Option Pricing in Heston Model using Finite Element Methods

Copyright © Changwei Xiong 2010 - 2019

Jan. 2010

last update: August 28, 2019
ABSTRACT

Heston stochastic volatility model has been widely used in financial derivative pricing and risk management. One of the reasons for that is that vanilla options in Heston model have close form solutions. This makes the calibration of the model computationally much efficient and accurate. The essay in the first half introduces Fourier transform method for option pricing and its application in the Heston model. Additionally, a characteristic function based method is also described, which extends the Heston model to have time-dependent model parameters.

In the second half of the essay, we present a detailed implementation of Finite element method (FEM) for option pricing in the Heston model. FEM has been developed for decades for solving partial differential equations arise from various science and engineering problems. It is well known for requiring a low order storage and for its capability to handle complicated irregular computational domains comparing with finite difference method (FDM). This characteristic advantages make FEM an ideal numerical method for pricing exotic options.
TABLE OF CONTENTS

Abstract ...2

Table of Contents ..3

1. Kolmogorov Forward and Backward Equations ...5
 1.1. Kolmogorov Forward Equation ..5
 1.2. Kolmogorov Backward Equation ..8

2. Heston Model ..10
 2.1. Heston Stochastic Volatility Model ...10
 2.1.1. Market Price of Risk ...10
 2.1.2. Radon-Nikodym Derivative ...15
 2.1.3. Feller Condition ..16
 2.2. Probability Distribution of Spot Returns ...17
 2.2.1. Derivation of the Transition Probability ...17
 2.2.2. Moment Generating Function (in progress ...) ..20
 2.3. Analytical Solution of Vanilla Options ..21
 2.3.1. Fourier Transform ...22
 2.3.2. Levy’s Inversion Formula ...23
 2.3.3. Characteristic Function ..26
 2.3.4. Vanilla Option Prices ..30
 2.3.4.1. Analogy to Cumulative Density Function ...30
 2.3.4.2. Analogy to Probability Density Function ..32
 2.3.4.3. Heston’s Original Solution ..33
 2.4. Piecewise Time Dependent Heston Model ...36

3. Heston Model: PDE by Finite Element Method ...39
 3.1. The Partial Differential Equation ..39
 3.2. Temporal Discretization ...42
 3.3. Finite Element Method in 2D ..43
 3.3.1. Weak Formulation ...43
 3.3.2. Terminal Conditions ..44
 3.3.3. Boundary Conditions ..45
 3.3.3.1. Homogeneous Dirichlet Boundary Condition ...45
 3.3.3.2. Homogeneous Neumann Boundary Condition45
 3.3.3.3. Inhomogeneous Dirichlet Boundary Condition46
 3.3.3.4. Inhomogeneous Neumann Boundary Condition46
 3.3.4. Boundary Conditions for Vanilla Options ..47
 3.3.5. Mesh and Basis Functions ..49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6.</td>
<td>Stiffness Matrix and Load Factor</td>
<td>51</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Computation of Integrals</td>
<td>54</td>
</tr>
<tr>
<td>3.3.7.</td>
<td>Iterative Linear Solvers</td>
<td>57</td>
</tr>
<tr>
<td>3.3.8.</td>
<td>Interpolation of Numerical Solution</td>
<td>57</td>
</tr>
<tr>
<td>3.3.9.</td>
<td>Numerical Solution of Vanilla Options</td>
<td>58</td>
</tr>
<tr>
<td>3.4.</td>
<td>Double Barrier and Double-No-Touch Products</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>PV Comparison against Analytic Solution</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Crank-Nicolson Oscillation and Remedy</td>
<td>63</td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Barrier Call with Knock-Out Rebate</td>
<td>64</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>
This note is to summarize Heston stochastic volatility model. It was initially prepared as degree essay for my M.S. in Mathematical Finance, which only covered the barrier option pricing by solving PDE using finite element method (i.e. the Chapter 3 in this note). I have been continuously expanding it with more mathematical background, such as the derivation of market price of spot/volatility risk, the Fourier transform method for option pricing, the derivation of characteristic function of the joint spot-variance process, the probability distribution of spot return, the piecewise time dependent Heston parameters, etc. The very first topic we want to begin with is the derivation of the Kolmogorov forward and backward equations, which fundamentally govern the transition probability density function of a diffusion process.

1. **Kolmogorov Forward and Backward Equations**

 The time evolution of the transition probability density function is governed by *Kolmogorov* forward and backward equations, which will be introduced as follows, without loss of generality, in multi-dimension.

1.1. Kolmogorov Forward Equation

 Let’s consider the following m-dimensional stochastic spot process $X_t \in \mathbb{R}^m$ driven by an n-dimensional Brownian motion W_t whose correlation matrix ρ is given by $\rho dt = dW_t dW_t'$

 $$
 dX_t = A(t, X_t) dt + B(t, X_t) dW_t
 $$

 (1)

 We derive the dynamics of h, where $h: \mathbb{R}^m \rightarrow \mathbb{R}$ is a scalar-valued Borel-measurable function only on variable X_t

 $$
 dh(X_t) = J_h \ dX_t + \frac{1}{2} dX_t' H_h \ dX_t = J_h A dt + J_h B dW_t + \frac{1}{2} dW_t' B' H_h B dW_t
 $$

 (2)

 where J_h is the $1 \times m$ *Jacobian* (i.e. the same as *gradient* if h is a scalar-valued function) and H_h the $m \times m$ *Hessian* (with subscripts now denoting the indices of vector components)
\[I_h = \left(\frac{\partial h}{\partial X_1}, \ldots, \frac{\partial h}{\partial X_m} \right), \quad H_h = \left(\begin{array}{ccc} \frac{\partial^2 h}{\partial X_1^2} & \ldots & \frac{\partial^2 h}{\partial X_1 \partial X_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 h}{\partial X_m \partial X_1} & \ldots & \frac{\partial^2 h}{\partial X_m^2} \end{array} \right) \] (3)

Expanding the expression in (2), we have

\[
dh(X_t) = \sum_{i=1}^{m} \frac{\partial h}{\partial X_i} A_i dt + \sum_{i=1}^{m} \frac{\partial h}{\partial X_i} \sum_{k=1}^{n} B_{ik} dW_{k,t} + \frac{1}{2} \sum_{i,j=1}^{m} \frac{\partial^2 h}{\partial X_i \partial X_j} \sum_{k=1}^{n} B_{ik} \rho_{ij} B_{jk} dt
\]

\[= \left(\sum_{i=1}^{m} A_i \frac{\partial h}{\partial X_i} + \frac{1}{2} \sum_{i,j=1}^{m} \Sigma_{ij} \frac{\partial^2 h}{\partial X_i \partial X_j} \right) dt + \sum_{i=1}^{m} \frac{\partial h}{\partial X_i} \sum_{k=1}^{n} B_{ik} dW_{k,t} \] (4)

where \(\Sigma = B \rho B^T \) is the \(m \times m \) instantaneous variance-covariance matrix of \(dX \). Integrating on both sides of (4) from initial time \(s \) to time \(t \), we have

\[h(X_t) - h(X_s) = \int_s^t \left(\sum_{i=1}^{m} A_i \frac{\partial h}{\partial X_i} + \frac{1}{2} \sum_{i,j=1}^{m} \Sigma_{ij} \frac{\partial^2 h}{\partial X_i \partial X_j} \right) du + \int_s^t \sum_{i=1}^{m} \frac{\partial h}{\partial X_i} \sum_{k=1}^{n} B_{ik} dW_{k,t} \] (5)

