
A Simulation Based Model Checker for Real Time Java

Gary Lindstrom
School of Computing

University of Utah

Salt Lake City, UT 84112-9205 USA

gary@cs.utah.edu

Peter C. Mehlitz
NASA Ames Research Center

Mail Code 269-2

Moffett Field, CA 94035-1000 USA

pcmehlitz@email.arc.nasa.gov

Willem Visser
NASA Ames Research Center

Mail Code 269-2

Moffett Field, CA 94035-1000 USA

wvisser@email.arc.nasa.gov

ABSTRACT
The Real Time Specification for Java (RTSJ) is an augmen-
tation of Java for real time applications. The possibility of
applying a model checker to RTSJ has great appeal given the
complexity and safety requirements of its intended applica-
tions. The Robust Software Systems group at NASA Ames
Research Center has Java PathFinder (JPF) under devel-
opment, a Java model checker. JPF at its core is a state ex-
ploring JVM which can examine alternative paths in a Java
program (e.g., via backtracking) by trying all nondetermin-
istic choices, including thread scheduling order. This paper
describes our implementation of an RTSJ profile (subset) in
JPF, including requirements, design decisions, and potential
future extensions. The implementation relies on a discrete
event simulation library, which enables modeling and ver-
ification of an RTSJ application under a programmed test
environment. The primary advantage of this approach is
the possibility of direct execution of the combined model on
ordinary Java systems (without the benefit of state back-
tracking or cost accounting); the primary drawback is the
difficulty of implementing important RTSJ features such as
non-heap memory areas and asynchronous control transfers.
The utility of a general model checker such as JPF in find-
ing RTSJ logic and timing errors is discussed, as well as
opportunities presented by JPF for more advanced forms of
program analysis such as symbolic execution and test input
generation.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications; D.4.1
[Process Management]: Scheduling; D.3.2 [Language
Classifications]: Object-oriented Languages

General Terms
Discrete event simulation, real time systems, software veri-
fication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Real time Java, model checking

1. OVERVIEW
The possibility of using Real Time Specification for Java

(RTSJ) [9] software on future missions is under considera-
tion at NASA, for all the familiar reasons: standardized (i.e.,
platform independent) semantics, a rich and vigorous mar-
ketplace of implementations and tools, and the overall soft-
ware engineering advantages of Java as a type safe object-
oriented programming language. RTSJ is not based on any
Java core language extensions; rather, all its capabilities are
conveyed by new classes with special semantics, albeit with
some refinement of semantics for existing Java classes. This
design decision in effect strikes a bargain: less compile time
static structure, hence less run time predictability, in ex-
change for language stability. An alternative choice might
have been to enhance the declarative content of the language
in the interest of stronger compile time program validation,
as was done for example with exceptions in Java.

The dual consequence of this design decision is inadequacy
of static analysis for RTSJ software verification and valida-
tion, and a corresponding vital need for techniques perform-
ing dynamic analysis, e.g., model checking. In particular,
many of the dynamic features of RTSJ in their full gener-
ality are beyond the scope of current worst-case execution
time (WCET) analysis techniques. While RTSJ program-
mers can in principle restrict themselves to an RTSJ subset
amendable to WCET analysis, this would significantly re-
duce the appeal and advantages of using RTSJ over existing
real time languages. We report here on an application of the
Java PathFinder model checker (JPF) [23, 13] to RTSJ
programs, focusing on the latter’s dynamic, time quantified
behavior, with the goal of developing a tool capable of val-
idating RTSJ applications, ideally to the level of mission
deployability. Our approach emphasizes the central issue of
temporal correctness (e.g., threads meeting deadlines) un-
der nondeterministic choices; correctness of memory usages
and asynchronous control flow are reserved for future work.
Thus we are focusing on classical correctness issues in real
time software, rather than issues related to specialized JVM
behavior.

Our approach uses discrete event simulation (DES) as a
basis for modeling time. Real time threads are modeled as
ordinary Java threads, constrained to run one at a time,
i.e., as coroutine’s. Their interactions, e.g., through CPU
scheduling, are modeled by resource contention techniques
familiar to DES programming (a summary of DES concepts

is given in §5). This permits execution of programs within
our RTSJ profile on any Java implementation.

However, two important capabilities are provided by an-
alyzing (running) RTSJ programs under JPF: (a) execution
cost logging at the bytecode level, and (b) alternative execu-
tion path exploration via nondeterministic choice selection,
e.g., order of events scheduled at identical times. Point (a)
permits closing an important causality loop impossible on
an ordinary JVM:

thread execution cost → deadline misses → miss events →
event handlers → additional thread execution cost

Analyzing such loops is a critical requirement in the val-
idation and verification of complex RTSJ applications, and
is well beyond the capability of current static analyzers.

2. MODEL CHECKING AS A VERIFICA-
TION TECHNIQUE

Verification of a software or hardware system can be ap-
proached in a variety of ways, ranging from extensive testing
(the most widely used technique for software in practice) to
formal proofs of correctness. Typically correctness proper-
ties are divided into safety (nothing bad happens) and live-
ness (something good eventually happens). Formal proofs
of correctness are difficult and costly to obtain, especially
for non-trivial systems with complex environmental interac-
tions, such as embedded systems. Testing is of course helpful
in finding bugs, but cannot provide conclusive evidence of
correctness unless a test suite is proven to be comprehensive.

