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What Is Real Time Java?

A Java extension supporting real time 
applications
• Defined in Realtime Specification for 

Java (RTSJ)
• New classes, e.g. RealtimeThread
• New semantics for existing classes, 

e.g., java.lang.Thread
• No language extensions, e.g., new 

syntax or keywords

Key Features of RTSJ

Threads
• Real time threads

User definable schedulers
• Default: priority based (32 levels)
• Priority inversion avoided by priority 

inheritance
Events and event handlers
• Events bound to clocks and timers
• Or external happenings



3

Other Features of RTSJ

Memory areas
• Scoped, immortal, physical
• NoHeapRealtimeThreads not impeded by 

GC
Asynchronous transfer of control (ATC)
• Asynchronous interrupt handling
• Within defined scopes

Those throwing 
AsynchronousInterruptException

RTSJ Validation Challenges

More dynamic program behavior
• Consequence of no language extension
• Means more possible exceptions

Role of time complicates correctness
• Will a handler complete by its deadline?
• If not, will overrun events be generated?

How do we model environment in 
which RTSJ code runs?
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Model Checking RTSJ

System under test has 2 components
• Embedded code: RTSJ code itself

e.g., flight control software
• Embedding code: modeling environment

e.g., the airplane sensors and actuators
• Both can be complex and difficult to 

specify
• Both must be tested and validated

RTSJ Under JPF

Option 1:
• Extend JPF JVM to support RTSJ 

features
Custom scheduling, memory areas, ATC, …

Option 2:
• Don’t change JPF JVM
• Instead, add features external to JPF
• Bonus: will run under ordinary Java
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RTSJ Under JPF (cont’d)

Example: custom schedulers
• Option 1: make JPF scheduler 

programmable
But this is integral to JPF state management

• Option 2: constrain the JPF scheduler to 
become deterministic

Run real time threads as coroutines
Define customized scheduler logic 
externally

Our First Implementation 
Follows Option 2

Requirements
• Discrete event simulation (DES) 

framework models time
• 100% Java
• Runs under native Java or JPF

Native Java => speed, portability
JPF => value added

• Nondeterministic state exploration
• Cost modeling, using JPF JVM instrumentation
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Key To External Scheduler: 
Resource Objects

Focus of thread interactions
Serializes thread possession
• seize(): wait for resource to be free

Wait set is priority queue
Priority inheritance (PI) on holder thread

• release(): relinquish resource
Dynamic priority may decrease due to PI

Most vital application:
• The CPU, which for which threads contend
• This is how external scheduler mimics RTSJ 

default scheduler

Native Java Implementation

DES
clock, event list

Embedded
threads, resources

Embedding
threads, nondeterminism

Native JVM
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Simulation Cycle
public static void runSimulation( boolean randomize ) {

try {
while ( eventList.size() > 0 ) {

EventNotice en = eventList.dequeue( randomize );
synchronized ( en.thread ) {

// advance simulation time
clock.setTime( en.scheduledTime );

// notify en.thread of active phase to do
en.thread.activePhaseToDo = true;
en.thread.notify();

// wait until active phase is done
while ( en.thread.activePhaseToDo ) {

en.thread.wait();
}

}
}

} catch ( Exception e ) { …}
}

Sample Scheduling Primitive
public static void hold( RelativeTime t ) {

try {
RealtimeThread currentThread = 

(RealtimeThread)Thread.currentThread();
synchronized ( currentThread ) {

// schedule activation of this thread after hold period
activate( currentThread, clock.getTime().add(t) );

// signal main thread to perform next event
currentThread.activePhaseToDo = false;
currentThread.notify();

// wait for hold to be over
currentThread.wait();

}
} catch ( Exception e ) { … }

}
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JPF Implementation

Two layer architecture
• Native Java JVM layer

Runs start up program and JPF model 
checker
Listeners logging execution costs

• JPF value-added JVM layer
State exploration
Property checking
Cost instrumentation