Taking expectation on both sides of (5), we get (using notation \(\mathbb{E}_t[\cdot] = \mathbb{E}[\cdot | \mathcal{F}_t] \))

\[\text{LHS} = \mathbb{E}_s[h(X_t)] - h(X_s) = \int_\Omega h_x p_{t,x|s,\alpha} dx - h_\alpha \]

\[\text{RHS} = \int_s^t \sum_{i=1}^{m} \mathbb{E}_s \left[A_i \frac{\partial h}{\partial X_i} \right] du + \frac{1}{2} \int_s^t \sum_{i,j=1}^{m} \mathbb{E}_s \left[\Sigma_{ij} \frac{\partial^2 h}{\partial X_i \partial X_j} \right] du \] (6)

where \(p_{t,x|s,\alpha} \) is the transition probability density function having \(X_t = x \) at \(t \) given \(X_s = \alpha \) at \(s \) (i.e. if we solve the equation (1) with the initial condition \(X_s = \alpha \in \mathbb{R}^m \), then the random variable \(X_t = x \in \Omega \) has a density \(p_{t,x|s,\alpha} \) in the \(x \) variable at time \(t \)). Differentiating (6) with respect to \(t \) on both sides, we get
\[
\int_{\Omega} h_x \frac{\partial p_{t,x|s,a}}{\partial t} \, dx = \sum_{i=1}^{m} E_s \left[A_i \frac{\partial h}{\partial X_i} \right] + \frac{1}{2} \sum_{i,j=1}^{m} E_s \left[\Sigma_{ij} \frac{\partial^2 h}{\partial X_i \partial X_j} \right]
\]

\[= \sum_{i=1}^{m} \int_{\Omega} p_{t,x|s,a} A_i \frac{\partial h_x}{\partial x_i} \, dx + \frac{1}{2} \sum_{i,j=1}^{m} \int_{\Omega} p_{t,x|s,a} \Sigma_{ij} \frac{\partial^2 h_x}{\partial x_i \partial x_j} \, dx \]

(7)

If we assume \(\Omega \equiv \mathbb{R}^m \) and also assume the probability density \(p \) and its first derivatives \(\partial p / \partial x_i \) vanish at a higher order of rate than \(h \) and \(\partial h / \partial x_i \) as \(x_i \to \pm \infty \) \(\forall \ i = 1, \ldots, m \), we can integrate by parts for the right hand side of (7), once for the first integral and twice for the second

\[
\int_{\Omega} A_i p \frac{\partial h_x}{\partial x_i} \, dx = \int_{\bar{\Omega}_i} A_i h_x p \frac{+\infty}{\partial x_i = -\infty} \, d\bar{x}_i - \int_{\Omega} h_x \frac{\partial (A_i p)}{\partial x_i} \, dx
\]

\[
\int_{\Omega} \Sigma_{ij} \frac{\partial^2 h_x}{\partial x_i \partial x_j} \, dx = \int_{\bar{\Omega}_j} \Sigma_{ij} \frac{+\infty}{\partial x_j = -\infty} \, d\bar{x}_j - \int_{\Omega} \frac{\partial (\Sigma_{ij} p)}{\partial x_i \partial x_j} \, dx
\]

(8)

where \(\int_{\bar{\Omega}_i} (\cdot) \, d\bar{x}_i = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \int_{\mathbb{R}} (\cdot) \, dx_1 \cdots dx_{i-1} \, dx_{i+1} \cdots dx_m \)

Plugging the results of (8) into (7), we have

\[
\int_{\Omega} h_x \frac{\partial p}{\partial t} \, dx = - \sum_{i=1}^{m} \int_{\Omega} h_x \frac{\partial (A_i p)}{\partial x_i} \, dx + \frac{1}{2} \sum_{i,j=1}^{m} \int_{\Omega} h_x \frac{\partial^2 (\Sigma_{ij} p)}{\partial x_i \partial x_j} \, dx
\]

\[\Rightarrow \int_{\Omega} h_x \left(\frac{\partial p}{\partial t} + \sum_{i=1}^{m} \frac{\partial (A_i p)}{\partial x_i} \right) - \frac{1}{2} \sum_{i,j=1}^{m} \frac{\partial^2 (\Sigma_{ij} p)}{\partial x_i \partial x_j} \right) \, dx = 0
\]

(9)

By the arbitrariness of function \(h \), we conclude that for any \(x \in \Omega \) the density function \(p \) satisfies

\[
\frac{\partial p}{\partial t} + \sum_{i=1}^{m} \frac{\partial (A_i p)}{\partial x_i} - \frac{1}{2} \sum_{i,j=1}^{m} \frac{\partial^2 (\Sigma_{ij} p)}{\partial x_i \partial x_j} = 0, \quad \Sigma = B\rho B'
\]

(10)
This is the multi-dimensional *Fokker-Planck Equation (a.k.a. Kolmogorov Forward Equation)* [1]. In this equation, the s and α are held constant, while the t and x are variables (called “forward variables”).

In the one-dimensional case, it reduces to

$$\frac{\partial p}{\partial t} + \frac{(Ap)}{\partial x} - \frac{1}{2} \frac{\partial^2 (B^2 p)}{\partial x^2} = 0$$

(11)

where $A = A(t,x)$ and $B = B(t,x)$ are then scalar functions.

1.2. Kolmogorov Backward Equation

Let’s express conditional expectation $g(t,X_t) = \mathbb{E}_t[h(X_T)]$. Since for any $t \leq v \leq T$ we have

$$g(t,X_t) = \mathbb{E}_t[h(X_T)] = \mathbb{E}_t[\mathbb{E}_v[h(X_T)]] = \mathbb{E}_t[g(v,X_v)]$$

(12)

the $g(t,X_t)$ is a martingale by the *tower rule* (i.e. If \mathcal{H} holds less information than \mathcal{G}, then $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$). The dynamics of the $g(t,X_t)$ is given by

$$dg = \frac{\partial g}{\partial t} dt + J_g \begin{pmatrix} \frac{\partial g}{\partial X_1} \\ \vdots \\ \frac{\partial g}{\partial X_n} \end{pmatrix} \begin{pmatrix} \frac{\partial^2 g}{\partial X_1 \partial X_1} \\ \vdots \\ \frac{\partial^2 g}{\partial X_n \partial X_n} \end{pmatrix} \begin{pmatrix} \Sigma_{ij} \frac{\partial^2 g}{\partial X_i \partial X_j} \\ \vdots \\ \Sigma_{ij} \frac{\partial^2 g}{\partial X_i \partial X_j} \end{pmatrix} dt + \frac{1}{2} \frac{\partial g}{\partial t} dt + J_g A dt + J_g B dW_t + \frac{1}{2} dW_t' B^T H_g B dW_t$$

(13)

where J_g is the *Jacobian* and H_g the *Hessian* of g with respect to variable X

$$[J_g]_i = \frac{\partial g}{\partial X_i}, \quad [H_g]_{ij} = \frac{\partial^2 g}{\partial X_i \partial X_j}$$

(14)

Expanding (13), we have

$$dg = \left(\frac{\partial g}{\partial t} + \sum_{i=1}^m A_i \frac{\partial g}{\partial X_i} + \frac{1}{2} \sum_{i,j=1}^m \Sigma_{ij} \frac{\partial^2 g}{\partial X_i \partial X_j} \right) dt + \sum_{i=1}^m \frac{\partial g}{\partial X_i} \sum_{k=1}^n B_{ik} dW_{k,t}$$

(15)

Since $g(t,X_t)$ is a martingale, the dt-term must vanish, which gives

$$\frac{\partial g}{\partial t} + \sum_{i=1}^m A_i \frac{\partial g}{\partial X_i} + \frac{1}{2} \sum_{i,j=1}^m \Sigma_{ij} \frac{\partial^2 g}{\partial X_i \partial X_j} = 0$$

(16)

This is the multi-dimensional *Feynman-Kac formula*.