Model checking involves examining all possible states that
can arise in an execution of the system under test on given
inputs. In many cases, an abstract representation of system
states (a model) is employed, to reduce both the size and
number of states explored – number because abstraction in-
creases the possibility that a new state will be judged to be
the same or equivalent to a previously seen state, enabling
search pruning.

3. JAVA PATHFINDER AS A JAVA MODEL
CHECKER

Although state abstraction can be a powerful tool, it presents
several practical challenges, including arriving at an abstrac-
tion function that ideally, or at least acceptably, hides unim-
portant state details while retaining state attributes perti-
nent to the verification of important correctness conditions.
In addition, a transition function must be defined on ab-
stract states, modeling system behavior at the chosen level
of abstraction. When the subject is a software system, this
transition function is essentially an abstract interpreter. In
many cases deterministic transitions on concrete states be-
come nondeterministic transitions on abstract states, dimin-
ishing state precision as execution proceeds.

These challenges, plus the availability of increasingly pow-
erful computer resources, have led many researchers to de-
velop explicit state model checkers, in which no state ab-
straction is employed. Instead of abstract interpreters, these
are true interpreters, augmented to provide flexibility and ef-
ficiency in state exploration (e.g., backtracking or heuristic
search), as well as support for correctness property check-
ing. While safety is typically the primary focus, some model
checkers can also deal with liveness properties, e.g., by check-
ing assertions expressed in linear time logic (LTL) [11].

Figure 1: JPF architecture.

Java PathFinder is an explicit state model checker for
Java bytecode. JPF focuses on finding bugs in Java pro-
grams, such as concurrency errors (e.g., deadlocks or missed
signals), Java runtime exceptions such as null pointer deref-
erences, type (cast) errors, or array out-of-bounds errors. In
addition JPF can monitor application specific correctness
conditions, in the form of Java assertions or more complex
application specific properties. The general architecture of
JPF is illustrated in Fig. 1.

4. RTSJ UNDER JPF: REQUIREMENTS AND
OBJECTIVES

When one considers applying JPF to RTSJ, the first ques-
tion is clearly what does it mean to model check an RTSJ
program? The starting point is to view the RTSJ program
as just another Java program (albeit with a class library with
special semantics), and simply execute it using the model
checking vigilance of JPF. This is fine, except that this pre-
sumes the availability of an RTSJ enabled JVM within JPF,
which we do not have.

Unlike a simple Java program, in which the notion of time
generally plays an insignificant role, time in RTSJ programs
plays a major correctness role, e.g., in quantifying real time
deadlines. Moreover, an RTSJ program (the embedded pro-
gram) must be exercised within an implementation of its
environment (the embedding program). In our view, speci-
fying, constructing and verifying such environments are of-
ten tasks of difficulty equal to or greater than that of the
embedded system. An example is a flight control system,
where a fully accurate embedding system must model all
the dynamics of the aircraft, as is done in a flight simulator.
Hence ensuring that embedding code is correct is as impor-
tant (or more so) than ensuring that the embedded code is
correct.

We adopted the following goals for model checking RTSJ
under JPF:

1. Make no changes to the JPF implementation – clearly,
a major software engineering win if achievable.

2. Implement the embedding code in Java, and model
check the entire combined system – a major validation
win if possible.

3. Deal with time through DES modeling – a familiar and
well understood technology.

4. Implement all RTSJ thread interactions (e.g., prior-
ity based scheduling with priority inversion avoidance

via priority inheritance) through resource contention
techniques traditional to DES.

5. Exploit the run time cost accounting capabilities of
JPF to detect deadline misses by real time threads,
and to take appropriate actions, e.g., invoking overrun
handlers in the embedded code.

6. Finally, utilize the path coverage capabilities of JPF to
locate bugs involving nondeterminacy and race condi-
tions, notably nondeterministic choice points in the
embedding code providing greater test coverage.

5. STEP 1: RTSJ IN A SIMULATION ENVI-
RONMENT

The first step in model checking RTSJ is to implement a
profile of RTSJ as a set of conventional Java classes. This we
have done to a first level of realism – several features have
yet to be implemented, as discussed in §12. The classes in
our implementation include RealtimeThread, PrioritySched-
uler, AsyncEvent, AsyncEventHandler, OneShotTimer, Period-
icTimer and RelativeTime.

The fundamental concepts of DES (as developed in the
Simula system of the 1970’s [4]) can be summarized as fol-
lows:

• Individual processes (the traditional terminology – hence-
forth we will use thread) are conceptually concurrent,
but in fact execute in an interleaved fashion as corou-
tines, as mentioned above.

• A thread may be executing, activated, or passivated.

– An executing thread is the one currently running
as a coroutine;

– An activated thread is not executing, but is sched-
uled to do so in the future at a time indicated its
event notice on the simulation’s event list.

– A passivated thread is neither executing nor ac-
tive; such threads are typically waiting for some
condition to become true, such as being granted
a resource.

• Scheduling operations on threads include activate (sched-
ule), passivate, and hold, which is a compound oper-
ation comprising activation at a later scheduled time
time, and passivation.

• The main thread controls the overall simulation by re-
peatedly dequeueing from the event list the event no-
tice with the earliest event time, advancing the simu-
lation clock to the time in that event notice, and no-
tifying the associated thread to run – until the event
list becomes empty, or a global shutdown operation is
invoked.

• DES programming simulates concurrency on a sequen-
tial computer. One consequence of this strategy is
an ironic relationship between real time and simulated
time:

– All real time is expended while simulation clock
is unchanging, and

– Simulation time advances with no real time cost
– by discrete increments to the simulation clock.

