…
JPF.addVMListener(theTestClient);
…

}

public void instructionExecuted (VM vm) {
JVM jvm = (JVM)vm;
Instruction instruction = jvm.getLastInstruction();
int byteCode = instruction.getByteCode();

// catch opcodes without costs
assert byteCodeCosts[byteCode] > 0;

instructionCount++;
byteCodeCounts[byteCode]++;
totalCost += byteCodeCosts[byteCode];

}

MJI Utilization

public class JPF_gov_nasa_jpf_rtsj_TestClient{

public static int getCost(
MJIEnv env, int objRef) {

return gov.nasa.jpf.TestClient.getCost();
}

/*
* so model can have access to true real time clock
*/

public static long millisSinceEpoch(
MJIEnv env, int objRef) {

GregorianCalendar gc = new GregorianCalendar();
return gc.getTimeInMillis();

}

10

A Delicate Issue: Time

In real systems, only time is real time
In our system, we have 2 times:

1. Simulated time
2. Time (cost) of RTSJ code execution
Under most simulations, second time is
ignored

• Not here, because ability to meet time
deadlines is a crucial correctness issue

• Plus, we have byte code logging capability

Options on Reconciling
Simulated and Logged Times

1. Assume RTSJ code runs in zero time
• Ignores important correctness issues

2. Log and simulate delays for each
byte code

• Costly, and invasive to JPF code base
3. The Goldilocks (just right) solution

• Do delays for accumulated time at
points where threads could interact

11

Example

… < compute(1)> …
resource.seize();
… < compute(2)> …
resource.release();
… < compute(3)> …

… < compute(1)> …
hold(time(1));
resource.seize();
… < compute(2)> …
hold(time(2));
resource.release();
… < compute(3)> …
hold(time(3));

Underlying principle:
Whenever threads interact, their observed execution times

thus far must been simulated

A Simple Example
Classic DES example: cars contending for
one-way bridge
RTSJ classes utilized
• RealtimeThread, AsynchronousEvent,
AsynchronousEventHandler, Clock,
PeriodicTimer

Under JPF runtime of handlers is modeled
• Overruns detected and appropriate handlers

invoked

12

Performance Comparison

Native Java JPF
Deterministic .041 13.94
Nondeterministic .020 596.758

•Times are in seconds on 786MB Pentium 2 laptop
•Nondeterministic means:

•Native Java: pseudo random selection
•JPF: all possibilities -- 175 paths explored

•Single runs – only relative magnitudes are important

Second Example: Asaf
Degani’s Accident Scenario
Recall talk two weeks ago
• Actual commercial airline accident
• Premature spoiler deployment caused

airframe damage
• Spoilers were not armed during pre-

landing checklist
• Due to delay in landing gear door

retraction
• Manual spoiler deployment was done

before landing

13

Simplified RTSJ Model
Two dimensional approach
• 1 dimension horizontal (distance)
• 1 dimension vertical (altitude)

Pilot performs scenario
• Crux is whether gear doors retract before flaps

25 action
Gear/door deployment time is a normal
distribution
• Mean 28 sec, standard deviation 5.5 sec
• JPF nondeterministically makes 3 draws

random, mean +/- 2 standard deviations

Additional Features
5 resource types
• FIFO
• Priority
• Priority ceiling
• Priority Inheritance
• Preemption

Detailed per thread cost accounting
• With cost overrun and deadline miss handlers

Physical memory model
• With segments

14

Features Added Since 12/9
4 new resource types
• FIFO
• Priority
• Priority ceiling
• Preemption
• (Had Priority Inheritance in 12/9)

Detailed per thread cost accounting
• With cost overrun and deadline miss handlers

Physical memory model
• With segments

Other Accomplishments

Port to Open JPF
JavaDoc
Configuration control
• Native Java vs. JPF
• Choice mode

Deterministic
Pseudo random
Non deterministic (only JPF)

15

Multiprogramming OS
Example

Jobs contend for CPU resource
• CPU types FIFO, priority, priority

inheritance, priority ceiling, preemption
Most interesting case is preemption
• Requires notion of resource interrupt
• hold(t,r) requires loop until full time t

has elapsed while holding resource r
-- time while r is stolen does not count

Comparative Results

Job1(5) Job2(6) Job3(4) Job4(3) CPU Busy
FIFO 80ms/27% 101/40 101/37 101/38 95%
Priority 68/17 72/27 101/35 101/41 88%
PC(6) 68/16 73/26 100/30 101/45 88%
PI 69/16 73/26 101/30 101/41 88%
Preempt 65/19 54/0 101/39 101/62 85%

Job1(5) Job2(6) Job3(4) Job4(3) CPU Busy
FIFO 80ms/27% 101/40 101/37 101/38 95%
Priority 68/17 72/27 101/35 101/41 88%
PC(6) 68/16 73/26 100/30 101/45 88%
PI 69/16 73/26 101/30 101/41 88%
Preempt 65/19 54/0 101/39 101/62 85%

Notes:
•Job % is resource wait time
•Priority, PC and PI are essentially the same
•FIFO evens run time, but improves CPU usage
•Preempt speeds align with priorities

16

More Comprehensive
Example

Cars at uncontrolled intersection
• Can go straight, turn left, or turn right
• Admissible combinations are familiar

Straight through if:
• Opposite car is not turning left
• Car on left is not going straight or turning left
• Car on right is not going straight or turning left or

right

Similar rules for Left and Right turns

Modeling The Intersection:
Four Sector Resources

Northeast

Southwest

Northwest

Southeast

Northbound shown
-- symmetric for other three directions

17

Experiment 1: Deadlocks

How can we let cars in opposite directions
both make left turns?
• But not a car in a cross direction?