Using the transition probability density \(p_{T,\beta|t,x} \) for \(X_t = x \) at \(t \) and \(X_T = \beta \) at \(T \), we can further write the expectation as

\[
g_{t,x} = \mathbb{E}_t[h(X_T)] = \int h_\beta p_{T,\beta|t,x} d\beta
\]

The formula (16) defines that

\[
\left(\frac{\partial}{\partial t} + \sum_{i=1}^{m} A_i \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{m} \Sigma_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \right) \int h_\beta p_{T,\beta|t,x} d\beta = 0
\]

\[
\Rightarrow \int h_\beta \left(\frac{\partial p}{\partial t} + \sum_{i=1}^{m} A_i \frac{\partial p}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{m} \Sigma_{ij} \frac{\partial^2 p}{\partial x_i \partial x_j} \right) d\beta = 0
\]

By the arbitrariness of \(h \) function, we must have

\[
\frac{\partial p}{\partial t} + \sum_{i=1}^{m} A_i \frac{\partial p}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{m} \Sigma_{ij} \frac{\partial^2 p}{\partial x_i \partial x_j} = 0, \quad \Sigma = B \rho B'
\]

This is the multi-dimensional Kolmogorov Backward Equation. In this equation, the \(T \) and \(\beta \) are held constant, while the \(t \) and \(x \) are variables (called “backward variables”). In the 1-D case, it reduces to

\[
\frac{\partial p}{\partial t} + A \frac{\partial p}{\partial x} + \frac{1}{2} B^2 \frac{\partial^2 p}{\partial x^2} = 0
\]

where \(A = A(t,x) \) and \(B = B(t,x) \) are again scalar functions.
2. HESTON MODEL

In this chapter, we will briefly introduce the Heston stochastic volatility model, which has become quite popular in industry to model volatility smiles. One of the reasons for that is that vanilla options in Heston model have close form solutions. This makes the calibration of the model computationally much efficient and accurate. To understand these closed form formulas, we begin with the Fourier transform method for option pricing and its application to the Heston model. Additionally, a characteristic function based method is also discussed, which extends the Heston model to have piecewise constant time-dependent model parameters.

2.1. Heston Stochastic Volatility Model

The stochastic volatility in Heston’s model is a mean-reverting square-root process defined by the following stochastic differential equations (SDE)

\[
\begin{align*}
\frac{dS_t}{S_t} &= (\mu - q)dt + \sqrt{v_t}dW_{1,t} \\
fv_t &= \epsilon(\theta - v_t)dt + \xi\sqrt{v_t}dW_{2,t} \\
dW_{1,t}dW_{2,t} &= \rho dt
\end{align*}
\]

(21)

where \(t \) denotes the time, \(S_t \) the spot process, \(\mu \) and \(q \) the drift rate and dividend rate of the spot (or domestic rate and foreign rate in FX), \(v_t \) the variance process, \(\epsilon \) the mean reversion rate, \(\theta \) the mean variance, \(\xi \) the volatility of the variance and \(dW_{1,t}, dW_{2,t} \) the two Brownian motions correlated by \(\rho \) under physical measure \(\mathbb{P} \). All the parameters \(\mu, q, \epsilon, \theta \) and \(\rho \) are time and state homogenous (invariant).

2.1.1. Market Price of Risk

In the Black-Scholes model, a contingent claim is dependent on one or more tradable assets \(S_t \). The randomness in the option value is solely due to the randomness of these tradable assets. Therefore, the option can be hedged by continuously trading the underlying. This makes the market complete (i.e. every contingent claim can be replicated). In a stochastic volatility model, a contingent claim is
dependent on both the randomness of the asset S_t and the randomness associated with the instantaneous volatility v_t of the asset. Since the volatility is not a traded asset, this renders the market incomplete and has many implications to the pricing of options.

Firstly let’s consider two arbitrary derivative securities (presume they are available in the traded markets) whose prices can be written as functions $U(t, S_t, v_t)$ and $V(t, S_t, v_t)$ of variables t, S_t and v_t respectively. We construct a self-financing portfolio with a price process X_t by having long one share of $U(t, S_t, v_t)$, short Γ_t shares of $V(t, S_t, v_t)$ and short Δ_t shares of S_t, that is

$$X_t = U_t - \Gamma_t V_t - \Delta_t S_t$$

(22)

Following the Ito’s lemma, we can derive the price dynamics of the derivative as

$$dU = \frac{\partial U}{\partial t} dt + \frac{\partial U}{\partial S} dS + \frac{1}{2} \frac{\partial^2 U}{\partial S^2} dS^2 + \frac{\partial U}{\partial v} dv + \frac{1}{2} \frac{\partial^2 U}{\partial v^2} dv^2 + \frac{\partial U}{\partial S} \frac{\partial^2 U}{\partial v \partial S} dSdv$$

$$= \frac{\partial U}{\partial t} dt + \frac{\partial U}{\partial S} (\mu - q)Sdt + \frac{\partial U}{\partial S} S\sqrt{v}dW_1 + \frac{vS^2}{2} \frac{\partial^2 U}{\partial S^2} dt + \frac{\partial U}{\partial v} \epsilon(\theta - v)dt + \frac{\partial U}{\partial v} \xi \sqrt{v}dW_2$$

$$+ \frac{v\xi^2}{2} \frac{\partial^2 U}{\partial v^2} dt + Sv\xi \rho \frac{\partial^2 U}{\partial v \partial S} dt$$

(23)

and derive the price dynamics of the self-financing portfolio as

$$dX = dU - \Gamma dV - \Delta dS - \Delta Sqdt$$

$$= \left(\frac{\partial U}{\partial t} + \frac{\partial U}{\partial S} (\mu - q)S + \frac{vS^2}{2} \frac{\partial^2 U}{\partial S^2} + \frac{\partial U}{\partial v} \epsilon(\theta - v) + \frac{v\xi^2}{2} \frac{\partial^2 U}{\partial v^2} + Sv\xi \rho \frac{\partial^2 U}{\partial v \partial S}\right) dt$$

$$- \Gamma \left(\frac{\partial V}{\partial t} + \frac{\partial V}{\partial S} (\mu - q)S + \frac{vS^2}{2} \frac{\partial^2 V}{\partial S^2} + \frac{\partial V}{\partial v} \epsilon(\theta - v) + \frac{v\xi^2}{2} \frac{\partial^2 V}{\partial v^2} + Sv\xi \rho \frac{\partial^2 V}{\partial v \partial S}\right) dt$$

$$+ \left(\frac{\partial U}{\partial S} - \Delta - \Gamma \frac{\partial V}{\partial S}\right) S\sqrt{v}dW_1 + \left(\frac{\partial U}{\partial v} - \Gamma \frac{\partial V}{\partial v}\right) \xi \sqrt{v}dW_2 - \Delta(\mu - q)Sdt - \Delta Sqdt$$

(24)

In order to eliminate both spot and volatility risk, we must have

$$\frac{\partial U}{\partial S} - \Delta - \Gamma \frac{\partial V}{\partial S} = 0 \quad \text{and} \quad \frac{\partial U}{\partial v} - \Gamma \frac{\partial V}{\partial v} = 0$$

(25)

and therefore
\[dX = \left(\frac{\partial U}{\partial t} + \frac{\nu S^2 \partial^2 U}{2 \partial S^2} + \frac{\nu \xi^2 \partial^2 U}{2 \partial v^2} + S \nu \xi \rho \frac{\partial^2 U}{\partial v \partial S} \right) \frac{\partial U}{\partial S} dS \left(r - q \right) - rU \]

\[\frac{\partial U}{\partial S} \]

\[dV = \frac{\partial V}{\partial t} + \frac{\nu S^2 \partial^2 V}{2 \partial S^2} + \frac{\nu \xi^2 \partial^2 V}{2 \partial v^2} + S \nu \xi \rho \frac{\partial^2 V}{\partial v \partial S} \]

\[= \frac{\partial V}{\partial v} \]

\[\equiv \eta \]

In the above equation, the left-hand side is a function of \(U \) only and the right-hand side is a function of \(V \) only. The only way for the equality to hold is for both sides to equal a common function \(\eta \) of the independent variables \(t, S_t, \) and \(v_t \).

