Computing Surface Offsets and Bisectors Using a Sampled Constraint
Solver

David E. Johnson∗ Elaine Cohen†

School of Computing
University of Utah

Abstract
This paper describes SCSolver, a geometric constraint solver based on adaptive sampling of an underlying constraint space. The solver is demonstrated on the computation of the offset to a surface as well as the computation of the bisector between two surfaces. The adaptive constraint sampling generates a solution manifold through a generalized dual-contouring approach appropriate for higher-dimensional problems. Experimental results show that the SCSolver approach can compute solutions for complex input geometry at interactive rates for each example application.

Index Terms: I.3.5 [COMPUTER GRAPHICS]: Computational Geometry and Object Modeling—Geometric Algorithms

1 Introduction
Surface offsets and bisectors are examples of an important class of geometric problems that can be solved by finding the solutions to a set of equations representing constraints on the space of possibilities. This solution paradigm is followed by constraint solvers, which given some input data and a set of equations, generate the solution set.

Recent work by Elber and Kim [4, 11] and others [20, 18, 2] has extended earlier work [21, 16] in developing a general purpose constraint solver based on representing non-linear constraint equations as multi-dimensional parametric hyper-volumes. Symbolic operators on smooth models can build up exact, explicit representations of these constraints, and adaptive refinement combined with numerical methods can extract the zero sets. However, while this explicit representation provides the basis for robust operation, the size of the constraint representations also limits the complexity of problems that can be solved and problem solution speed.

In response to these issues, this paper demonstrates a new approach for constraint solvers based on adaptive sampling of the underlying constraint equations. This paper will refer to this approach as a sampled constraint solver, or SCSolver. Sampling the set of constraints, rather than explicitly building them, provides several advantages over current approaches. By avoiding an explicit representation of the constraint equations, problem setup time and the memory footprint of the solver is reduced. Additionally, as long as the problem input representation supports the necessary queries, it can be used in the SCSolver framework, expanding the applicability of the approach to different model representations. Finally, the SCSolver generates a set of solution points that meet the constraints within numerical tolerance and reconstructs a piecewise linear surface from those points. Other discrete approaches, such as GPU-based gridded sampling [23], require very high resolutions to meet those tolerances.

This SCSolver approach is demonstrated on two classical geometric computing problems: finding the offset surface of a model (see Figure 1) and computing the bisector surface between two models. Each of these problems is an important application and research topic on its own. Offset surfaces are used in surface reconstruction [22], model simplification [3], CNC machining [15], and geometric modeling [24]. Bisector surfaces have widespread application in modeling and engineering, in robot motion planning [6], and in computing the Voronoi diagram [17]. The SCSolver approach generates high-resolution piecewise linear approximations of solutions to these problems at interactive rates.

The contributions of this paper are:

• A constraint solver system for geometric problems based on efficient, adaptive sampling of the constraint space.
• A generalization of the dual-contouring isosurfacing approach suitable for extracting different dimensional manifolds from arbitrary dimensional implicit volumes.
• New, interactive solutions to computing offset surfaces and bisector surfaces for polygonal data.

2 Related Work
The SCSolver approach draws upon several current research directions. Its adaptive sampling of the constraint space is based on a generalized octree data structure. The overall constraint approach shares common goals with other constraint solvers. The solution manifold reconstruction is inspired by dual-contouring methods that been successfully applied to implicit surface polygonalization,
but is generalized here to higher-dimensional problems. These different areas will be summarized below, as well as other approaches to offset and bisector computations.

2.1 Octree Data Structures

Octrees were introduced to computer graphics and image processing in response to the large memory requirements used by regular, gridded sampling of data needed to produce high-fidelity results [8]. More recent work by Frisken [7] adaptively sampled the distance fields around models using an octree data structure to use as a generalized model representation. That work also showed how to perform various modeling operations on the octree and how to produce surface reconstructions from the volumetric implicit function defined by the distance field.

The SCSolver uses a generalized octree structure that only splits a parent along the longest dimension of the cell, an approach shared by [4]. This binary splitting scales naturally with problem dimension, as it just makes the tree of cells taller, not exponentially wider.

2.1.1 Constraint Solvers

The solution to some important geometric problems can be reformulated to be the solution to an equivalent set of nonlinear equations. For example, suppose \(F(u,v) = (x_f(u,v), y_f(u,v), z_f(u,v)) \) and \(G(r,s) = (x_g(r,s), y_g(r,s), z_g(r,s)) \) are two parametric surfaces. Then, their intersection occurs at the set of points \(\{ (x,y,z) \mid F(u,v) = G(r,s) \} \), which can be explicitly written as three nonlinear equations in four unknowns:

\[
\begin{align*}
 x_f(u,v) - x_g(r,s) &= 0, \\
 y_f(u,v) - y_g(r,s) &= 0, \\
 z_f(u,v) - z_g(r,s) &= 0.
\end{align*}
\]

These three constraints reduce the dimensionality of the solution to be a one-manifold in the four-dimensional \(uvrs \)-parameter space.