For northbound (others analogous):
• Seize SE and NE
• Release SE
• Seize NW
• Release NE and NW

What if we seized all three at once?
• Deadlock – found easily by JPF

Experiment 2:
Resource Types

Each car is a real time thread
Sectors have nominal transit time t
Cars have priorities p in {1, …, 10}
• Sector transit time = 10 * t / p

Various sector resource types:
• FIFO, priority, priority inheritance,

priority ceiling
• Preempt is physically impossible!

18

Sample Results

Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L delay 5s)
FIFO 33s/0% 183/18 49/21
Priority 33/0 183/18 49/21
PC(8) 25/0 63/40 45/15
PI 30/0 180/16 46/17

Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L delay 5s)
FIFO 33s/0% 183/18 49/21
Priority 33/0 183/18 49/21
PC(8) 25/0 63/40 45/15
PI 30/0 180/16 46/17

Notes:
•Nominal sector time 10 sec.
•FIFO, Priority are essentially the same
•Cars 0 and 1 benefit from car speed

increase under PC
•Car 1 gets small speed up under PI

Experiment 3: Deadlines

Real time threads can be given miss
handlers
• Invoked when deadline is not met on

thread completion
This makes sense in Native Java, as
well as JPF
• Later we will deal with cost overruns,

which require JPF listeners on JVM

19

Cars With 75 sec Deadlines
30419 ms, 569440 ns) *** Car 0 terminates;
78731 instructions executed total run time (2 ms, 979000 ns),
(30419 ms, 569440 ns) duration (811 real milliseconds)
…
(51253 ms, 990174 ns) *** Car 2 terminates;
100200 instructions executed total run time (3 ms, 485800 ns),
(46252 ms, 956674 ns) duration (821 real milliseconds)
…
(180423 ms, 139340 ns) *** Car 1 terminates;
121327 instructions executed total run time (3 ms, 299500 ns),
(180423 ms, 139340 ns) duration (1122 real milliseconds)
(180423 ms, 139340 ns) Car 1 with deadline
(75000 ms, 0 ns) had run time (180423 ms, 139340 ns)
(180423 ms, 139340 ns) *** car deadline miss handler invoked ***

Experiment 4: Autonomy

Meaning: on board navigation control
With potential problems
• Latency: CPU can’t keep up
• Failures: sensors don’t see other cars

Added cycle soaker to Car thread
• 100,000 double divides at each sector
• With 350ms cost limit per thread
• Byte code DDIV set at 100ns

20

Sample Output:
Clean Termination

(30647 ms, 72315 ns) *** Car 0 terminates;
5678794 instructions executed total run time (282 ms, 982700 ns),
(30647 ms, 72315 ns) duration (16273 real milliseconds)

Sample Output:
Cost Overrun

(51551 ms, 485849 ns) *** Car 2 terminates;
7800288 instructions executed total run time (353 ms, 485600 ns),
(46480 ms, 451649 ns) duration (16724 real milliseconds)
(51551 ms, 485849 ns) Car 2 with cost limit (300 ms, 0 ns)
had actual cost (353 ms, 485600 ns)
(51551 ms, 485849 ns) *** car cost overrun handler invoked ***

21

Sample Output: Both
Cost and Deadline Overruns

(180930 ms, 717415 ns) *** Car 1 terminates;
9922129 instructions executed

total run time (353 ms, 299200 ns),
(180930 ms, 717415 ns) duration (23153 real milliseconds)
(180930 ms, 717415 ns) Car 1 with cost limit (300 ms, 0 ns)
had actual cost (353 ms, 299200 ns)
(180930 ms, 717415 ns) *** car cost overrun handler invoked ***
(180930 ms, 717415 ns) Car 1 with deadline (75000 ms, 0 ns)
had run time (180930 ms, 717415 ns)
(180930 ms, 717415 ns) *** car deadline miss handler invoked ***

Sample Output Sections
[313674:0] altitude 1800, runway 28691 ft.,

gear change requested from up to down
[330674:0] altitude 1800, runway 24203 ft.,

gear change from up to down completed
[330674:0] altitude 1800, runway 24203 ft.,

spoilers armed
…
[470180:0] altitude 0, runway 1 ft., on ground
[470180:0] altitude 0, runway 1 ft., >>> spoilers deploy automatically <<<

[313674:0] altitude 1800, runway 28691 ft.,
gear change requested from up to down

[352674:0] altitude 1800, runway 18395 ft.,
gear change from up to down completed

[352674:0] altitude 1800, runway 18395 ft.,
doors not retracted -- arm spoilers manually!

…
[452400:0] altitude 0, runway 1 ft., on ground
[452400:0] altitude 0, runway 1 ft., >>> deploy spoilers manually! <<<

22

Gleams In Our Eyes
Customized state abstractions
• e.g., focused on event list structure and

history
Symbolic, constraint based analysis
• Exploit event causality relationships

Other applications
• Generation of test scripts
• Generation of procedures (scripts)

For More Information

Consult project web site
• http://www.cs.utah.edu/~gary/RTSJ/

• Includes:
ATVA ’05 paper
RTSJ API Javadoc
Examples
These slides