Now let’s consider a delta-neutral portfolio \(Y_t \) by having long one share of \(U(t, S_t, v_t) \) and short \(\Delta_t \) shares of \(S_t \)

\[Y_t = U_t - \Delta_t S_t \]

The price dynamics of the portfolio is

\[dY = dU - \Delta dS - \Delta Sd\alpha \]

\[= \left(\frac{\partial U}{\partial t} + \frac{\partial U}{\partial S} \left(\mu - q \right) S + \frac{\nu S^2 \partial^2 U}{2 \partial S^2} \right) \frac{\partial U}{\partial S} \]

\[+ \left(\frac{\partial U}{\partial S} \right) S \sqrt{\nu} dW_1 + \frac{\partial U}{\partial v} \xi \sqrt{\nu} dW_2 - \Delta \left(\mu - q \right) Sdt - \Delta Sd\alpha \]

Since delta-neutral implies \(\frac{\partial U}{\partial S} = 0 \), we are able to derive the dynamics of the discounted portfolio, a martingale under risk neutral measure, as
\[
d\left(\frac{D_t Y_t}{D_t}\right) = \frac{d(D_t Y_t)}{D_t} = dY - rYdt = dU - \Delta dS - \Delta S q dt - rU dt + r\Delta dt
\]

\[
= \left(\frac{\partial U}{\partial v} \epsilon(\theta - v) + \frac{\partial U}{\partial S} \frac{\nu S^2}{2} \frac{\partial^2 U}{\partial S^2} + \frac{\partial U}{\partial v} \frac{\nu \xi}{2} \frac{\partial^2 U}{\partial v^2} + \frac{\partial U}{\partial S} \frac{\nu \xi \rho}{\partial v \partial S} + \frac{\partial U}{\partial S} \left(r - q\right) - rU \right) dt
\]

\[
+ \frac{\partial U}{\partial v} \xi \sqrt{\nu} dW_2
\]

\[
= \frac{\partial U}{\partial v} \left(\epsilon(\theta - v) + \eta\right) dt + \frac{\partial U}{\partial v} \xi \sqrt{\nu} dW_2 = \frac{\partial U}{\partial v} \xi \sqrt{\nu} d\tilde{W}_2
\]

by defining

\[
d\tilde{W}_2 = dW_2 + \phi_2 dt \quad \text{and} \quad \phi_2 = \frac{\epsilon(\theta - v) + \eta}{\xi \sqrt{\nu}} \quad (32)
\]

In the above, the \(\tilde{W}_2 \) is a Brownian motion under risk neutral measure \(\mathbb{Q} \) and \(\phi_2 \) is the market price of volatility risk.

We next consider a vega-neutral portfolio \(Z_t \) by having long a share of \(U(t, S_t, v_t) \) and short \(\Gamma_t \) shares of \(V(t, S_t, v_t) \)

\[
Z_t = U_t - \Gamma_t V_t \quad (33)
\]

The dynamics of the portfolio reads

\[
dZ = dU - \Gamma dV
\]

\[
= \left(\frac{\partial U}{\partial t} + \frac{\partial U}{\partial S} (\mu - q) S + \frac{\nu S^2}{2} \frac{\partial^2 U}{\partial S^2} + \frac{\partial U}{\partial v} \epsilon(\theta - v) + \frac{\nu \xi}{2} \frac{\partial^2 U}{\partial v^2} + \frac{\nu \xi \rho}{\partial v \partial S} \right) dt
\]

\[
- \Gamma \left(\frac{\partial V}{\partial t} + \frac{\partial V}{\partial S} (\mu - q) S + \frac{\nu S^2}{2} \frac{\partial^2 V}{\partial S^2} + \frac{\partial V}{\partial v} \epsilon(\theta - v) + \frac{\nu \xi}{2} \frac{\partial^2 V}{\partial v^2} + \frac{\nu \xi \rho}{\partial v \partial S} \right) dt
\]

\[
+ \left(\frac{\partial U}{\partial S} - \Gamma \frac{\partial V}{\partial S} \right) S \sqrt{\nu} dW_1 + \left(\frac{\partial U}{\partial v} - \Gamma \frac{\partial V}{\partial v} \right) \xi \sqrt{\nu} dW_2 \quad (34)
\]

Since vega-neutral implies \(\frac{\partial u}{\partial v} - \Gamma \frac{\partial v}{\partial v} = 0 \), we can derived the dynamics of the discounted portfolio as

\[
\frac{d(D_t Z_t)}{D_t} = dZ - rZdt = dU - \Gamma dV - rU dt + r\Gamma V dt \quad (35)
\]
by defining
\[d\tilde{W}_1 = dW_1 + \phi_1 dt \quad \text{and} \quad \phi_1 = \frac{\mu - r}{\sqrt{v}} \quad (36) \]
where \(d\tilde{W}_1 \) is a Brownian motion under risk neutral measure \(\mathbb{Q} \) and \(\phi_1 \) is the market price of spot risk.

According to (32) and (36), the Heston SDE (21) can be written under risk neutral measure as
\[
\frac{dS_t}{S_t} = (\mu - q)dt + \sqrt{v_t}(d\tilde{W}_{1t} - \phi_1 dt) = (r - q)dt + \sqrt{v_t}d\tilde{W}_{1t} \\
dv_t = \epsilon(\vartheta - v_t)dt + \xi\sqrt{v_t}(d\tilde{W}_{2t} - \phi_2 dt) = (\epsilon(\vartheta - v_t) - \phi_2\xi\sqrt{v_t})dt + \xi\sqrt{v_t}d\tilde{W}_{2t} \quad (37)
\]

Based on the Consumption-based Capital Asset Pricing Model, Heston [23] assumes that the market price of volatility risk is proportional to volatility, that is
\[\phi_2 = c\sqrt{v} \quad \text{for a constant } c \quad \Rightarrow \quad \phi_2\xi\sqrt{v} = c\xi v = \lambda v \quad \text{where} \quad \lambda = c\xi \quad (38) \]
If we define
\[\kappa = \epsilon + \lambda \quad \text{and} \quad \theta = \frac{\epsilon \theta}{\kappa} \] (39)

then the Heston SDE under risk neutral measure \(\mathbb{Q} \) becomes

\[
\frac{dS_t}{S_t} = (r - q)dt + \sqrt{v_t}d\bar{W}_{1t}, \quad dv_t = \kappa(\theta - v_t)dt + \xi \sqrt{v_t}d\bar{W}_{2t}, \quad d\bar{W}_{1t}d\bar{W}_{2t} = \rho dt \] (40)

which retains the form of the equation under the transformation from the physical measure \(\mathbb{P} \) to the risk neutral measure \(\mathbb{Q} \).

Since the volatility is not a traded asset, the incompleteness of the market implies the risk neutral measure is not unique and depends on the value of the market price of volatility risk \(\phi_2 \). To estimate the model parameters, one may calibrate the Heston’s model using historical spot data, however the historical calibration does not allow for the estimation of \(\phi_2 \). Instead of using the spot data, one may also calibrate the model to the volatility smile (i.e. prices of vanilla options). In this case, the market price of volatility risk has already been implied in the market smile, and consequently embedded into the calibrated model parameters \(\kappa \) and \(\theta \) through (39).

2.1.2. Radon-Nikodym Derivative

The change of measure from \(\mathbb{P} \) to \(\mathbb{Q} \) is achieved through \textit{Radon-Nikodym derivative} via multi-dimensional Girsanov’s theorem [2]. To derive this derivative, we may write correlated \(n \)-dimensional Brownian motions as \(dW_t \) and \(d\bar{W}_t \) under physical measure \(\mathbb{P} \) and risk neutral measure \(\mathbb{Q} \) respectively. The matrix \(\rho \) denotes the instantaneous correlation, e.g. \(dW_t dW_t' = \rho dt \). It should be noted that \(dW_t \) and \(d\bar{W}_t \) possess the same correlation structure only if each is under its own probability measure, \(\mathbb{P} \) or \(\mathbb{Q} \), otherwise this property does not hold. From (32) and (36), we represent the market price of risk by correlation matrix an \(n \)-dimensional vector \(\phi \) such that

\[d\bar{W}_t = dW_t + \rho \phi_t dt \] (41)

The \textit{Radon-Nikodym derivative} is then given for \(t > 0 \) by

\[
\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp \left(-\frac{1}{2} \int_o^t \phi_u' \rho \phi_u du - \int_o^t \phi_u' dW_u \right) \] (42)
To check this, let’s assume under \mathbb{Q} we have a martingale process

$$X_t = X_o \exp \left(-\frac{1}{2} \int_0^t \sigma_u' \rho \sigma_u du + \int_0^t \sigma_u' d\tilde{W}_u \right)$$

(43)

where σ_u is a vector representing an adapted volatility process. According to (41) we have

$$X_t = X_o \exp \left(-\frac{1}{2} \int_0^t \sigma_u' \rho \sigma_u du + \int_0^t \sigma_u' \phi u du + \int_0^t \phi u' \phi u du \right) \text{ and}$$

$$X_t \frac{d\mathbb{Q}}{d\mathbb{P}} = X_o \exp \left(-\frac{1}{2} \int_0^t (\sigma_u - \phi u)' \rho (\sigma_u - \phi u) du + \int_0^t (\sigma_u - \phi u)' dW_u \right)$$

(44)

The $X_t \frac{d\mathbb{Q}}{d\mathbb{P}}$ is a martingale under \mathbb{P}. Hence we have the following equation

$$\tilde{\mathbb{E}}_o [X_t] = \mathbb{E}_o \left[X_t \frac{d\mathbb{Q}}{d\mathbb{P}} \right] = X_o$$

(45)

as expected.