2.2 Manifold Solution Reconstruction

The extraction of a linear approximation to the continuous zero set solution can be thought of as surface reconstruction from an implicitly defined volume, where the value of the constraint equations define the implicit. This is a heavily studied problem with application to surface reconstruction from volumetric medical data or from point cloud models, implicit modeling, and volume visualization. A classic surface reconstruction algorithm is Marching Cubes [13], which examines the value of the implicit volume at the vertices of cells.

More recently, dual contouring [10] has been used to preserve sharp features in the data and to more easily work with adaptive structures such as octrees. Dual contouring places a solution point in each cell that should have a solution. Quadrilaterals are formed around edges that contain a zero crossing, since the solution surface must be pierced by these edges.

2.3 Offsets and Bisectors

Offset surfaces are formed by projecting points on the defining model out along their surface normals for a specified distance. The resulting offset is everywhere a fixed distance from the original model. These two views of an offset also provide the basis for two main approaches for computing the offset. Projection-based approaches move defining elements of the model along their normals. Mathematically, this can be described for a parametric curve \(C(t) \) and offset \(d \) as

\[
O_d(t) = C(t) + dN(t)
\]

where \(N(t) \) is the unit normal along the curve. For non-parametric models, this explicit offset definition can be approximated by geometric projection operations. A good example of this approach is by Breen et al. [1], which swept triangles out from the surface. A difficulty of this approach is the need to trim these swept volumes against each other to prevent “swallowtails”, which are locally correct, yet globally incorrect solutions to the offset.

A B-spline constraint solver approach was successfully used to trim swallowtails from curve offsets in [19]. Higher-dimensional critical point analysis was used to more accurately place the solutions at offset cusps.

The other approach searches for the set of points that satisfy an implicit definition of the offset to a model \(M \), as in

\[
O_d = \{ P_{x,y,z} \mid P_{x,y,z} \in D \land dist(P_{x,y,z}, M) - d = 0 \}.
\]

In this case, \(D \) is the search domain of interest. This approach is typically implemented and approximated through computation of the distance field around the model and extracting the appropriate iso-surface corresponding to the distance \(d \). A fast graphics card approach is demonstrated in [23] and a point-sampled volume approach is used for CAD models in [14]. Interval arithmetic was used to adaptively search for planar curve offsets and bisectors in [9].

3 Research Approach

The SCSolver development has been motivated by the lack of interactive constraint solvers. Interactivity can play a critical role in the usefulness of a tool. Another factor guiding this development is the need to include geometric data that cannot directly generate B-spline constraints, such as commonly used polygonal data. The sampling operation allows any model type that supports the sampling queries to be used in the solver.

First, this paper will describe the general SCSolver algorithm and then additional sections will describe some initial applications.

3.1 The Sampled Constraint Solver

The first task in running the solver is to define a domain of interest for the problem. This initial domain becomes the top node of the generalized octree data structure used to efficiently search the constraint space. Given this node, the SCSolver does a recursive, adaptive search for nodes below some size or error tolerance that contain a point on the solution manifold. The cells of the generalized octree are nodes of the tree. Cells containing solutions points are leaves of the tree.

The adaptive search is more precisely described with some pseudocode. The following example is actually very close to the actual code at the heart of the solver.

Submitted to Graphics Interface 2009.
and cell radius are considered "small enough". This can be a simple, user-provided
metrics [5]. Generalizing this metric to different symbolic operations
is trivial for offsets and bisectors. For more complex cases, the
in position within a cell to change in constraint value, although it
In general, it is difficult to create the metric \(\Delta C \) relating change

\[
\text{possibleZero} = C(P_{x,y,z}) + \Delta C(V) \geq 0 \quad \text{and} \quad C(P_{x,y,z}) - \Delta C(V) \leq 0
\]

In general, it is difficult to create the metric \(\Delta C \) relating change
in position within a cell to change in constraint value, although it
is trivial for offsets and bisectors. For more complex cases, the
robotics community has some approaches for computing these metrics [5]. Generalizing this metric to different symbolic operations
remains an area of future research.

