Model Checking Real Time Java
--- Wrap Up Report

NASA Ames Research Center
Robust Software Systems Group

y oy Gary Lindstrom
k . Willem Visser

iz o Peter C. Mehlitz
SCHOOL or
COMPUTING o

Outline

SCHOOL. o
COMPUTING

» Review
» Motivation and approach
» RTSJ implementation strategy
* In pure Java
» Exploiting JPF
» Examples
* Multiprogramming operating system
» Cars crossing intersection
» Status and To Do list
» Gleams in our eyes

What Is Real Time Java?

COMPLUTINC

» A Java extension supporting real time
applications

» Defined in Realtime Specification for
Java (RTSJ)
* New classes, e.g. RealtimeThread

» New semantics for existing classes,
e.g., Jjava.lang.Thread

* No language extensions, e.g., new
syntax or keywords

Key Features of RTSJ

SCHOOL. o
COMPUTING

» Threads
* Real time threads
» User definable schedulers
» Default: priority based (32 levels)

 Priority inversion avoided by priority
inheritance

» Events and event handlers
» Events bound to clocks and timers
» Or external happenings

UNIVERSITY
OF| JTAH

HE
VE:
U

= Other Features of RTSJ

»Memory areas
e Scoped, immortal, physical

= NoHeapRealtimeThreads not impeded by
GC

» Asynchronous transfer of control (ATC)
» Asynchronous interrupt handling

» Within defined scopes

¢+ Those throwing
AsynchronousiInterruptException

UNIVERSITY
OFJTAH

RTSJ Validation Challenges

SCHOOL. o
COMPUTING

»More dynamic program behavior
» Consequence of no language extension
* Means more possible exceptions

» Role of time complicates correctness
» Will a handler complete by its deadline?
* If not, will overrun events be generated?

» How do we model environment in
which RTSJ code runs?

SO0
COMPL

L.ow
FING

Model Checking RTSJ

» System under test has 2 components

» Embedded code: RTSJ code itself
+ e.g., flight control software

 Embedding code: modeling environment
¢+ e.g., the airplane sensors and actuators
» Both can be complex and difficult to
specify
» Both must be tested and validated

UNIVERSITY
OF{ JTAH

RTSJ Under JPF

» Option 1:

» Extend JPF JVM to support RTSJ
features
¢+ Custom scheduling, memory areas, ATC, ...

» Option 2:
» Don’t change JPF JVM
* Instead, add features external to JPF
» Bonus: will run under ordinary Java

UNIVERSITY
OF| JTAH

iF
VE
¥

RTSJ Under JPF (cont'd)

COMPUTING

» Example: custom schedulers
e Option 1: make JPF scheduler
programmable
+ But this is integral to JPF state management
» Option 2: constrain the JPF scheduler to
become deterministic
¢+ Run real time threads as coroutines

+ Define customized scheduler logic
externally

¢ Our First Implementation
<o Follows Option 2

COMPUTING

» Requirements

» Discrete event simulation (DES)
framework models time

* 100% Java

* Runs under native Java or JPF
+ Native Java => speed, portability
+ JPF => value added

« Nondeterministic state exploration
e Cost modeling, using JPF JVM instrumentation

Key To External Scheduler:
Resource Objects

COMPLUTING

» Focus of thread interactions

» Serializes thread possession
= seize(): wait for resource to be free
+ Wait set is priority queue
+ Priority inheritance (PI) on holder thread
* release(): relinquish resource
+ Dynamic priority may decrease due to Pl
» Most vital application:
e The CPU, which for which threads contend

e This is how external scheduler mimics RTSJ
default scheduler

#— " Native Java Implementation

COMPUTING

Embedded Embedding
threads, resources threads, nondeterminism

DES
clock, event list

Native JVM

FE’_’A Simulation Cycle

SLHOOL. o public static void runSimulation(boolean randomize) {
COMPUTING try {
while (eventList.size() >0) {
EventNotice en = eventList.dequeue(randomize);
synchronized (en.thread) {
// advance simulation time
clock.setTime(en.scheduledTime);

// notify en.thread of active phase to do
en.thread.activePhaseToDo = true;
en.thread.notify(Q);

// wait until active phase is done
while (en.thread.activePhaseToDo) {
en.thread.wait();
¥
}