2.1.3. Feller Condition

The variance process v_t in (40) is known as Cox-Ingersoll-Ross (CIR) process [3]. The distribution of future values of a CIR process can be computed in closed form

$$v_{t+\tau} = \frac{Y}{2c'}, \quad c = \frac{2\kappa}{\left(1 - e^{-\kappa \tau} \right) \xi^2}, \quad Y \sim \chi^2 \left(\frac{4\kappa \theta}{\xi^2}, 2cv_t e^{-\kappa \tau} \right)$$

(46)

Where Y is a non-central Chi-Squared distribution with $4\kappa \theta / \xi^2$ degrees of freedom and non-centrality parameter $2cv_t e^{-\kappa \tau}$. Integration of v_t process gives its conditional mean and variance as

$$\mathbb{E}[v_{t+\tau} | v_t] = \theta + (v_t - \theta) e^{-\kappa \tau}, \quad \mathbb{V}[v_{t+\tau} | v_t] = \frac{v_t \xi^2}{\kappa} (e^{-\kappa \tau} - e^{-2\kappa \tau}) + \frac{\theta \xi^2}{2\kappa} \left(1 - e^{-\kappa \tau} \right)^2$$

(47)

It can be seen that the long term mean for $v_{t+\tau}$ is θ, i.e. the mean reversion level.

Feller observed that the variance process v_t remains strictly positive with probability 1 for all times $t > o$, if $v_o > 0$ and the Feller condition [4] [5] is satisfied.
\[2\kappa\theta \geq \xi^2 \] (48)

If the condition is not satisfied, i.e. \(0 < 2\kappa\theta < \xi^2 \), the variance will visit zero recurrently but will not stay at zero, i.e. the zero boundary is strongly reflecting. In typical applications, the Feller condition is often violated due to the convexities of volatility smiles typically encountered in practice. Indeed the process \(v_t \) often has a strong affinity for the area around the origin. However, this is not a complete disaster, as the process \(v_t \) can only hit zero for an infinitesimally small amount of time.

2.2. Probability Distribution of Spot Returns

In this section, we present a derivation of the distribution of the spot returns in Heston’s model [6]. Let’s firstly make a change of variable to have a centered log-spot for \(t > o \)

\[
x_t = \ln \frac{S_t}{F_{o,t}} = \ln \frac{S_t}{S_o} \exp((r - q)(t - o)) = \ln \frac{S_t}{S_o} - (r - q)(t - o)
\] (49)

The Heston’s model (40) under \(\mathbb{Q} \) can then be converted by Ito’s lemma to the following form

\[
dx_t = -\frac{v_t}{2} dt + \sqrt{v_t} d\tilde{W}_{1,t}, \quad dv_t = \kappa(\theta - v_t)dt + \xi \sqrt{v_t} d\tilde{W}_{2,t}, \quad d\tilde{W}_{1,t} d\tilde{W}_{2,t} = \rho dt
\] (50)

This defines a 2-D stochastic process characterized by a joint transition probability density function \(p_{t,x,v|v_o} \), which is the probability having log-spot \(x_t \) and instantaneous variance \(v_t \) at time \(t \), conditional on \(v_o \) at time \(t = o \) (independent on \(x_o \) because \(x_o = 0 \) almost surely).

2.2.1. Derivation of the Transition Probability

We may rewrite (50) in terms of a 2-D Brownian motion \(d\tilde{W}_t \)

\[
dZ_t = A_t dt + C_t d\tilde{W}_t \quad \text{with}
\]

\[
Z_t = (x_t, v_t), \quad A_t = \begin{pmatrix} -\frac{v_t}{2} \\ \kappa(\theta - v_t) \end{pmatrix}, \quad C_t = \begin{pmatrix} \sqrt{v_t} & 0 \\ 0 & \xi \sqrt{v_t} \end{pmatrix}, \quad d\tilde{W}_t d\tilde{W}_t' = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} dt
\] (51)

The instantaneous covariance matrix of \(dZ_t \) becomes

\[
\Sigma_t = C_t \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} C_t = \begin{pmatrix} v_t & \rho \xi v_t \\ \rho \xi v_t & \xi^2 v_t \end{pmatrix}
\] (52)
The 2-D Markov process is characterized by the transition probability $p_{t,x,v|x_o,v_o}$. The Fokker-Planck equation that governs the time evolution of the transition probability is given by (10)

$$\frac{\partial p}{\partial t} - \frac{1}{2} \frac{\partial (vp)}{\partial x} \frac{\partial (\kappa - v)p}{\partial v} - \frac{1}{2} \frac{\partial^2 (vp)}{\partial x^2} - \rho \xi \frac{\partial^2 (vp)}{\partial x \partial v} - \frac{\xi^2}{2} \frac{\partial^2 (vp)}{\partial v^2} = 0$$

with initial condition $p_{t=0,x,v|v_o} = \delta_{x-x_o} \delta_{v-v_o}$, where δ is the Dirac delta function. The marginal probability density of the variance alone

$$\zeta_{t,v|v_o} = \int_{\mathbb{R}} p_{t,x,v|v_o} dx$$

satisfies the following Fokker-Planck equation obtained from (53) by integration over x

$$\frac{\partial \zeta}{\partial t} = \frac{\partial \kappa (v - \theta) \zeta}{\partial v} + \frac{\xi^2}{2} \frac{\partial^2 (v \zeta)}{\partial v^2}$$

Feller has shown that this equation is well defined on the interval $v \in [0, +\infty)$ as long as $\theta > 0$.

Equation (55) has a stationary solution, which is a Gamma distribution

$$\zeta^* = \frac{\alpha^a}{\Gamma(a)} v^{a-1} \exp \left(-\frac{av}{\theta} \right) \quad \text{and} \quad \alpha = \frac{2\kappa \theta}{\xi^2}$$

Since x appears in (53) only in the derivative operator, it is convenient to take the Fourier transform, such that

$$\hat{p}_{t,\omega,v|v_o} = \int_{\mathbb{R}} e^{-i\omega x} p_{t,x,v|v_o} dx \quad \text{and} \quad p_{t,x,v|v_o} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\omega x} \hat{p}_{t,\omega,v|v_o} d\omega$$

Inserting (57) into (53), we have

$$\frac{\partial \hat{p}}{\partial t} = \frac{\partial (\kappa (v - \theta) \hat{p})}{\partial v} + \frac{i\omega - \omega^2}{2} v \hat{p} + i\rho \xi \omega \frac{\partial (\kappa \hat{p})}{\partial v} + \frac{\xi^2}{2} \frac{\partial^2 (v \hat{p})}{\partial v^2}$$

Since (58) is linear in v and quadratic in $\frac{\partial}{\partial v}$, it can be simplified by taking the Laplace transform over v.
\[\tilde{p}_{t,\omega,\lambda|v_o} = \int_{\mathbb{R}^+} e^{-\lambda v} \hat{p}_{t,\omega,v|v_o} dv \]

(59)

The PDE satisfied by \(\tilde{p}_{t,\omega,\lambda|v_o} \) is of the first order

\[\frac{\partial \tilde{p}}{\partial t} = \left(\frac{\omega^2 - \xi^2 \lambda^2 - i\omega}{2} - \gamma \lambda \right) \frac{\partial \tilde{p}}{\partial \lambda} - \kappa \theta \tilde{p} \]

(60)

with initial condition \(\tilde{p}_{t=0,\omega,\lambda|v_o} = e^{-\lambda v_o} \), where \(\gamma = \kappa + i\rho \xi \omega \). The solution of this PDE is given by the method of characteristics

\[\tilde{p}_{t,\omega,\lambda|v_o} = \exp \left(-\tilde{\lambda}_o v_o - \kappa \theta \int_0^t \tilde{\lambda}_u du \right) \]