Figure 2: RTSJ architecture for native Java.

public static void hold(RelativeTime t)

throws InterruptedException {

RealtimeThread currentThread =

(RealtimeThread)Thread.currentThread();

synchronized (currentThread) {

// schedule this thread to run again

// after hold period

activate(currentThread,

clock.getTime().add(t));

// signal main thread to perform next event

// in simulation cycle

currentThread.notify();

// wait for hold to be over

currentThread.wait();

}

}

Figure 3: The implementation of hold(t).

Since RealtimeThread’s are constrained to run as corou-
tines, the JVM scheduler has only one scheduling choice pos-
sible, and DES event based scheduling is used in an outboard
manner to orchestrate thread interleaving. Fig. 2 summa-
rizes the architecture when running under native Java. Since
Java’s real time clock is replaced by the simulation clock,
all RTSJ executions in this implementation are determinis-
tic (repeatable), even if they use pseudo random methods
to draw numbers from probability distributions (assuming
fixed seeds) or offer the option of pseudo randomly selecting
orders of events scheduled at identical times. For example,
Fig. 3 gives our implementation of hold(RelativeTime t),
which suspends the execution of a real time thread for a
specified time period.

As mentioned in §4, all RealtimeThread interactions are
achieved by contention for Resource objects, e.g., a CPU. In
particular, if only priority inheritance resources are used, the
dynamic priority of a RealtimeThread is equal to the max-
imum of its base priority and the priorities of the threads
waiting for priority inheritance resources it possesses (more
on this in §7). Synchronized methods have their bodies
translated to synchronized statements, and each object that
is the subject of a synchronized statement has a shadow
Resource object. Hence

synchronized (obj) { ... }

is translated to

Robj.seize(); ... Robj.release();

Figure 4: RTSJ architecture under JPF.

Figure 5: Listener architecture.

where Robj is the shadow Resource for obj. The upshot is
that no changes are necessary to the schedulers of the un-
derlying JVM or JPF to implement scheduling policies such
as priority inheritance with FIFO ordering within priorities,
as required by the default RTSJ scheduler. (more on this in
§7).

6. STEP 2: COMBINING RTSJ AND JPF
Embedded code written in our RTSJ profile, together with

its embedding test code using DES facilities including sim-
ulated time, comprise an ordinary Java program that can
be run under any Java implementation (without accurate
run time modeling, however). The next step is to run the
combined program under JPF, benefiting from the following
additional features:

• Nondeterministic state exploration, including all or-
derings of equal priority events scheduled for the same
instant, and choice points in the embedding code, and

• Cost accounting, with overrun detection and invoca-
tion of appropriate handlers, as described below.

Our adaptation of JPF begins by exploiting two customiza-
tion features already available in JPF: its JVM listener in-
terface [14], and its Model Java Interface (MJI) [15] (both
features are utilized in the Control Program box in Fig. 4).

6.1 JVM Listener Interface
Logging run time (albeit idealized) for Java code under

JPF can be done using JPF’s JVM listener interface, which

public static void main(String args[]) {

...

JPF.addVMListener(theTestClient);

...

}

public void instructionExecuted (VM vm) {

JVM jvm = (JVM)vm;

Instruction instruction =

jvm.getLastInstruction();

int byteCode = instruction.getByteCode();

instructionCount++;

byteCodeCounts[byteCode]++;

totalCost += byteCodeCosts[byteCode];

}

Figure 6: Sample listener code to do cost account-
ing.

Figure 7: MJI architecture.

invokes control program listener methods on various occur-
rences, including the execution of each byte code instruction.
We use a very simple accounting technique here, whereby
each byte code is assigned a fixed run time in a look up
table. By this technique the execution time (summed byte
code costs) from the start to the end of a RealtimeThread
can be accumulated.

Similarly, this interface is used to detect execution path
backtracking by the JPF JVM, so that path specific account-
ing data structures can be correspondingly backtracked. Note
that this cost includes execution times of byte codes ex-
ecuted by intervening methods, e.g., while the handler is
suspended waiting for a resource, thus increasing the real-
ism of the overall execution time measure. Fig. 6 shows the
listener code used in the JPF RTSJ control program for log-
ging bytecode execution costs. Both the byte code costs are
logged for both for the current thread and for all threads.

6.2 Model Java Interface (MJI)
JPF’s MJI interface permits Java code executing under

JPF’s specialized JVM to access the underlying JVM for
access to native facilities. This turns out to be crucial in
arranging that run time cost logging, which executes outside
the JPF JVM, is accessible to the RTSJ application code,
which executes within the JPF JVM. For example, suppose
an AsyncEventHandler invocation has a run time in excess
of its stipulated limit, as observed through an MJI native

public class JPF_gov_nasa_jpf_rtsj_TestClient{

public static int getCost(

MJIEnv env, int objRef) {

return

gov.nasa.jpf.TestClient.getCost();

}

/*

* so model can have access to

* true real time clock

*/

public static long millisSinceEpoch(

MJIEnv env, int objRef) {

GregorianCalendar gc =

new GregorianCalendar();

return gc.getTimeInMillis();

}

}

Figure 8: MJI proxy class to execute code on native
JVM.

method. This can trigger the invocation of an overrun event
handler, which must execute within the JPF JVM.

Fig. 7 depicts JPF’s overall MJI architecture, while Fig. 8
illustrates two methods in the JPF RTSJ control program
for delivering the total observed bytecode cost and for ac-
cessing the native JVM’s current real time clock (new Gre-
gorianCalendar() in the JPF JVM does not provide access
to a real time clock, since that would be meaningless under
backtracking).

