Model Checking Real Time Java --- Wrap Up Report

NASA Ames Research Center Robust Software Systems Group

> Gary Lindstrom Willem Visser Peter C. Mehlitz

Other Features of RTSJ

➢ Memory areas

- Scoped, immortal, physical
- NoHeapRealtimeThreads not impeded by GC
- Asynchronous transfer of control (ATC)
 - Asynchronous interrupt handling
 - Within defined scopes
 - Those throwing AsynchronousInterruptException

Model Checking RTSJ

- System under test has 2 components
 - Embedded code: RTSJ code itself
 - e.g., flight control software
 - Embedding code: modeling environment
 - + e.g., the airplane sensors and actuators
 - Both can be complex and difficult to specify
 - Both must be tested and validated

<section-header> FOREST CONSTRUCTION OF CONSTRUCTURAN OF CONSTRUCTION OF CONSTRUCTURAN OF CONSTR

Key To External Scheduler: Resource Objects

- Focus of thread interactions
- Serializes thread possession
 - seize(): wait for resource to be free
 - Wait set is priority queue
 - Priority inheritance (PI) on holder thread
 - release(): relinquish resource
 - Dynamic priority may decrease due to PI
- Most vital application:
 - The CPU, which for which threads contend
 - This is how external scheduler mimics RTSJ default scheduler

A Delicate Issue: Time

- In real systems, only time is real time
 - In our system, we have 2 times:
 - 1. Simulated time
 - 2. Time (cost) of RTSJ code execution
- Under most simulations, second time is ignored
 - Not here, because ability to meet time deadlines is a crucial correctness issue
 - Plus, we have byte code logging capability

Simplified RTSJ Model

- Two dimensional approach
 - 1 dimension horizontal (distance)
 - 1 dimension vertical (altitude)
- Pilot performs scenario
 - Crux is whether gear doors retract before flaps 25 action
- Gear/door deployment time is a normal distribution
 - Mean 28 sec, standard deviation 5.5 sec
 - JPF nondeterministically makes 3 draws
 random, mean +/- 2 standard deviations

Multiprogramming OS Example

- Jobs contend for CPU resource
 - CPU types FIFO, priority, priority inheritance, priority ceiling, preemption
- Most interesting case is preemption
 - Requires notion of resource interrupt
 - hold(t,r) requires loop until full time t
 has elapsed while holding resource r
 -- time while r is stolen does not count

Job1(5) Job2(6) Job3(4) Job4(3) CPU B
FIFO 80ms/27% 101/40 101/37 101/38 95%
Priority 68/17 72/27 101/35 101/41 88%
PC(6) 68/16 73/26 100/30 101/45 88%
<i>PI</i> 69/16 73/26 101/30 101/41 88%
Preempt 65/19 54/0 101/39 101/62 65%

More Comprehensive Example

- Cars at uncontrolled intersection
 - Can go straight, turn left, or turn right
 - Admissible combinations are familiar
 - Straight through if:
 - Opposite car is not turning left
 - Car on left is not going straight or turning left
 - Car on right is not going straight or turning left or right
 - Similar rules for Left and Right turns

Sample Results						
	EIEO	Car 0 (5/N/S)	Car 1 (2/S/L)	Car 2 (8/E/L delay 5s)		
	Priority	33/0	183/18	49/21		
	PC(8)	25/0	63/40	45/15		
	PI	30/0	180/16	46/17		
 Notes: Nominal sector time 10 sec. FIFO, Priority are essentially the same Cars 0 and 1 benefit from car speed increase under PC Car 1 gets small speed up under PI 						
UNIVERSITY OF UTAH						

Sample Output: Both Cost and Deadline Overruns

(180930 ms, 717415 ns) *** Car 1 terminates;
9922129 instructions executed total run time (353 ms, 299200 ns),
(180930 ms, 717415 ns) duration (23153 real milliseconds)
(180930 ms, 717415 ns) Car 1 with cost limit (300 ms, 0 ns) had actual cost (353 ms, 299200 ns)
(180930 ms, 717415 ns) *** car cost overrun handler invoked ***
(180930 ms, 717415 ns) Car 1 with deadline (75000 ms, 0 ns) had run time (180930 ms, 717415 ns)
(180930 ms, 717415 ns) *** car deadline miss handler invoked ***

Gleams In Our Eyes

- Customized state abstractions
 - e.g., focused on event list structure and history
- Symbolic, constraint based analysis
 - Exploit event causality relationships
- ➢ Other applications
 - Generation of test scripts
 - Generation of procedures (scripts)