} catch (Exception e) { .}

Sample Scheduling Primitive

SCHOOL
COMPUTING

public static void hold(RelativeTime t) {
try {
RealtimeThread currentThread =
(RealtimeThread)Thread.currentThread();
synchronized (currentThread) {
// schedule activation of this thread after hold period
activate(currentThread, clock.getTime().-add(t));

// signal main thread to perform next event
currentThread.activePhaseToDo = false;
currentThread.notify();

// wait for hold to be over
currentThread.wait();

3
} catch (Exception e) { .. }

JPF Implementation

COMPLUTING

» Two layer architecture

» Native Java JVM layer

¢+ Runs start up program and JPF model
checker

+ Listeners logging execution costs

» JPF value-added JVM layer
+ State exploration
¢+ Property checking
+ Cost instrumentation

RTSJ / JPF Architecture

SCHOOL ou
COMPUTING

Control Embedded Embedding

| _Logged | | threads, resources ini
Program 908 , threads, nondeterminism

Builds ™~ _

model, Bytecode
logs logging DES
costs

clock, event list

Realtime

EIREIS JPF JVM

Native JVM

& D
o~ |istener Utilization

COMPLUTING

public static void main(String args[]) {

JPF.addVMListener(theTestClient);

}

public void instructionExecuted (VM vm) {
JVM jvm = (JVM)vm;
Instruction instruction = jvm.getlLastlinstruction();
int byteCode = instruction.getByteCode();

// catch opcodes without costs
assert byteCodeCosts[byteCode] > 0;

instructionCount++;
byteCodeCounts[byteCode]++;
totalCost += byteCodeCosts[byteCode];

MJI Utilization

SCHOOL
COMPUTING

public class JPF_gov_nasa_jpf_rtsj_TestClient{

public static int getCost(
MJIEnv env, int objRef) {
return gov.nasa.jpf.TestClient.getCost();

¥

/*
* so model can have access to true real time clock
*/
public static long millisSinceEpoch(
MJIEnv env, int objRef) {
GregorianCalendar gc = new GregorianCalendar();
return gc.getTimelnMillis();

- A Delicate Issue: Time

COMPLUTINC

> Inreal systems, only time is real time
» In our system, we have 2 times:
1. Simulated time
2. Time (cost) of RTSJ code execution
» Under most simulations, second time is
ignored

* Not here, because ability to meet time
deadlines is a crucial correctness issue

* Plus, we have byte code logging capability

ca Options on Reconciling
oo Simulated and Logged Times

COMPUTTENC

1. Assume RTSJ code runs in zero time
» Ignores important correctness issues

2. Log and simulate delays for each
byte code
* Costly, and invasive to JPF code base
3. The Goldilocks (just right) solution

* Do delays for accumulated time at
points where threads could interact

T
UNIVERSITY
OFJTAH

10

SUHOOL o4
COMPLUTING

. < compute(l)> ..
. < compute(1)> .. hold(time(1));
resource.seize(); resource.seize();
. < compute(2)> < compute(2)> ..
resource.release(); hold(time(2));
. < compute(3)> .. resource.release();
. < compute(3)> ..
hold(time(3));

Underlying principle:
Whenever threads interact, their observed execution times
thus far must been simulated

- A Simple Example

COMPUTTENC

» Classic DES example: cars contending for
one-way bridge
» RTSJ classes utilized

e RealtimeThread, AsynchronousEkvent,
AsynchronousEventHandler, Clock,
PeriodicTimer

» Under JPF runtime of handlers is modeled

» Overruns detected and appropriate handlers
invoked

11

- Performance Comparison

COMPLUTINC

Native Java JPF
Deterministic .041 13.94
Nondeterministic .020 596.758

*Times are in seconds on 786MB Pentium 2 laptop
*Nondeterministic means:

*Native Java: pseudo random selection

*JPF: all possibilities -- 175 paths explored
*Single runs — only relative magnitudes are important

& Second Example: Asaf
<o Degani’s Accident Scenario

COMPUTING

» Recall talk two weeks ago
e Actual commercial airline accident

» Premature spoiler deployment caused
airframe damage

Spoilers were not armed during pre-
landing checklist

Due to delay in landing gear door
retraction

Manual spoiler deployment was done
before landing

12

COMPUTING

SCHOOL. o

COMPUTING

Simplified RTSJ Model

» Two dimensional approach
» 1 dimension horizontal (distance)
» 1 dimension vertical (altitude)