In the future we hope to address the second and more diffi-
cult stage of adapting JPF for RTSJ concerns features that
must be implemented by JVM modifications. These fea-
tures, which include non-heap memory areas and non-heap
real time threads, as well as asynchronous control transfers,
are discussed in §12.

6.3 Simulated Time vs. Logged Execution Time
An example of an issue that straddles this boundary is

the relationship between simulated time and a thread’s exe-
cution time logged as described above. Here there is a range
of realism vs. overhead choices.

• The most accurate (and most expensive) is to execute
a hold(t) for each byte code with cost t. However,
this would require in effect a conversion of the JPF
JVM to execute as a RealtimeThread, so that it would
be eligible for scheduled event control under the DES
package.

• The least accurate (and least expensive) yet still use-
ful approach is to execute handler byte codes at zero
simulated time cost (i.e., in bursts), accumulating the
logged cost, and then do a lumped parameter hold(t)
for the total logged time t prior to a thread’s termina-
tion.

• We have implemented an intermediate choice on this
spectrum whereby hold(t) operations are invoked at all
points where threads can interact e.g., before resource

seize or release operations, where t is obtained dynam-
ically by logging the JPF byte code execution time
since the last such hold(t). To use a financial trading
metaphor, the time bookkeeping local to a thread is
marked to market, i.e., made globally consistent, just
prior to any potential interactions with other threads.
In the case of a release operation, for example, pre-
ceding it by an appropriate hold(t) operation would
cause the thread’s accumulated byte code execution
cost to be accurately exerted in consumed simulated
execution time.

7. SCHEDULING POLICIES
We now give more details on our control of scheduling by

means of resource contention policies. We illustrate our ap-
proach by discussion of five representative policies: FIFO,
priority, priority inheritance, priority ceiling, and preemp-
tion. The first two are naive policies inviting priority inver-
sion; the third is obligatory in RTSJ’s default scheduler; the
fourth is an explicit option, and the RTSJ specification is
silent on the fifth.

1) FIFO: This simplistic policy guarantees fairness, but
ignores thread priority.

2) Priority : Here threads waiting for a resource are se-
lected by (fixed) priority first, and then by FIFO within
equal priorities. This policy, as well as FIFO above, pro-
vides no defense against priority inversion.

3) Priority inheritance (PI): This well known policy works
by increasing the priority of the thread possessing a PI re-
source to equal the maximum priority of any thread waiting
for that resource (its dynamic priority). There are two per-
haps unobvious consequences of this policy:

1. Since a thread may possess multiple resources, its dy-
namic priority is based on the maximum priority of any
thread waiting for any of the resources it possesses, and

2. The priorities involved are of course dynamic priorities,
so an attempted seize of a resource held by a thread
waiting for another resource can cause cascaded prior-
ity inheritance effects (and conversely for release’s).

4) Priority ceiling (PC): A PC resource has a fixed prior-
ity (its ceiling priority) which is used to temporarily elevate
the priority of any thread possessing it. If a thread has a
dynamic priority greater than the resource’s ceiling priority,
an attempt to seize the resource causes a PriorityCeilingEx-
ception to be thrown (the absence of which is an important
verification condition).

5) Preemption: A resource managed under this policy
does not change a thread’s priority when seized. A thread
seizing a resource of this kind only waits if the resource is
currently held, and the thread’s priority is less than or equal
to the priority of the thread holding the resource. If the
thread’s priority is greater that that of the thread holding
the resource, it steals the resource.

Modeling the first four policies is straightforward DES
programming. Preemption is a bit trickier, because pos-
session periods (e.g., modeling computational activity by
a thread using a CPU resource) can be prematurely ended
when the resource is stolen by a higher priority thread. This
can be implemented by wrapping such hold method calls in
loops that sum actual hold times, and re-exert hold invoca-
tions until the stipulated hold time is attained. Skeletal code

public static void holdWithResource(

RelativeTime holdTime, Resource resource)

throws InterruptedException {

RealtimeThread thread =

(RealtimeThread)Thread.currentThread();

AbsoluteTime originalStartTime =

DES.currentTime();

RelativeTime holdCompletedSoFar =

new RelativeTime(0, 0);

// loop because may take several periods to

// complete holdTime if resource is stolen by

// higher priority thread

while (holdCompletedSoFar.compareTo(

holdTime) < 0) {

resource.seizeIfNotHeld();

AbsoluteTime cycleStartTime =

DES.currentTime();

DES.hold(holdTime, true);

RelativeTime timeElapsedThisHold =

DES.currentTime().subtract(

cycleStartTime);

// apply period resource was possessed

// to holdTime

holdCompletedSoFar.add(timeElapsedThisHold,

holdCompletedSoFar);

}

// may or may not possess resource at

// this point

resource.releaseIfHeld();

}

Figure 9: Hold operations on preemptive resources

for this variation of hold is given in Fig. 9. Modeling a CPU
resource (say, c) managed under any of these policies is sim-
ply done – the code of each RealtimeThread is bracketed by
c.seize() and c.release() operations, and all hold(t) operations
are replaced by holdWithResource(t, c) operations. All five
policy implementations easily generalize to multiprocessing
systems by managing pools of CPU resources.

8. APPLICATIONS
Two sample applications of our RTSJ implementation are

presented in [18].