Native JVM

RTSJ / JPF Architecture

Control
Program

Builds
model,

logs
costs

DES
clock, event list

Embedded
threads, resources

Embedding
threads, nondeterminism

Native JVM

JPF JVM

Bytecode
logging

Logged
costs

Realtime
clock



9

Listener Utilization
public static void main( String args[] ) {

…
JPF.addVMListener(theTestClient);
…

}

public void instructionExecuted (VM vm) {
JVM jvm = (JVM)vm;
Instruction instruction = jvm.getLastInstruction();
int byteCode = instruction.getByteCode();

// catch opcodes without costs
assert byteCodeCosts[byteCode] > 0;

instructionCount++;
byteCodeCounts[byteCode]++;
totalCost += byteCodeCosts[byteCode];

}

MJI Utilization

public class JPF_gov_nasa_jpf_rtsj_TestClient{

public static int getCost(
MJIEnv env, int objRef ) {

return gov.nasa.jpf.TestClient.getCost();
}

/*
* so model can have access to true real time clock
*/

public static long millisSinceEpoch(
MJIEnv env, int objRef ) {

GregorianCalendar gc = new GregorianCalendar();
return gc.getTimeInMillis();

}
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A Delicate Issue: Time

In real systems, only time is real time
In our system, we have 2 times:

1. Simulated time
2. Time (cost) of RTSJ code execution
Under most simulations, second time is 
ignored

• Not here, because ability to meet time 
deadlines is a crucial correctness issue

• Plus, we have byte code logging capability

Options on Reconciling 
Simulated and Logged Times

1. Assume RTSJ code runs in zero time
• Ignores important correctness issues

2. Log and simulate delays for each 
byte code

• Costly, and invasive to JPF code base
3. The Goldilocks (just right) solution

• Do delays for accumulated time at 
points where threads could interact 
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Example

… < compute(1)> …
resource.seize();
… < compute(2)> …
resource.release();
… < compute(3)> …

… < compute(1)> …
hold( time(1) );
resource.seize();
… < compute(2)> …
hold( time(2) );
resource.release();
… < compute(3)> …
hold( time(3) );

Underlying principle:
Whenever threads interact, their observed execution times

thus far must been simulated

A Simple Example
Classic DES example: cars contending for 
one-way bridge
RTSJ classes utilized
• RealtimeThread, AsynchronousEvent, 
AsynchronousEventHandler, Clock, 
PeriodicTimer

Under JPF runtime of handlers is modeled
• Overruns detected and appropriate handlers 

invoked
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Performance Comparison

Native Java JPF
Deterministic .041 13.94
Nondeterministic .020 596.758

•Times are in seconds on 786MB Pentium 2 laptop
•Nondeterministic means:

•Native Java: pseudo random selection
•JPF: all possibilities -- 175 paths explored

•Single runs – only relative magnitudes are important

Second Example: Asaf
Degani’s Accident Scenario
Recall talk two weeks ago
• Actual commercial airline accident
• Premature spoiler deployment caused 

airframe damage
• Spoilers were not armed during pre-

landing checklist
• Due to delay in landing gear door 

retraction
• Manual spoiler deployment was done 

before landing



13

Simplified RTSJ Model
Two dimensional approach
• 1 dimension horizontal (distance)
• 1 dimension vertical (altitude)

Pilot performs scenario
• Crux is whether gear doors retract before flaps 

25 action
Gear/door deployment time is a normal 
distribution
• Mean 28 sec, standard deviation 5.5 sec 
• JPF nondeterministically makes 3 draws

random, mean +/- 2 standard deviations

Additional Features
5 resource types
• FIFO
• Priority
• Priority ceiling
• Priority Inheritance
• Preemption

Detailed per thread cost accounting
• With cost overrun and deadline miss handlers