3.1.2 A Cell Leaf Test
In general, a cell is declared a leaf when the dimensions of the cell
are considered "small enough". This can be a simple, user-provided
scalar value, or based on some criteria from the problem. A user-

3.1.3 Finding the Cell Solution Point

Given a cell containing a possible solution, it is necessary for the
solver to compute a representative point to use later with the dual-
contouring solution reconstruction. Dual-contouring approaches have
illuminated several potential problems that can occur while solving for this representative point. A typical approach may be to
start with the cell center as an initial guess and to project onto the
zero set through numerical or iterative methods, but the nearest por-
tion of the solution manifold may lie out of the cell. Solution points
that exit the cell can cause flips and concavities in the resulting solu-
tion surface reconstruction.

Instead, the concept of the mass point is adapted from dual-
contouring. Each edge with a vertex sign change computes an
approximate edge point through linear interpolation of the vertex
scores. The normalized sum of these edge points is the mass point.
The mass point must lie within the cell and should be near the un-
known constraint solution (Figure 2(b)). The mass point is then
used to initialize an iterative error minimization method that moves
the point onto the zero level-set. The method used is particular to
the constraint system, although general purpose numerical methods
are appropriate as well. A problem is that at coarse resolutions, the
cell may poorly approximate the underlying zero set, and the mass
point does not provide an appropriate initial point. In this case,
the solution point is clipped against the cell boundaries, introduc-
ing some small, bounded error, but preserving the topology of the
solution surface (Figure 2(c)).

3.1.4 Adding the Point to the Solution Set

Points that are accepted as part of the solution set get inserted into
a vertex-edge-quad data structure. The solution point becomes a
vertex in the solution manifold. These vertices point back into the
octree data structure to preserve information about where the solu-
tion manifold crosses into neighboring cells.

3.1.5 Cell Subdivision

The SCSolver uses a binary split approach for generating children
nodes of a cell. The lengths of the cell are found in all dimensions.
The longest axis is split in half, producing two children nodes.
This differs from the octree data structure used in standard dual-
contouring. The next section discusses approaches for extracting a
zero-set surface from this generalized octree.

3.1.6 Solution Manifold Extraction

Given a set of solution points and their containing cells, the SC-
Solver uses a modified dual-contouring approach to extract out sur-
faced quadrilaterals. In standard dual-contouring, a recursive
approach finds neighboring cells until four cells surrounding an edge
are found. The solution points within these four cells generate a
quadrilateral.

A design goal for the SCSolver’s manifold extraction is to gener-
alize to higher-dimensional constraint spaces and to be able to ex-
tract out solutions of differing dimensions, such as volume solutions
in a four-dimensional constraint space. Providing dual-contouring
approaches specific to each possible case would require an enor-

mous amount of specialized code. Instead, this system searches for
edges between neighboring cells. This is actually far simpler to
code than the dual-contouring quadrilateral search. Given a set of
connected vertices and edges, different dimensional solutions can
be extracted. For the surface solution case, a graph search extends
out from each vertex, looking for a four-edge path back to the start
vertex.

function SCSolver(cell)
{
 if cell.MayHaveSolution()
 {
 if (cell.Leaf(cell))
 cell.FindPointSolution
 else
 SCSolver(cell.Subdivide)
 }
}

Once the SCSolver is run, the solution manifold is extracted from
the set of octree leaf nodes. Each component of the algorithm is
described in the following subsections.

3.1.1 Testing for Possible Cell Solutions

Each cell may or may not have a portion of the zero set solution
within the cell domain. Often in gridded sampling of volume data,
the corners of each cell are evaluated. Changes in sign between
the corners of the cell indicate a solution lies within. However, this
approach misses solutions completely contained within the cell, as
well as solutions that penetrate the faces of the cell rather then the
edges.

Instead, the SCSolver evaluates the set of constraint equations
at the center of a cell. If the constraint equations cannot change
eight to generate a zero solution while moving within the cell
domain, then a solution cannot exist there. The possible change of
value within a cell is conservatively bounded by a cell radius, which
is the distance from the cell center to a corner (Figure 2(a)). For a
constraint \(C(P_{x,y,z}) \), the test for a possible zero within a cell volume
and cell radius \(V \) is

\[
\Delta C(V) \geq 0 \quad \text{and} \quad \Delta C(V) \leq 0
\]
3.1.7 Implementation Details
The SCSolver system takes advantage of many hash tables to maintain coherency between different parts of the system. For example, the corners of the cells are shared between many different nodes of the tree. Yet, due to the binary split of the cells and the goal of allowing adaptive refinement, these corners are difficult to store in an explicit grid of points. Instead, a hash table on the point coordinates is used to store expensive constraint evaluations for later use. In a typical solver run, 50 to 75 percent of the constraint evaluations can be reused.

Another use of hash tables is during the manifold reconstruction. The graph search for quadrilaterals from connected edges can produce redundant solutions. A hash of the vertex indices is used to detect redundant solutions and prevent them from being added to the solution manifold.