8.1 A Multiprogramming Operating System
The first is a simple model of a multiprogramming operat-

ing system (OS), where jobs represented by RealtimeThread’s
contend for a CPU, which is a resource of one of the five
types discussed in §7. Of these, preemption is the most
interesting, because (i) it guarantees absence of priority in-
version, (ii) it is pervasive in modern operating systems, (iii)
its behavior on realistic job mixes defies static analysis, and
consequently (iv) real time OS’s typically do not employ it,
despite the appeal of (i). A fixed job mix was analyzed us-
ing our RTSJ implementation in JFP, using CPU’s of each
of our five resource types. In a sample scenario, there are
four jobs that are identical in behavior (10 compute / wait

cycles), with identical wait times between cycles. They are
all started at time zero. This simple stress test keeps the
CPU 99% busy independent of its resource type (the sim-
ulation ends after the last job terminates). The following
observations can be made of the results obtained:

• The FIFO CPU gives the most fair service to the four
jobs – because it ignores priority.

• The Priority, Priority Ceiling, and Priority Inheritance
CPUs deliver identical service, because the priority of
a job only affects its competitive position when more
than one job is waiting for the CPU, which does not
occur in this simple scenario (an example of priority
improving service is also given).

• Jobs under the Preemptable CPU finish strictly ac-
cording to priority. However, the overall completion
time is slightly longer, due to the additional schedul-
ing overhead.

When run under JPF with nondeterminism turned on,
there are 4! = 24 choices for activation order at time zero for
the four jobs (the statistically rare case of events scheduled
at exactly the same time does not occur after simulation
start). Priority inversion was detected in all 24 paths under
FIFO and Priority CPUs, and on no paths under Priority
Ceiling (6), Priority Inheritance, and Preemptable CPUs.

8.2 Intersection Crossing
The example in §8.1 emphasizes the effect of role of re-

source types in thread scheduling. Our second application
is a more complex example, illustrating more advanced fea-
tures of our RTSJ implementation in JPF. This models
autonomous cars transiting an intersection, where the cars
(real time threads) can drive straight through, turn right,
or turn left. Cars are given integer priorities chosen from 1
to 8. The intersection is represented by four sectors, each
an independent resource.

The intersection transit rules are complex but deadlock
free, which as been confirmed (for specific scenarios) by ex-
haustive search using JPF.

Car speed is governed by car priority, in the following
manner. The time required by a car to transit a sector is
t = 100 sec/p, where p is the car’s priority. At the extremes,
p = 1 yields a sector transit time of 100 seconds, and p = 8
yields 12.5 seconds. Experiments were run using four re-
source types for sectors: FIFO, priority, priority ceiling 8,
and priority inheritance. There are ready intuitions for each
of these cases: FIFO is round robin, priority is fastest ve-
hicle first, priority ceiling is a minimum sector speed, and
priority inheritance is when one sees an ambulance rapidly
approaching, and speeds up accordingly. The preemption
case is physically impossible!

The above analysis can be accomplished under both na-
tive Java and JPF, since it is based solely on simulated time.
By contrast, analysis of miss handler behavior in RTSJ pro-
grams can only be exercised under JPF, where a listener
method in our control program records each byte code ex-
ecution in the subject program. To demonstrate this capa-
bility, an onboard computer was postulated for each car (its
autonomous controller), and a cycle soaker method was in-
voked during passage through each sector (arbitrarily set at
100,000 double divides, with 100 nanosecond cost per byte

CPU type Run time

FIFO 79.4 sec
Priority 80.9 sec
PC(6) 91.6 sec
PI 99.6 sec
Preemptable 106.2 sec

Figure 10: Run times for the multiprogramming
example under JPF nondeterministic search (back-
tracking over 24 paths).

code; a total of 1,400,024 DDIV’s are observed in the deter-
ministic case). If a cost limit of 350 milliseconds is imposed,
under priority inheritance one car terminates without han-
dler invocation, one car terminates with cost overrun han-
dler invocation, and one car terminates with both handlers
invoked.

9. USAGE MODES AND PERFORMANCE
We now present sample performance figures for our RTSJ

profile implementation in JPF. All performance figures are
taken from executions in the Eclipse Java IDE with a heap
size of one gigabyte on a Pentium 2 laptop with 768MB of
RAM.

Our system can be run in five modes: native Java with de-
terministic or pseudo random choice selection, or JPF with
deterministic, pseudo random, or nondeterministic choice
selection. We have tested our system in all five modes on
the applications presented in §8. Run time figures for the
multiprocessing operating system example in §8.1 under de-
terministic mode are 120ms for native Java vs. 6,257ms un-
der JPF (the pseudo random mode numbers are analogous).
These absolute numbers are not important; instead, their
relative magnitudes are more informative. Two observa-
tions emerge: (a) the native Java implementation is quite
fast, and (b) the JPF implementation is slower by a factor
of about 50 – but it must be remembered that under JPF
an interpretive JVM (written in Java) is being employed,
cost logging presents a linear execution time overhead, and
state saving is performed to support exploration of alterna-
tive execution paths (not exploited in the deterministic and
pseudo random cases).

To illustrate the cost of JPF state exploration, the CPU
example was run under nondeterminism, exploring the 4! =
24 choices for activation order at time zero for the four jobs
discussed in §8.1 Results are shown in Fig. 10.

10. CRITIQUE OF APPROACH
Before concluding with consideration of future and related

work, we summarize the principal advantages and disadvan-
tages of our simulation based approach.