Physical memory model
• With segments



14

Features Added Since 12/9
4 new resource types
• FIFO
• Priority
• Priority ceiling
• Preemption
• (Had Priority Inheritance in 12/9)

Detailed per thread cost accounting
• With cost overrun and deadline miss handlers

Physical memory model
• With segments

Other Accomplishments

Port to Open JPF
JavaDoc
Configuration control
• Native Java vs. JPF
• Choice mode

Deterministic
Pseudo random
Non deterministic (only JPF)
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Multiprogramming OS 
Example

Jobs contend for CPU resource
• CPU types FIFO, priority, priority 

inheritance, priority ceiling, preemption
Most interesting case is preemption
• Requires notion of resource interrupt
• hold(t,r) requires loop until full time t

has elapsed while holding resource r
-- time while r is stolen does not count

Comparative Results

Job1(5)       Job2(6)    Job3(4)     Job4(3)  CPU Busy
FIFO 80ms/27%  101/40    101/37       101/38           95%
Priority  68/17            72/27    101/35       101/41           88%
PC(6) 68/16            73/26    100/30       101/45          88%
PI 69/16            73/26    101/30       101/41    88%
Preempt 65/19             54/0     101/39       101/62           85%

Job1(5)       Job2(6)    Job3(4)     Job4(3)  CPU Busy
FIFO 80ms/27%  101/40    101/37       101/38           95%
Priority  68/17            72/27    101/35       101/41           88%
PC(6) 68/16            73/26    100/30       101/45          88%
PI 69/16            73/26    101/30       101/41    88%
Preempt 65/19             54/0     101/39       101/62           85%

Notes:
•Job % is resource wait time
•Priority, PC and PI are essentially the same
•FIFO evens run time, but improves CPU usage
•Preempt speeds align with priorities
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More Comprehensive 
Example

Cars at uncontrolled intersection
• Can go straight, turn left, or turn right
• Admissible combinations are familiar

Straight through if:
• Opposite car is not turning left
• Car on left is not going straight or turning left
• Car on right is not going straight or turning left or 

right

Similar rules for Left and Right turns

Modeling The Intersection: 
Four Sector Resources

Northeast

Southwest

Northwest

Southeast

Northbound shown
-- symmetric for other three directions
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Experiment 1: Deadlocks

How can we let cars in opposite directions 
both make left turns?
• But not a car in a cross direction?

For northbound (others analogous):
• Seize SE and NE
• Release SE
• Seize NW
• Release NE and NW

What if we seized all three at once?
• Deadlock – found easily by JPF

Experiment 2:
Resource Types

Each car is a real time thread
Sectors have nominal transit time t
Cars have priorities p in {1, …, 10}
• Sector transit time = 10 * t / p

Various sector resource types:
• FIFO, priority, priority inheritance, 

priority ceiling
• Preempt is physically impossible!
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Sample Results

Car 0 (5/N/S)      Car 1 (2/S/L)     Car 2 (8/E/L delay 5s)
FIFO 33s/0%               183/18                   49/21  
Priority 33/0                    183/18                   49/21
PC(8) 25/0                      63/40                   45/15
PI 30/0                    180/16                  46/17

Car 0 (5/N/S)      Car 1 (2/S/L)     Car 2 (8/E/L delay 5s)
FIFO 33s/0%               183/18                   49/21  
Priority 33/0                    183/18                   49/21
PC(8) 25/0                      63/40                   45/15
PI 30/0                    180/16                  46/17