> Pilot performs scenario
» Crux is whether gear doors retract before flaps
25 action
» Gear/door deployment time is a normal
distribution
* Mean 28 sec, standard deviation 5.5 sec

* JPF nondeterministically makes 3 draws
+ random, mean +/- 2 standard deviations

Additional Features

» 5 resource types

* FIFO

 Priority

* Priority ceiling

 Priority Inheritance

* Preemption
» Detailed per thread cost accounting

» With cost overrun and deadline miss handlers
» Physical memory model

» With segments

Un

13

Features Added Since 12/9

» 4 new resource types
* FIFO
Priority
Priority ceiling
» Preemption
» (Had Priority Inheritance in 12/9)
> Detailed per thread cost accounting
» With cost overrun and deadline miss handlers

» Physical memory model
* With segments

COMPUTING

Other Accomplishments

SCHOOL. o
COMPUTING

» Port to Open JPF
» JavaDoc

» Configuration control
* Native Java vs. JPF

» Choice mode
¢+ Deterministic
¢+ Pseudo random
+ Non deterministic (only JPF)

UNIVERSITY
OF| JTAH

HE
VE:
U

14

COMPUTING

Multiprogramming OS
Example

COMPUTING
» Jobs contend for CPU resource
» CPU types FIFO, priority, priority
inheritance, priority ceiling, preemption
»Most interesting case is preemption
» Requires notion of resource interrupt

= hold(t,r) requires loop until full time t
has elapsed while holding resource r
-- time while r is stolen does not count

Comparative Results

Jobl(5) Job2(6) Job3(4) Job4(3) CPU Busy
80ms/27% 101/40 101/37 101/38 95%
Priority ~ 68/17 72/27 101/35 101/41 88%
PC(6) 68/16 73/26 100/30 101/45 88%
PI 69/16 73/26 101/30 101/41 88%
Preempt 65/19 54/0 101/39 101/62 85%

Notes:
*Job % is resource wait time
*Priority, PC and PI are essentially the same
*FIFO evens run time, but improves CPU usage
*Preempt speeds align with priorities

15

More Comprehensive
Example

COMPLUTING

» Cars at uncontrolled intersection
e Can go straight, turn left, or turn right

* Admissible combinations are familiar

+ Straight through if:
e Opposite car is not turning left
« Car on left is not going straight or turning left
e Car on right is not going straight or turning left or
right
+ Similar rules for Left and Right turns

FEA Modeling The Intersection:
oo, FOUr Sector Resources

COMPUTING

A

Northwest §| Nortk.2ast

Southwest | Sout!.east

Northbound shown "o
-- symmetric for other three directions

16

SO0
COMPL

L.ow
FING

Experiment 1. Deadlocks

» How can we let cars in opposite directions
both make left turns?

» But not a car in a cross direction?

» For northbound (others analogous):
» Seize SE and NE
* Release SE
e Seize NW
* Release NE and NW

» What if we seized all three at once?
» Deadlock — found easily by JPF

UNIVERSITY
OFJTAH

Experiment 2:
Resource Types

» Each car is a real time thread

» Sectors have nominal transit time t

» Cars have priorities p in {1, ..., 10}
e Sector transittime =10*t/p

> Various sector resource types:

» FIFO, priority, priority inheritance,
priority ceiling
* Preempt is physically impossible!

UNIVERSITY
OF| JTAH

iE
VE:
U

17

Sample Results

SUHOOL o4
COMPLUTING

Car0 (5/N/S) Car1 (2/S/L) Car 2 (8/E/L delay 5s)
FIFO 33s/0% 183/18 49/21
Priority 33/0 183/18 49/21
PC(8) 25/0 63/40 45/15
PI 30/0 180/16 46/17

Notes:
*Nominal sector time 10 sec.
*FIFO, Priority are essentially the same
*Cars 0 and 1 benefit from car speed
increase under PC
*Car 1 gets small speed up under PI

Experiment 3: Deadlines

SCHOOL. o
COMPUTING

» Real time threads can be given miss
handlers

* Invoked when deadline is not met on
thread completion
» This makes sense in Native Java, as
well as JPF