(61)

where the function \(\tilde{\lambda}_o \) is the solution of the characteristic (ordinary) differential equation

\[\frac{d\tilde{\lambda}_u}{du} = \gamma \tilde{\lambda}_u + \frac{\xi^2}{2} \tilde{\lambda}_u^2 - \frac{\omega^2 - i\omega}{2} \]

(62)

With a boundary condition \(\tilde{\lambda}_t = \lambda \) specified at time \(t \), the (62) is a Riccati equation with constant coefficients and its solution is

\[\tilde{\lambda}_u = \frac{2\Omega}{\xi^2} \frac{1}{\psi e^{\Omega(t-u)} - 1} - \frac{\gamma - \Omega}{\xi^2} \text{ with } \Omega = \sqrt{\gamma^2 + \xi^2(\omega^2 - i\omega)}, \quad \psi = 1 + \frac{2\Omega}{\xi^2 \lambda + \gamma - \Omega} \]

(63)

Plugging (63) into (61), we have

\[\tilde{p}_{t,\omega,\lambda|v_o} = \exp \left(-\tilde{\lambda}_o v_o + \frac{\kappa \theta (\gamma - \Omega)t}{\xi^2} - \frac{2\kappa \theta}{\xi^2} \ln \frac{\psi - e^{-\Omega t}}{\psi - 1} \right) \]

(64)

Normally we are interested only in distribution of log-spot \(x_t \) and do not care about variance \(v_t \). Therefore we derive the marginal probability density for \(x_t \) with \(\lambda = 0 \)

\[p_{t,x|v_o} = \int_{\mathbb{R}^+} p_{t,x,v|v_o} dv \]

\[= \frac{1}{2\pi} \int_{\mathbb{R}^+} \int_{\mathbb{R}} e^{i\omega x} \hat{p}_{t,\omega,v|v_o} d\omega dv = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\omega x} \int_{\mathbb{R}^+} \hat{p}_{t,\omega,v|v_o} dv d\omega = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\omega x} \tilde{p}_{t,\omega,0|v_o} d\omega \]

(65)

\[= \frac{1}{2\pi} \int_{\mathbb{R}} \exp \left(i\omega x - \frac{\omega^2 - i\omega}{\gamma + \Omega \coth \frac{\Omega t}{2}} v_o + \frac{\kappa \theta \gamma t}{\xi^2} - \frac{2\kappa \theta}{\xi^2} \ln \left(\cosh \frac{\Omega t}{2} + \frac{\gamma}{\Omega} \sinh \frac{\Omega t}{2} \right) \right) d\omega \]
where the last step comes from substitution of $\hat{p}_{t,\omega,0|\nu_0}$ in (61) into (57). The derived density function $p_{t,x|\nu_0}$ in (65) is still dependent on the unknown initial variance ν_0. To remove the dependence, the ν_0 is assumed to have the stationary distribution density as in (56). Thus the unconditional transition density function $p_t(x)$, is derived by averaging (65) over ν_0 with the weight ζ^*

$$p_{t,x} = \int_{\mathbb{R}^+} p_{t,x|\nu_0} \zeta^* d\nu_0$$

(66)

The integral over ν_0 is similar to the one of the Gamma function and can be taken explicitly. The final result is the Fourier integral

$$p_{t,x} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\omega x + F_{t,\omega}} d\omega, \quad F_{t,\omega} = \frac{\kappa \theta \gamma t}{\xi^2} - \frac{2\kappa \theta}{\xi^2} \ln \left(\cosh \frac{\Omega t}{2} + \frac{\Omega^2 - \gamma^2 + 2\kappa \gamma}{2\kappa \Omega} \sinh \frac{\Omega t}{2} \right)$$

(67)

It is easy to check that $p_{t,x}$ is real, because $\Re[F_{t,\omega}]$ is an even function of ω and $\Im[F_{t,\omega}]$ is an odd one. One can also check that $F_{t,\omega=0} = 0$, which implies that $p_{t,x}$ is correctly normalized at all times.

2.2.2. Moment Generating Function (in progress...)

We can integrate (50) over time from o to t to get

$$x_t = x_o - \frac{1}{2} \int_o^t v_u du + \int_o^t \sqrt{v_u} dW_{1,u}, \quad v_t = v_o + \kappa \theta \tau - \kappa \int_o^t v_u du + \xi \int_o^t \sqrt{v_u} dW_{2,u}$$

(68)

where $\tau = t - o$ and $d\bar{W}_{1,t} = \rho d\bar{W}_{2,t} + \eta d\bar{B}_t$ for $\eta = \sqrt{1 - \rho^2}$ and the Brownian motion $d\bar{B}_t$ is independent of $d\bar{W}_{2,t}$. Defining a function $h_{t,\alpha,\beta}$ such that

$$h_{t,\alpha,\beta} : \mathbb{E}_o[\exp(ax_t + \beta v_t)] = \mathbb{E}_o \left[\exp \left(ax_t + \left(\beta + \frac{\alpha p}{\xi} \right)v_t - \frac{\alpha p}{\xi}v_t \right) \right]$$

$$= \mathbb{E}_o \left[\exp \left(ax_o - \frac{\alpha p}{\xi}v_o + \kappa \theta \tau \right) v_t + \left(\beta + \frac{\alpha p}{\xi} \right) v_t + \left(\alpha \kappa \frac{\alpha}{\xi} - \frac{\alpha}{2} \right) \int_o^t v_u du + \alpha \eta \int_o^t \sqrt{v_u} d\bar{B}_u \right]$$

$$= \mathbb{E}_o \left[\exp \left(ax_o - \frac{\alpha p}{\xi}v_o + \kappa \theta \tau \right) v_t + \left(\beta + \frac{\alpha p}{\xi} \right) v_t + \left(\alpha \kappa \frac{\alpha}{\xi} - \frac{\alpha}{2} \right) \int_o^t v_u du + \alpha \eta \int_o^t \sqrt{v_u} d\bar{B}_u \right]$$

(69)

$$= e^{ax_o - \frac{\alpha p}{\xi}v_o + \kappa \theta \tau} \mathbb{E}_o \left[e^{\left(\beta + \frac{\alpha p}{\xi} \right)v_t + \left(\alpha \kappa \frac{\alpha}{\xi} - \frac{\alpha}{2} \right) \int_o^t v_u du} \mathbb{E}_o \left[e^{\alpha \eta \int_o^t \sqrt{v_u} d\bar{B}_u} \right] \right]$$

v_t is independent of \bar{B}_t
we can derive the differential of \(\exp(\alpha x_t + \beta v_t)\) as

\[
d(e^{\alpha x_t + \beta v_t}) = e^{\alpha x_t + \beta v_t} \left(\frac{\partial}{\partial t} \left(\alpha x_t + \beta v_t \right) + \frac{1}{2} \left(\frac{\alpha}{\xi} - \alpha + \frac{\alpha^2 \eta^2}{2} \right) \int_0^t v_u du \right)
\]

Integrating both sides gives

\[
e^{\alpha x_t + \beta v_t} = e^{\alpha x_0 + \beta v_0} + \left(-\frac{\alpha}{2} + \frac{\alpha^2}{2} + \frac{\beta^2}{2} \xi^2 + \alpha \beta \xi \rho - \beta \kappa \right) \int_0^t e^{\alpha x_u + \beta v_u} v_u du + \beta \kappa \int_0^t e^{\alpha x_u + \beta v_u} \sqrt{v_u} d\tilde{W}_{1,u} + \beta \xi \int_0^t e^{\alpha x_u + \beta v_u} \sqrt{v_u} d\tilde{W}_{2,u}
\]

Taking expectation, we find

\[
h_{t;\alpha,\beta} = e^{\alpha x_0 + \beta v_0} + \left(-\frac{\alpha}{2} + \frac{\alpha^2}{2} + \frac{\beta^2}{2} \xi^2 + \alpha \beta \xi \rho - \beta \kappa \right) \int_0^t \mathbb{E}_0 [v_u e^{\alpha x_u + \beta v_u}] du + \beta \kappa \int_0^t h_{u;\alpha,\beta} du
\]

\[
\Rightarrow h_{t;\alpha,\beta} = h_{0;\alpha,\beta} + \left(-\frac{\alpha}{2} + \frac{\alpha^2}{2} + \frac{\beta^2}{2} \xi^2 + \alpha \beta \xi \rho - \beta \kappa \right) \int_0^t \frac{\partial h_{u;\alpha,\beta}}{\partial \beta} du + \beta \kappa \int_0^t h_{u;\alpha,\beta} du
\]

Differentiating with respect to \(t\), we have the PDE

\[
\frac{\partial h_{t;\alpha,\beta}}{\partial t} - p_{\alpha,\beta} \frac{\partial h_{t;\alpha,\beta}}{\partial \beta} = \beta \kappa h_{t;\alpha,\beta}
\]

(To be continued, reference [7])

2.3. Analytical Solution of Vanilla Options

Vanilla option price in Heston model can be computed semi-analytically. Shortly we will see that the spot process in Heston model admits a closed-form characteristic function, which allows us to
express the option prices in terms of Fourier-inversion integrals that can be evaluated numerically (e.g. using Gaussian quadratures).