Notes:
•Nominal sector time 10 sec.
•FIFO, Priority are essentially the same
•Cars 0 and 1 benefit from car speed 

increase under PC
•Car 1 gets small speed up under PI

Experiment 3: Deadlines

Real time threads can be given miss 
handlers
• Invoked when deadline is not met on 

thread completion
This makes sense in Native Java, as 
well as JPF
• Later we will deal with cost overruns, 

which require JPF listeners on JVM
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Cars With 75 sec Deadlines
30419 ms, 569440 ns) *** Car 0 terminates; 
78731 instructions executed total run time (2 ms, 979000 ns), 
(30419 ms, 569440 ns) duration (811 real milliseconds)
…
(51253 ms, 990174 ns) *** Car 2 terminates; 
100200 instructions executed total run time (3 ms, 485800 ns), 
(46252 ms, 956674 ns) duration (821 real milliseconds)
…
(180423 ms, 139340 ns) *** Car 1 terminates; 
121327 instructions executed total run time (3 ms, 299500 ns), 
(180423 ms, 139340 ns) duration (1122 real milliseconds)
(180423 ms, 139340 ns) Car 1 with deadline 
(75000 ms, 0 ns) had run time (180423 ms, 139340 ns)
(180423 ms, 139340 ns)  *** car deadline miss handler invoked *** 

Experiment 4: Autonomy

Meaning: on board navigation control
With potential problems
• Latency: CPU can’t keep up
• Failures: sensors don’t see other cars

Added cycle soaker to Car thread
• 100,000 double divides at each sector
• With 350ms cost limit per thread
• Byte code DDIV set at 100ns
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Sample Output: 
Clean Termination

(30647 ms, 72315 ns) *** Car 0 terminates; 
5678794 instructions executed total run time (282 ms, 982700 ns), 
(30647 ms, 72315 ns) duration (16273 real milliseconds)

Sample Output: 
Cost Overrun

(51551 ms, 485849 ns) *** Car 2 terminates; 
7800288 instructions executed total run time (353 ms, 485600 ns),
(46480 ms, 451649 ns) duration (16724 real milliseconds)
(51551 ms, 485849 ns) Car 2 with cost limit (300 ms, 0 ns) 
had actual cost (353 ms, 485600 ns)
(51551 ms, 485849 ns)  *** car cost overrun handler invoked ***
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Sample Output: Both 
Cost and Deadline Overruns

(180930 ms, 717415 ns) *** Car 1 terminates; 
9922129 instructions executed

total run time (353 ms, 299200 ns), 
(180930 ms, 717415 ns) duration (23153 real milliseconds)
(180930 ms, 717415 ns) Car 1 with cost limit (300 ms, 0 ns) 
had actual cost (353 ms, 299200 ns)
(180930 ms, 717415 ns)  *** car cost overrun handler invoked ***
(180930 ms, 717415 ns) Car 1 with deadline (75000 ms, 0 ns) 
had run time (180930 ms, 717415 ns)
(180930 ms, 717415 ns)  *** car deadline miss handler invoked *** 

Sample Output Sections
[313674:0] altitude 1800, runway 28691 ft., 

gear change requested from up to down
[330674:0] altitude 1800, runway 24203 ft., 

gear change from up to down completed
[330674:0] altitude 1800, runway 24203 ft., 

spoilers armed
…
[470180:0] altitude 0, runway 1 ft., on ground
[470180:0] altitude 0, runway 1 ft., >>> spoilers deploy automatically <<<

[313674:0] altitude 1800, runway 28691 ft., 
gear change requested from up to down

[352674:0] altitude 1800, runway 18395 ft., 
gear change from up to down completed

[352674:0] altitude 1800, runway 18395 ft., 
doors not retracted -- arm spoilers manually!

…
[452400:0] altitude 0, runway 1 ft., on ground
[452400:0] altitude 0, runway 1 ft., >>> deploy spoilers manually! <<<
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Gleams In Our Eyes
Customized state abstractions
• e.g., focused on event list structure and 

history
Symbolic, constraint based analysis
• Exploit event causality relationships

Other applications
• Generation of test scripts
• Generation of procedures (scripts)

For More Information

Consult project web site
• http://www.cs.utah.edu/~gary/RTSJ/

• Includes:
ATVA ’05 paper
RTSJ API Javadoc
Examples
These slides