» Later we will deal with cost overruns,
which require JPF listeners on JVM

18

! | |
=~ Cars With 75 sec Deadlines

S0 HOOL
COMPUTING

30419 ms, 569440 ns) *** Car 0 terminates;
78731 instructions executed total run time (2 ms, 979000 ns),
(30419 ms, 569440 ns) duration (811 real milliseconds)

(51253 ms, 990174 ns) *** Car 2 terminates;
100200 instructions executed total run time (3 ms, 485800 ns),
(46252 ms, 956674 ns) duration (821 real milliseconds)

(180423 ms, 139340 ns) *** Car 1 terminates;

121327 instructions executed total run time (3 ms, 299500 ns),
(180423 ms, 139340 ns) duration (1122 real milliseconds)
(180423 ms, 139340 ns) Car 1 with deadline

(75000 ms, 0 ns) had run time (180423 ms, 139340 ns)

(180423 ms, 139340 ns) *** car deadline miss handler invoked ***

Experiment 4. Autonomy

SCHOOL. o
COMPUTING

»Meaning: on board navigation control
»With potential problems

e Latency: CPU can't keep up

* Failures: sensors don't see other cars
» Added cycle soaker to Car thread

» 100,000 double divides at each sector

* With 350ms cost limit per thread

» Byte code DDIV set at 100ns

FE’A Sample Output:

oo, Clean Termination

COMPLUTING

(30647 ms, 72315 ns) *** Car 0 terminates;
5678794 instructions executed total run time (282 ms, 982700 ns),
(30647 ms, 72315 ns) duration (16273 real milliseconds)

FEA Sample Output:

squeen Cost Overrun

COMPUTING

(51551 ms, 485849 ns) *** Car 2 terminates;

7800288 instructions executed total run time (353 ms, 485600 ns),
(46480 ms, 451649 ns) duration (16724 real milliseconds)

(51551 ms, 485849 ns) Car 2 with cost limit (300 ms, 0 ns)

had actual cost (353 ms, 485600 ns)

(51551 ms, 485849 ns) *** car cost overrun handler invoked ***

20

FE”A Sample Output: Both
sk, Cost and Deadline Overruns

(180930 ms, 717415 ns) *** Car 1 terminates;
9922129 instructions executed
total run time (353 ms, 299200 ns),
(180930 ms, 717415 ns) duration (23153 real milliseconds)
(180930 ms, 717415 ns) Car 1 with cost limit (300 ms, 0 ns)
had actual cost (353 ms, 299200 ns)
(180930 ms, 717415 ns) *** car cost overrun handler invoked ***
(180930 ms, 717415 ns) Car 1 with deadline (75000 ms, O ns)
had run time (180930 ms, 717415 ns)
(180930 ms, 717415 ns) *** car deadline miss handler invoked ***

|

s— Sample Output Sections

SCHOOL
COMPUTING

[313674:0] altitude 1800, runway 28691 ft.,
gear change requested from up to down

[330674:0] altitude 1800, runway 24203 ft.,
gear change from up to down completed

[330674:0] altitude 1800, runway 24203 ft.,
spoilers armed

[470180:0] altitude O, runway 1 ft., on ground
[470180:0] altitude O, runway 1 ft., >>> spoilers deploy automatically <<<

[313674:0] altitude 1800, runway 28691 ft.,

gear change requested from up to down
[352674:0] altitude 1800, runway 18395 ft.,

gear change from up to down completed
[352674:0] altitude 1800, runway 18395 ft.,

doors not retracted -- arm spoilers manually!

[452400:0] altitude O, runway 1 ft., on ground
[452400:0] altitude O, runway 1 ft., >>> deploy spoilers manually! <<<

21

Gleams In Our Eyes

» Customized state abstractions

* e.g., focused on event list structure and
history

» Symbolic, constraint based analysis
» Exploit event causality relationships

» Other applications
» Generation of test scripts
» Generation of procedures (scripts)

UNIVERSITY
OFJTAH

&~ For More Information

COMPUTING

»Consult project web site

* Includes:
¢+ ATVA '05 paper
+ RTSJ API Javadoc
¢+ Examples
¢+ These slides