2.3.1. Fourier Transform

In textbooks, Fourier transform and its inverse (in n-dimensional case) are often depicted as

\begin{align}
\text{Forward Transform:} \quad & \hat{f}_\xi = \int_{\mathbb{R}^n} e^{-2\pi i \xi' x} f_x dx \quad \forall \ \omega \in \mathbb{R}^n \\
\text{Inverse Transform:} \quad & f_x = \int_{\mathbb{R}^n} e^{2\pi i \xi' x} \hat{f}_\xi d\xi \quad \forall \ x \in \mathbb{R}^n
\end{align}

(74)

where $f: \mathbb{R}^n \mapsto \mathbb{C}$ and $\hat{f}: \mathbb{R}^n \mapsto \mathbb{C}$ are integrable functions, and ξ is the ordinary frequency measured in hertz. This convention defines a unitary transformation on $L^2(\mathbb{R}^n)$ (i.e. the inner product is preserved before and after the transformation). The transform is equivalent to writing a periodic function f_x in Fourier series expansion within an interval of $T = 1/h$ for $h > 0$. In 1D, this reads

\begin{align}
& f_x = \sum_{k \in \mathbb{Z}} \frac{c_k}{T} e^{2\pi ikx} = h \sum_{k \in \mathbb{Z}} c_k e^{2\pi ihkx} \quad \text{and} \quad c_k = \int_{-T/2}^{T/2} f_x e^{-2\pi ikx} dx = \int_{-1/2h}^{1/2h} f_x e^{-2\pi ihkx} dx
\end{align}

(75)

Letting $\xi = h k$ and taking the limit $h \to 0^+$, we have

\begin{align}
& \lim_{h \to 0^+} c_k = \lim_{h \to 0^+} \int_{-1/2h}^{1/2h} f_x e^{-2\pi ihkx} dx = \int_{\mathbb{R}} f_x e^{-2\pi i\xi x} dx = \hat{f}_\xi \quad \text{and} \\
& f_x = \lim_{h \to 0^+} h \sum_{k \in \mathbb{Z}} c_k e^{2\pi ihkx} = \int_{\mathbb{R}} \hat{f}_\xi e^{2\pi i\xi x} d\xi
\end{align}

(76)

The sum over all the integers in the above equation can be regarded as an approximating Riemann sum for the integral [8].

There is no standard definition of a Fourier transform and its inverse. All the definitions are mutually equivalent. The one that we use for characteristic functions follows an angular frequency convention and appears less symmetric, which is defined as follows

\begin{align}
\text{Forward:} \quad & \hat{f}_\omega = \int_{\mathbb{R}^n} e^{i\omega' x} f_x dx \quad \forall \ \omega \in \mathbb{R}^n
\end{align}

(77)
Inverse: \(f_x = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\omega'x} \hat{f}_\omega d\omega \quad \forall \ x \in \mathbb{R}^n \)

where the \(\omega \) is the angular frequency measured in radians per second (e.g. \(\omega = 2\pi \xi \)) and the \(^{(')}\) denotes matrix transpose (and hence the \(\omega'x \) denotes a dot product of two column vectors \(\omega \) and \(x \)). The extra term \(1/(2\pi)^n \) is introduced due to the change of variable \(\omega = 2\pi \xi \) from ordinary frequency to angular frequency. In fact the normalization factors multiplying the forward and inverse transforms (here 1 and \(1/(2\pi)^n \), respectively) and the signs of the exponents are merely conventions and differ in treatments. The only requirements for these conventions are: 1) the forward and inverse transforms have opposite-sign exponents, and 2) the product of their normalization factors is \(1/(2\pi)^n \). In 1D, the (77) reduces to

Forward: \(\hat{f}_\omega = \int_{\mathbb{R}} e^{i\omega x} f_x dx \quad \forall \ \omega \in \mathbb{R} \)

Inverse: \(f_x = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega x} \hat{f}_\omega d\omega \quad \forall \ x \in \mathbb{R} \)

(78)

2.3.2. Levy’s Inversion Formula

Characteristic function \(\phi_\omega \) of any random variable \(X \) completely defines its probability distribution. On the real line the characteristic function is given by the following formula

\(\phi_\omega \equiv \mathbb{E}[e^{i\omega X}] = \int_{\mathbb{R}} e^{i\omega x} p_x dx = \int_{\Omega} e^{i\omega x} dP_x \quad \forall \ \omega \in \mathbb{R} \)

(79)

where the \(p_x \) denotes the probability density function (PDF) and the \(P_x = \int_{-\infty}^{x} p_y dy \) is the cumulative density function (CDF). The characteristic function is merely a Fourier transform of the PDF \(p_x \), likewise the \(p_x \) can be recovered from \(\phi_\omega \) through the inverse Fourier transform [9]

\(p_x = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega x} \phi_\omega d\omega \quad \forall \ \omega \in \mathbb{R} \)

(80)

Furthermore, we may compute the CDF \(P_x \) from \(\phi_\omega \) through Levy’s Inversion Formula [10] [11] [12] shown below

\(P_x = \frac{\phi_0}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^+} \frac{e^{i\omega x} \phi_{-\omega} - e^{-i\omega x} \phi_\omega}{i\omega} d\omega \)

(81)
where \(\phi_0 = 1 \) if \(\phi_\omega \) is a characteristic function of a random variable. Before proving the formula, we need to find Fourier transform of signum function \(S_x \), which is defined as

\[
S_x = \begin{cases}
-1 & \text{if } x < 0 \\
1 & \text{if } x > 0
\end{cases}
\] (82)

Its transform cannot be obtained via direct integration. However we can consider an odd two-sided exponential function \(S_x^h \) with \(h > 0 \)

\[
S_x^h = \begin{cases}
-e^{hx} & \text{if } x < 0 \\
e^{-hx} & \text{if } x > 0
\end{cases}
\] (83)

The \(\hat{S}_\omega^h \), i.e. the Fourier transform of \(S_x^h \), can then be derived as

\[
\hat{S}_\omega^h = \int_{\mathbb{R}} e^{i\omega x} S_x^h dx = -\int_{\mathbb{R}^-} e^{(i\omega + h)x} dx + \int_{\mathbb{R}^+} e^{(i\omega - h)x} dx
\]

\[
= -\frac{e^{(i\omega + h)x}}{i\omega + h}\bigg|_{x = -\infty}^{0} + \frac{e^{(i\omega - h)x}}{i\omega - h}\bigg|_{x = 0}^{\infty} = -\frac{1}{i\omega + h} - \frac{1}{i\omega - h} = \frac{2i\omega}{\omega^2 + h^2}
\] (84)

The parameter \(h \) controls how rapidly the exponential function decays. As we let \(h \to 0 \), the exponential function resembles more and more closely the signum function. This suggests that

\[
\hat{S}_\omega = \lim_{h \to 0} \hat{S}_\omega^h = \lim_{h \to 0} \frac{2i\omega}{\omega^2 + h^2} = -\frac{2}{i\omega}
\] (85)