The advantages include: (i) modeling embedded and em-
bedding code in a combined framework; (ii) an ability to
execute RTSJ programs on ordinary Java systems during
development with significant speed up, but loss of nonde-
terministic search and execution time instrumentation; (iii)
use of nondeterminism, both explicit for increased test case
coverage, and implicit to examine all scheduling orders; (iv)
availability of JPF’s property checking facilities to express
and monitor application specific correctness conditions, and

(v) the generality of the JPF framework for performing more
advanced analyses, discussed in §13.

The disadvantages are clearly: (i) the execution slowdown
inherent in JPF’s JVM-within-a-JVM architecture; (ii) the
difficulty of implementing important RTSJ features such as
non-heap memory areas and asynchronous control transfers
(discussed in §12); (iii) the need to adhere to an idiomatic
programming style, e.g., use of explicit CPU objects, and
(iv) the limitations of a simulation environment, e.g., no
simple migration path to more realistic test environments
using true hardware sensors and actuators operating in real
time.

11. SCALABILITY
Any model checker, especially one performing full execu-

tion on explicit states, is vulnerable to memory exhaustion
due to state space explosion. This comes in two forms: lin-
ear overhead on representation of individual states in sup-
port of execution path exploration (e.g., backtracking), and
more significantly the exponential cost of retaining states so
that subsequently explored paths resulting in the same state
can be detected and cut off.

While our RTSJ implementation in JPF is not exempt
from these burdens, several possibilities exist to ameliorate
its impact. The most obvious is to retain abstractions of pre-
viously encountered states rather than exact states. This
not only economizes on memory required for each state,
but also increases the likelihood that subsequently encoun-
tered states will be judged to have been previously “seen”,
thereby pruning the execution path search. In particular,
we conjecture that the extremely fine grain representation
of time in RTSJ (to nanosecond precision) makes the prob-
ability of exact state reoccurrence on alternative paths van-
ishingly small. Ideas for state abstraction are sketched in
§13.2. Other state explosion countermeasures are symbolic
execution (essentially abstraction with adaptive refinement),
and heuristic search (ranking a bounded number of paths to
be pursued by estimated merit); these are also surveyed in
§13.2.

It is an open research question whether space economiza-
tion techniques for features specific to RTSJ can be de-
veloped without compromising vigilence on key application
safety and timing properties. We hypothesize that conser-
vative design practices in well-engineered embedded systems
may imply that appropriate state abstractions can ensure
that representatives of the most critical system states will
not be overlooked.

Finally, we observe that our approach to verifying both
embedded and embedding code in a combined manner is
both a strength and a weakness – a strength because both
the system under test and its operational environment are
verified in a comprehensive manner, and a weakness because
nondeterminism used in the embedding code to increase test
case coverage can aggravate state space explosion. This
weakness implies that any techniques for “steering” non-
deterministic choices within the embedding code to cases
most “stressful” to the embedded code could be very help-
ful. We have preliminary ideas in this regard, taking a game
playing viewpoint on nondeterministic choices [21]. Under
this metaphor, the embedding code is an adversary of the
embedded code, seeking to choose stimuli that drive the em-
bedded code to cost and deadline overruns. For its part, the
embedded code could attempt to counter this “attack” by

adaptive techniques such as slack time based scheduling.

12. FEATURES NOT EASILY IMPLEMENTED
UNDER THIS APPROACH

Our approach to implementing RTSJ without JPF JVM
modifications exploited two crucial architectural features as
mentioned in §6.1: (i) the JPF JVM listener interface, and
(ii) the Model Java Interface (MJI). The result is a surpris-
ingly large subset of RTSJ features can be supported under
this approach. (albeit with some coding idioms, see e.g., §5).

In §6.2 we indicated two areas pose more difficult chal-
lenges, which we believe can only be implemented by JVM
modification:

• ScopedMemoryArea’s and NoHeapRealtimeThread’s, which
deal with non garbage collected MemoryArea’s, and

• Asynchronous transfers of control (ATC), e.g., threads
that implement the Interruptible interface and methods
that throw AsynchronouslyInterruptedException.

While it may be possible in principle to implement at least
the first these features using per-bytecode analysis in a JPF
listener method, the overhead of this approach is likely to be
prohibitive. One potential avenue for the second is to apply
byte code transformation to inject interrupt exceptions [22].

13. FUTURE POTENTIAL OF USING JPF
Now examine recent JPF developments and their poten-

tial for augmenting analysis of RTSJ programs.
This application breaks new ground for JPF in its focus

on quantified time as a program correctness issue. Much as
been learned about its flexibility in supporting this new and
unanticipated correctness dimension, as well as the limits of
our approach that implements RTSJ without making any
modifications to JPF.

13.1 Programmable Thread Schedulers
Fig. 11 illustrates the two major concepts in the class hier-

archy of the JPF JVM: Search and VM. The first is the driver
of the second, and also maintains vigilence over correctness
properties. The VM is the state generator, operating un-
der the control of the Search. Fig. 12 shows how the Search
class hierarchy can be used to implement particular search
strategies, e.g., depth-first and heuristic, with an associated
sorted state queue.

At present there are two types of execution path variation
in JPF: thread scheduling choices (which ready thread to
run next; which thread to wake up in notify()), and explicit
nondeterminism, e.g., gov.nasa.jpf.jvm.Verify.randomBool(),
which generates two alternative execution paths, one return-
ing true and one returning false.

