MATHEMATICS – III

UNIT – I

UNIT-II

UNIT-III
Elementary functions: Exponential, trigonometric, hyperbolic functions and their properties – General power z^c (c is complex), principal value.

UNIT-IV

UNIT-V

UNIT-VI
Residue – Evaluation of residue by formula and by Laurent series - Residue theorem. Evaluation of integrals of the type

\[
\begin{align*}
(a) & \int_{-\infty}^{\infty} f(x)dx \\
(b) & \int_{c}^{c+2\pi} f(\cos \theta, \sin \theta)d\theta \\
(c) & \int_{-\infty}^{\infty} e^{imx} f(x)dx \\
(d) & \text{Integrals by identification.}
\end{align*}
\]

UNIT-VII

UNIT-VIII
Conformal mapping: Transformation by $e^z, \ln z, z^2, z^n$ (n positive integer), Sin z, cos z, \(z + a/z \). Translation, rotation, inversion and bilinear transformation – fixed point – cross ratio – properties – invariance of circles and cross ratio – determination of bilinear transformation mapping 3 given points.
FLUID MECHANICS AND HYDRAULIC MACHINERY

UNIT I

Fluid statics: Dimensions and units: physical properties of fluids- specific gravity, viscosity surface tension- vapor pressure and their influence on fluid motion- atmospheric gauge and vacuum pressure –measurement of pressure- Piezometer, U-tube and differential manometers.

UNIT II

Fluid kinematics: stream line, path line and streak lines and stream tube, classification of flows-steady & unsteady, uniform, non uniform, laminar, turbulent, rotational, and irrotational flows-equation of continuity for one dimensional flow.

Fluid dynamics: surface and body forces –Euler’s and Bernoulli’s equations for flow along a stream line, momentum equation and its application on force on pipe bend.

UNIT III

Closed conduit flow: Reynold’s experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line.
Measurement of flow: pilot tube, venturimeter, and orifice meter, Flow nozzle, Turbine flow meter (Ref.4)

UNIT IV

Basics of turbo machinery: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work don and efficiency, flow over radial vanes.

UNIT V

Hydroelectric power stations: Elements of hydro electric power station-types-concept of pumped storage plants-storage requirements, mass curve (explanation only) estimation of power developed from a given catchment area; heads and efficiencies.

UNIT VI

Hydraulic Turbines: classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies , hydraulic design –draft tube- theory- functions and efficiency.

UNIT VII

Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

UNIT-VIII

Centrifugal pumps: classification, working, work done – manomertic head- losses and efficiencies- specific speed-pumps in series and parallel-performance characteristic curves, NPSH.
Reciprocating pumps: Working, Discharge, slip, indicator diagrams
PULSE AND DIGITAL CIRCUITS

UNIT I
LINEAR WAVESHAPING
High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit.

UNIT II
NON-LINEAR WAVE SHAPING
Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clamps.

UNIT III
SWITCHING CHARACTERISTICS OF DEVICES
Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.

UNIT IV
MULTIVIBRATORS
Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using transistors.

UNIT V
TIME BASE GENERATORS
General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, Transistor miller time base generator, Transistor Bootstrap time base generator, Current time base generators.

UNIT VI
SYNCHRONIZATION AND FREQUENCY DIVISION
Principles of Synchronization, Frequency division in sweep circuit, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals, Sine wave frequency division with a sweep circuit.

UNIT VII
SAMPLING GATES
Basic operating principles of sampling gates, Unidirectional and Bi-directional sampling gates, Reduction of pedestal in gate circuits, Applications of sampling gates.

UNIT VIII
REALIZATION OF LOGIC GATES USING DIODES & TRANSISTORS
AND, OR gates using Diodes, Resistor, Transistor Logic, Diode Transistor Logic.
SWITCHING THEORY AND LOGIC DESIGN

UNIT I
NUMBER SYSTEMS & CODES: Philosophy of number systems – complement representation of negative numbers- binary arithmetic-binary codes-error detecting & error correcting codes –hamming codes.

UNIT II

UNIT III
MINIMIZATION OF SWITCHING FUNCTIONS: Map method, Prime implicants, Don’t care combinations, Minimal SOP and POS forms, Tabular Method, Prime –Implicant chart, simplification rules.

UNIT IV
COMBINATIONAL LOGIC DESIGN
Design using conventional logic gates, Encoder, Decoder, Multiplexer, De-Multiplexer, Modular design using IC chips, MUX Realization of switching functions Parity bit generator, Code-converters, Hazards and hazard free realizations.

UNIT V
PROGRAMMABLE LOGIC DEVICES, THRESHOLD LOGIC: Basic PLD’s-ROM, PROM, PLA, PLD Realization of Switching functions using PLD’s. Capabilities and limitations of Threshold gate, Synthesis of Threshold functions, Multigate Synthesis.

UNIT VI
SEQUENTIAL CIRCUITS - I: Classification of sequential circuits (Synchronous, Asynchronous, Pulse mode, Level mode with examples) Basic flip-flops-Triggering and excitation tables. Steps in synchronous sequential circuit design. Design of modulo-N Ring & Shift counters, Serial binary adder,sequence detector.

UNIT VII
SEQUENTIAL CIRCUITS - II: Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques and Merger chart methods-concept of minimal cover table.