The overall solver is implemented as a C++ base class with virtual functions. Specific constraint problems then implement a derived class with its functions, such as constraint evaluation, overriding the virtual function in the base class.

3.2 Computing Offset Surfaces

To compute an offset surface, the SCSolver searches for a set of points that lie at a distance \(d \) from the original model. Evaluating the constraint at cell centers and vertices is then equivalent to finding the minimum distance from the sample point in question to the model. A modified PQP package [12] with added point-model minimum distance functionality was used to evaluate the distance constraint.

Given a initial mass point within a cell, a point on the solution zero-set was found with an explicit geometric computation. The distance from the mass point to the model is evaluated, and the supporting closest point on the surface found. This closest point is an orthogonal projection of the mass point onto the surface, thus the vector between the two is in the direction of the surface normal at that closest point. The mass point can then be moved along the normal to lie at the appropriate distance \(d \) from the model, and is exactly on the zero set of the constraint (Figure 3).

3.2.1 Examples
In this section, several example offsets are shown. The input models are a bunny model with 2204 triangles (Figure 4) and a teapot model with 8488 triangles (Figure 5). The distance calls used to evaluate the distance constraint scales as \(O(\log_2(n)) \) with the number of triangles \(n \) in the model, so model complexity is not a bottleneck in the computation.

3.2.2 Timings
Figure 6 shows some sample timings for the bunny model. At low solution resolutions, the offset value can be changed interactively. At higher solution resolutions, the algorithm shows good scaling performance. To help judge the performance, note that the bunny model had 2204 triangles, and was a reasonably detailed model. The equivalent solution resolution for number of triangles is between the first and second data points, so the offset also captures model detail. Furthermore, offset surfaces are a smoothing operation, so fewer triangles are acceptable.

All timings were done on a quad-core Q6600 Core 2 Duo computer with 8 gigabytes of memory, although the application is single-threaded. Additionally, the memory footprint of the system is not large. The solver runs acceptably on a modern laptop system.

3.3 Computing Bisector Surfaces
The bisector of two models is the set of points equidistant to both models. Mathematically, the can be expressed implicitly as

\[
B_{M_1,M_2} = \{ P_{x,y,z} | P_{x,y,z} \in D \land dist(P_{x,y,z}, M_1) - dist(P_{x,y,z}, M_2) = 0 \} \tag{3}
\]
In this case the constraint space represents the difference between distances from a point in the constraint space to each model. The zero set of this constraint space is where points are equidistant. The space is sampled as before, with cells evaluated at their centers to detect possible solutions and at cell corners to determine the solution point and solution topology.

There is no direct algorithmic approach for moving a mass point onto the solution manifold, as there was for offset surfaces. One possibility would be to numerically approximate the constraint space gradient at the mass point, and use numerical methods to move onto the solution manifold. In the spirit of the geometric approach used in the offset solver, instead, a novel geometric approach is used to move the mass point onto the bisector.

3.3.1 Improving the Solution Point

The bisector of two points is a straight line. The bisector of two general shapes can be approximated by the central shape of the Voronoi diagram of a set of points from each model. This central shape is composed of short segments made up of bisectors between points on one model and points on the other.

The closest points on the models to the mass point can be thought of as a sampling of those approximating points for the Voronoi diagram. Thus, the bisector between those points is an approximation of the full bisector surface. Iteratively projecting on that linear bisector, then using the projected point to find new closest points on the model, moves the test point onto the true bisector manifold. In practice, only a few iterations of this process are needed to converge to a small epsilon of error.

3.3.2 Examples

In this section, several bisector surfaces are shown (see Figures 8 and 9). The models are able to be moved while the bisector surface updates interactively.

3.3.3 Timings

Figure 10 shows performance data for computing the bisector surfaces. The data shows remarkably linear behavior with respect to bisector surface resolution. At this time, the reason for different scaling behaviors between the offset and bisector solvers is unexplained, but the different approaches for finding the solution point may have some impact. The bisector surface is generally slower than the offset surface. Evaluating the constraint system takes two distance calls for bisectors versus one for offsets. In addition, the offset mass point is moved onto the solution manifold in a single step, whereas the bisector takes an iterative procedure with multiple distance calls.

Figure 6: The time to generate the offset surface vs. the number of quadrilaterals in the offset surface.

In conclusion, the SCSolver approach shows the utility of avoiding a costly explicit constraint space construction phase by sampling the constraint values and providing bounds on changes to the constraints values within a region of the constraint space. The resulting system allows interactive computation of two important geometric problems, offset surfaces and bisectors of models.
ACKNOWLEDGEMENTS

The authors acknowledge support from NSF grants ...

REFERENCES