Plans are underway to unify nondeterministic search and
scheduling via programmable choice generators (see Fig. 13).
This will enable user controllable interactions between thread
scheduling selections and search management. It is believed
that this new form of JPF extensibility will permit the resource-
centric “outboard” scheduling mechanisms described in §7
to be moved into JPF’s core thread scheduler, where they
properly belong. A major benefit would be a greater ability
to run RTSJ applications without translation to our resource
contention based programming idiom. In particular, the ex-
plicit CPU objects described in that section would no longer
be necessary.

Figure 11: Search and VM as cooperating JPF
classes.

Figure 12: Implementing particular search strate-
gies.

Figure 13: Choice generators as a means of imple-
menting RTSJ scheduling.

13.2 Opportunities For Application of Other
JPF Features

This project thus far has used only basic Java PathFinder
features. Several advanced features of JPF offer attractive
opportunities for increased utility in verifying RTSJ pro-
grams.

Heuristic search: The default program path exploration
strategy is depth first search, using backtracking. Other
strategies, such as bounded breadth-first search, can selec-
tively search longer paths due to elimination of the backtrack
stack [10]. Several criteria for preferring paths in RTSJ pro-
grams with higher error potential are evident, such as favor-
ing states with threads whose extrapolated completion time
is beyond their stipulated deadlines.

State abstraction: By default JPF saves all previously
encountered program states and performs precise equality
checks to detect re-encountered states. This policy has sev-
eral consequences, including (i) significant space overhead,
and (ii) inability to recognize states that insignificantly vary
from previously seen states. In particular, the extremely fine
representation of time in RTSJ (to nanosecond precision),
exacerbates (ii). To illustrate, consider state abstraction
methods focusing on the core data structure of our system,
the scheduled event list. Opportunities for abstraction here
include fuzz on scheduled event times, e.g., equality to reso-
lution of say 100 nanoseconds, or even ignoring event times
altogether, and considering two event lists to be equal if they
reference the same real time threads positioned at the same
execution point (say, method and byte code address).

Symbolic execution: JPF interfaces to a constraint sys-
tem that can solve equations involving linear inequalities
[16]. This presents the possibility of asserting constraints
on scheduled event times.

• For example, it could be asserted that event e1 should
run at time t0 + t(e2), where t(e) is the scheduled time
of an event e, and t(e2) is not yet known, i.e., is sym-
bolic. When t(e2) becomes bound, e1 would be sched-
uled at a concrete time.

• Now suppose two scheduled events e1 and e2 have sym-
bolic event times t(e1) and t(e2), and the event list is
otherwise empty. We then have two options to pursue
nondeterministically: (a) e1 runs next, t(e1) ≤ t(e2)
is asserted, and the simulation clock is set (symbol-
ically) to t(e1), or (b) symmetrically, e2 runs next,
t(e2) ≤ t(e1) is asserted, and the simulation clock is
set to t(e2).

Fault driven automatic test case generation: The execu-
tion driven symbolic constraint refinement technique just
sketched can be the basis for finding necessary and sufficient
conditions that lead to specific faults [24]. For example, sup-
pose the real time code is modeling the performance of an
aircraft pre-landing checklist. There have been published ac-
cident scenarios where a mandatory aircraft response, e.g.,
completion of landing gear deployment, did not occur in time
to ensure the safety of the next step in the checklist, and the
pilot under time pressure (the ground is approaching) inap-
propriately proceeded [7]. Conditions revealing such flaws
in real time checklist procedures might be determined by
symbolic execution in this manner.

14. RELATED WORK

Model checking of timed automata representations has
become very popular ([2]; see [3] for a good overview) for
the analysis of real time systems. Our approach differs in
that we are analyzing systems with complex transitions but
simple explicit timing information, whereas in the timed au-
tomata approach is typically applied to analyze systems with
complex timing, but simple transitions (e.g., between ab-
stract states in given time intervals). By contrast we are
performing genuine program execution (not abstracted, or
symbolic). The notion of applying timed automata style
reasoning is appealing, but represents a major new line of
research, due to the complex transitions in our program ex-
ecutions, e.g. memory allocation, exception handling, etc.).
Our emphasis at present is checking program safety proper-
ties including scheduling errors such as priority inversion, as
well as classic Java errors such as uncaught exceptions and
assertion violations.

It has been reported that more than 3000 people have
used the RTSJ reference implementation or a commercial
RTSJ-compliant JVM to create application prototypes [19].
Tools are available to benchmark RTSJ implementations [6].

Model checking is a vigorously evolving research area.
Bandera [1], Bogor [8], and the work of Bart Jacobs et al.
on JavaCard verification [12] are examples of model check-
ing applied to Java programs. A closely related area is run
time verification of Java systems [17]. Capability for dealing
with time in model checkers has also been evolving rapidly,
often through monitoring of event sequences with respect
to assertions in linear time logic (LTL) [11]. RTSJ itself is
drawing critical and insightful analysis, such as the work on
Ravenscar [5, 25].

Finally, the advent of the Java Platform Debugger Ar-
chitecture (JPDA) offers the potential of greatly improved
flexibility and performance for our dual JVM implementa-
tion strategy. The idea of using a debugging interface for
model checking has been examined for the Gnu debugger
gdb by Mercer and Jones in [20]. Major research issues
are presented by implementing state saving and backtrack-
ing under this approach. Moreover, the challenges of im-
plementing the RTSJ features missing in our system, e.g.,
memory varieties and ATC, would still be present — unless
an RTSJ compliant JVM could be obtained that supports
JDPA, which seems unlikely.

Acknowledgements
Michael R. Lowry conceived this project and is providing
the resources. The critical comments of Robert E. Filman
are gratefully acknowledged.