UNIT VIII
ALGORITHMIC STATE MACHINES: Salient features of the ASM chart-Simple examples-System design using data path and control subsystems-control implementations-examples of Weighing machine and Binary multiplier.
ELECTROMAGNETIC FIELDS

Objective:
The objective of this course is to introduce the concepts of electric field and magnetic fields and their applications which will be utilized in the development of the theory for power transmission lines and electrical machines.

UNIT – I Electrostatics:
Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Guass’s law – Application of Guass’s Law – Maxwell’s first law, div (D) = ρv

UNIT – II Conductors and Dipole:
Laplace’s and Poisson’s equations – Solution of Laplace’s equation in one variable. Electric dipole – Dipole moment – potential and EFI due to an electric dipole – Torque on an Electric dipole in an electric field – Behavior of conductors in an electric field – Conductors and Insulators.

UNIT – III Dielectric & Capacitance:
Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance – Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics – Energy stored and energy density in a static electric field – Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity

UNIT – IV Magneto Statics:
Static magnetic fields – Biot-Savart’s law – Oesterd’s experiment - Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current – Carrying wire – Relation between magnetic flux, magnetic flux density and MFI – Maxwell’s second Equation, div(B)=0.

UNIT – V Ampere’s circuital law and its applications
Ampere’s circuital law and its applications viz. MFI due to an infinite sheet of current and a long current carrying filament – Point form of Ampere’s circuital law – Maxwell’s third equation, Curl (H)=Jc, Field due to a circular loop, rectangular and square loops.

UNIT – VI Force in Magnetic fields:
Magnetic force - Moving charges in a Magnetic field – Lorentz force equation – force on a current element in a magnetic field – Force on a straight and a long current carrying conductor in a magnetic field – Force between two straight long and parallel current carrying conductors – Magnetic dipole and dipole moment – a differential current loop as a magnetic dipole – Torque on a current loop placed in a magnetic field

UNIT – VII Magnetic Potential:
Scalar Magnetic potential and its limitations – vector magnetic potential and its properties – vector magnetic potential due to simple configurations – vector Poisson’s equations.

Self and Mutual inductance – Neumans's formulae – determination of self-inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane – energy stored and density in a magnetic field. Introduction to permanent magnets, their characteristics and applications.

UNIT – VIII Time Varying Fields:
ELECTRICAL MACHINES - I

Objective:
Electrical machines course is one of the important courses of the Electrical discipline. In this course the different types of DC generators and motors which are widely used in industry are covered and their performance aspects will be studied.

UNIT – I Electromechanical Energy Conversion
Electromechanical Energy conversion – forces and torque in magnetic field systems – energy balance – energy and force in a singly excited magnetic field system, determination of magnetic force - co-energy – multi excited magnetic field systems.

UNIT – II D.C. Generators – Construction & Operation

UNIT – III Armature reaction in D.C. Generator

UNIT – IV Types of D.C Generators
Methods of Excitation – separately excited and self excited generators – build-up of E.M.F - critical field resistance and critical speed - causes for failure to self excite and remedial measures.

UNIT – V Load Characteristics of Generators
Load characteristics of shunt, series and compound generators – parallel operation of d.c series generators – use of equalizer bar and cross connection of field windings – load sharing.

UNIT – VI D.C. Motors
D.C Motors – Principle of operation – Back E.M.F. - Torque equation – characteristics and application of shunt, series and compound motors – Armature reaction and commutation.

UNIT – VII Speed control of D.C. Motors
Speed control of d.c. Motors: Armature voltage and field flux control methods. Ward-Leonard system.
Principle of 3 point and 4 point starters – protective devices.

UNIT – VIII Testing of D.C. Machines
Testing of d.c. machines: Losses – Constant & Variable losses – calculation of efficiency – condition for maximum efficiency
Methods of Testing – direct, indirect and regenerative testing – brake test – Swinburne’s test – Hopkinson’s test – Field’s test – Retardation test – separation of stray losses in a d.c. motor test.
FLUID MECHANICS AND HYDRAULIC MACHINES LAB

1. Impact of jets on Vanes
2. Performance Test on Pelton Wheel.
3. Performance Test on Francis Turbine
4. Performance Test on Kaplan Turbine
5. Performance Test on Single Stage Centrifugal Pump
6. Performance Test on Multi Stage Centrifugal Pump
7. Performance Test on Reciprocating Pump
8. Calibration of Venturimeter
10. Determination of friction factor for a given pipe line.
11. Determination of loss of head due to sudden contraction in a pipeline.
12. Turbine flow meter.

ELECTRICAL CIRCUITS AND SIMULATION LAB

PART-A: ELECTRICAL CIRCUITS

1) Thevenin’s, Norton’s and Maximum Power Transfer Theorems
2) Superposition theorem and RMS value of complex wave
3) Verification of Compensation Theorem
4) Reciprocity, Millmann’s Theorems
5) Locus Diagrams of RL and RC Series Circuits
6) Series and Parallel Resonance
7) Determination of Self, Mutual Inductances and Coefficient of coupling
8) Z and Y Parameters
9) Transmission and hybrid parameters
10) Measurement of Active Power for Star and Delta connected balanced loads
11) Measurement of Reactive Power for Star and Delta connected balanced loads
12) Measurement of 3-phase Power by two Wattmeter Method for unbalanced loads

PART-B: PSPICE SIMULATION

1) Simulation of DC Circuits
2) DC Transient response
3) Mesh Analysis
4) Nodal Analysis