15. REFERENCES
[1] http://bandera.projects.cis.ksu.edu/.

[2] G. Behrmann, K. G. Larsen, and J. I. Rasmussen.
Optimal scheduling using priced timed automata.
ACM SIGMETRICS Performance Evaluation Review,
32(4):34–40, March 2005.

[3] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In W. Reisig and G. Rozenberg,
editors, Lecture Notes on Concurrency and Petri Nets.
Springer-Verlag, 2004. LNCS 3098.

[4] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and
K. Nygaard. Simula BEGIN.

Auerbach/Studentliteratur, Philadelphia, 1973.

[5] A. Burns. The Ravenscar profile.
http://polaris.dit.upm.es/~ork/documents/RP spec.pdf.

[6] A. Corsaro and D. C. Schmidt. Evaluating Real-Time
Java features and performance for real-time embedded
systems. In Proc. 8th Real-Time and Embedded
Technology and Applications Symposium. IEEE
Computer Society, September 24-27, 2002.

[7] A. Degani. Taming HAL: Designing Interfaces Beyond
2001. Palgrave Macmillan, 2004.

[8] M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby.
Building your own model checker using the Bogor
extensible model checking framework. In In Proc. 17th
Conference on Computer-Aided Verification (CAV
2005), 2005.

[9] T. R.-T. for JavaTM Expert Group.
https://rtsj.dev.java.net.

[10] A. Groce and W. Visser. Heuristics for model checking
Java programs. International Journal on Software
Tools for Technology Transfer, 2004.

[11] K. Havelund. Eagle Flier, a rule-based runtime
verification framework.
http://yangtze.cs.uiuc.edu/~ksen/eagle/.

[12] B. Jacobs, C. Marche, and N. Rauch. Formal
verification of a commercial smart card applet with
multiple tools. In C. Rattray, S. Maharaj, and
C. Shankland, editors, Algebraic Methodology and
Software Technology (AMAST’04), pages 21–22.
Springer LNCS 3116 2004.

[13] http://javapathfinder.sourceforge.net/.

[14] http://ase.arc.nasa.gov/jpf/Listeners.html.

[15] MJI – the Model Java Interface,
http://ase.arc.nasa.gov/jpf/MJI.html.

[16] S. Khurshid, C. S. Pǎrǎreanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In Proceedings of TACAS, April 2003.

[17] M. Kim, S. Kannan, I. Lee, and O. Sokolsky.
Java-MaC: a run-time assurance tool for Java. In First
International Workshop on Run-time Verification.
Paris, France, July 23, 2001. Electronic Notes in
Theoretical Computer Science, vol. 55 No. 2.

[18] G. Lindstrom, P. C. Mehlitz, and W. Visser. Model
checking Real Time Java using JavaPathfinder. In
Proc. Third International Symposium on Automated
Technology for Verification and Analysis (ATVA),
pages 444–456. Springer Lecture Notes in Computer
Science, Oct. 4–7 2005. vol. 3707.

[19] C. D. Locke. Real-Time Java moving into the
mainstream. RTC Journal, January 2004.

[20] E. Mercer and M. Jones. Model checking machine
code with the GNU debugger. In Proc. SPIN
Workshop, 2005.

[21] S. Shoham and O. Grumberg. Multi-valued model
checking games. In Proc. Third International
Symposium on Automated Technology for Verification
and Analysis (ATVA), pages 354–369. Springer
Lecture Notes in Computer Science, Oct. 4–7 2005.
vol. 3707.

[22] W. Tao. A Portable Mechanism for Thread Persistence
and Migration. PhD thesis, Univ. of Utah, 2001.

[23] W. Visser, K. Havelund, G. Brat, S. Park, and

F. Lerda. Model checking programs. Automated
Software Engineering Journal, 10(2), April 2003.

[24] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with Java PathFinder. In Proceedings
of ISSTA, July 2004.

[25] A. Wellings. Concurrent and Real-Time Programming
in Java. John Wiley & Sons, Ltd., Chichester, West
Sussex, England, 2004.

APPENDIX
A. JPF RTSJ PROFILE

From RTSJ 1.0.1(b); * denotes not implemented

1. Threads: NoHeapRealtimeThread*, RealtimeThread.

2. Scheduling: AperiodicParameters, ImportanceParameters,
PeriodicParameters, PriorityParameters, ProcessingGroup-
Parameters, ReleaseParameters Schedulable, Scheduler,
SchedulingParameters SporadicParameters.

3. Memory Management: GarbageCollector*, HeapMem-
ory, ImmortalMemory, ImmortalPhysicalMemory, Mem-
oryArea, MemoryParameters, PhysicalMemoryManager*,
PhysicalMemoryTypeFilter*, RawMemoryAccess, RawMem-
oryFloatAccess, ScopedMemory*, SizeEstimator*, VTMem-
ory*, VTPhysicalMemory*.

4. Synchronization: MonitorControl*, PriorityCeilingEmu-
lation*, PriorityInheritance*, WaitFreeDequeue* – depre-
cated, WaitFreeReadQueue*, WaitFreeWriteQueue*.

5. Time: AbsoluteTime, HighResolutionTime, RationalTime*
– deprecated, RelativeTime.

6. Clocks and Timers: Clock, OneShotTimer, PeriodicTimer,
Timer.

7. Asynchrony: AsyncEvent, AsyncEventHandler, Asynchronous-
lyInterruptedException*, BoundAsyncEventHandler, Inter-
ruptible*, Timed.