Hence the inverse transform of the \(\hat{S}_\omega \) gives

\[
S_x = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega x} \hat{S}_\omega d\omega = -\frac{1}{\pi} \int_{\mathbb{R}^-} \frac{e^{-i\omega x}}{i\omega} d\omega = -\frac{1}{\pi} \int_{\mathbb{R}^-} \frac{\cos \omega x - i \sin \omega x}{i\omega} d\omega
\]

\[
= -\frac{1}{i\pi} \int_{\mathbb{R}^-} \frac{\cos \omega x}{\omega} d\omega + \frac{1}{\pi} \int_{\mathbb{R}^+} \frac{\sin \omega x}{\omega} d\omega = \frac{2}{\pi} \int_{\mathbb{R}^+} \frac{\sin \omega x}{\omega} d\omega
\] (86)

With the help of the signum function \(S_x \) in (86), the proof of (81) is given as follows

\[
\int_{\mathbb{R}^+} \frac{e^{i\omega x} \phi_- - e^{-i\omega x} \phi_+}{i\omega} d\omega = \int_{\mathbb{R}^+} \frac{e^{i\omega x} \int_{\mathbb{R}} e^{-i\omega y} p_y dy - e^{-i\omega x} \int_{\mathbb{R}} e^{i\omega y} p_y dy}{i\omega} d\omega
\]

\[
= \int_{\mathbb{R}^+} \int_{\mathbb{R}} \frac{e^{i\omega (x-y)} - e^{-i\omega (x-y)}}{i\omega} p_y dy d\omega
\] (87)
\[
\int \int e^{\imath \omega (x-y)} - e^{-\imath \omega (x-y)} \frac{d\omega}{i\omega} d\omega \, p_y dy \quad \text{(by Fubini’s theorem)}
\]
\[
= 2 \int \int \frac{\sin \omega (x-y)}{\omega} d\omega \, p_y dy \quad \text{(by } e^{\imath x} = \cos x + i \sin x)\]
\[
= \pi \int_s s_{x-y} p_y dy = \pi \left(- \int_{-\infty}^\infty p_y dy + \int_{-\infty}^x p_y dy \right) = \pi \left(- \int p_y dy + 2 \int_{-\infty}^x p_y dy \right)
\]
\[
= \pi (-\phi_0 + 2P_x)
\]

The **Levy Inversion Formula** can also be written in the following form

\[
P_x = \frac{\phi_0}{2} - \frac{1}{2\pi} \int_\mathbb{R} \frac{e^{-\imath \omega x} \phi_\omega}{i\omega} d\omega
\]

which can be proved as

\[
\int_\mathbb{R} \frac{e^{-\imath \omega x} \phi_\omega}{i\omega} d\omega = \int_\mathbb{R} \frac{e^{-\imath \omega x} \int_\mathbb{R} e^{\imath \omega y} p_y dy}{i\omega} d\omega = \int_\mathbb{R} \frac{e^{\imath \omega (y-x)}}{i\omega} p_y dy d\omega
\]
\[
= \int_\mathbb{R} \int_\mathbb{R} \frac{e^{\imath \omega (y-x)}}{i\omega} d\omega \, p_y dy = \pi \int_\mathbb{R} s_{x-y} p_y dy = \pi (-\phi_0 + 2P_x)
\]

where

\[
\int_\mathbb{R} \frac{e^{\imath \omega x}}{i\omega} d\omega = \int_\mathbb{R} \frac{e^{\imath \omega x}}{i\omega} d\omega + \int_\mathbb{R} \frac{e^{\imath \omega x}}{i\omega} d\omega = \int_\mathbb{R} \frac{e^{-\imath \omega x}}{-i\omega} d\omega + \int_\mathbb{R} \frac{e^{\imath \omega x}}{i\omega} d\omega
\]
\[
= \int_\mathbb{R} \frac{e^{\imath \omega x} - e^{-\imath \omega x}}{i\omega} d\omega = 2 \int \frac{\sin \omega x}{\omega} d\omega = \pi s_x
\]

Note that if \(p_x \) is real-valued function (i.e. probability density function), its Fourier transform \(\phi_\omega \)

is then even in its real part and odd in its imaginary part [13], we therefore have \(\phi_\omega = \overline{\phi_{-\omega}} \), the

inversion formula (88) becomes identical to (81), which can be further reduced to

\[
P_x = \frac{\phi_0}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^+} \frac{e^{\imath \omega x} \phi_{-\omega} - e^{-\imath \omega x} \phi_\omega}{i\omega} d\omega = \frac{\phi_0}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^+} \frac{e^{-\imath \omega x} \phi_{-\omega} - e^{-\imath \omega x} \phi_\omega}{i\omega} d\omega
\]
\[
= \frac{\phi_0}{2} - \frac{1}{\pi} \int_{\mathbb{R}^+} \Re \left[\frac{e^{-\imath \omega x} \phi_\omega}{i\omega} \right] d\omega = \frac{\phi_0}{2} - \frac{1}{\pi} \int_{\mathbb{R}^+} \Im \left[\frac{e^{-\imath \omega x} \phi_\omega}{\omega} \right] d\omega
\]

For \(P_x^c = \int_{-\infty}^\infty p_y dy \), the complementary of \(P_x \), we can use the simple relation \(P_x^c = \phi_0 - P_x \)
\[P_x = \frac{\phi_0}{2} - \frac{1}{2\pi} \int_{\mathbb{R}^+} \frac{e^{i\alpha x - i\omega} - e^{-i\alpha x + i\omega}}{i\omega} d\omega = \frac{\phi_0}{2} + \frac{1}{\pi} \int_{\mathbb{R}^+} \Re \left[\frac{e^{-i\alpha x + i\omega}}{i\omega} \right] d\omega \]

\[= \frac{\phi_0}{2} + \frac{1}{\pi} \int_{\mathbb{R}^+} \Re \left[\frac{e^{-i\alpha x + i\omega}}{\omega} \right] d\omega \]

2.3.3. Characteristic Function

In this section, we present a derivation of the closed form characteristic function of the spot in Heston model [14]. The definition of the Heston joint process in (50) will be used. Suppose there exists a payoff function \(g_{x_T,v_T} \) on \(x_T \) and \(v_T \), we may calculate risk neutral expectation of the payoff function as

\[h_t = \mathbb{E}_t [g_{x_T,v_T}] \] (92)

For example, the characteristic function of the joint distribution of \(x_T \) and \(v_T \) would be given by

\[\phi_{t;\alpha,\beta} = \mathbb{E}_t [g_{x_T,v_T;\alpha,\beta}] \quad \text{where} \quad g_{x_T,v_T;\alpha,\beta} = \exp(i \alpha x_T + i \beta v_T) \] (93)

The risk neutral expectation is actually a martingale because for \(0 < t < T \)

\[h_o = \mathbb{E}_o [g_{x_T,v_T}] = \mathbb{E}_o [\mathbb{E}_t [g_{x_T,v_T}]] = \mathbb{E}_o [h_t] \] (94)

Applying Ito’s lemma to \(h \) and forcing the drift to be zero (martingale property), we end up with a PDE

\[\frac{\partial h}{\partial t} - \frac{v}{2} \frac{\partial h}{\partial x} + \kappa (\theta - v) \frac{\partial h}{\partial v} + \nu \frac{\partial^2 h}{\partial x^2} + \frac{\xi^2 v}{2} \frac{\partial^2 h}{\partial v^2} + \xi \rho v \frac{\partial^2 h}{\partial x \partial v} = 0 \] (95)

To determine the solution of (95), the terminal condition \(h_T = \mathbb{E}_T [g_{x_T,v_T}] = g_{x_T,v_T} \) at time \(T \) must be specified. The terminal payoff function that we will consider has the form \(g_{x_T,v_T} = e^{\gamma + \delta v_T + i\alpha x_T} \). If \(\gamma = 0 \) and \(\delta = i\beta \), the resulting payoff function becomes \(g_{x_T,v_T;\alpha,\beta} \) in (93), corresponding to the characteristic function of the joint distribution.

Heston [23] guessed a solution that has the form

\[h_t = \mathbb{E}_t [g_{x_T,v_T}] = e^{C + D v_T + i\alpha x_T} \quad \text{where} \quad C = C_{\tau,\alpha,\gamma,\delta}, \quad D = D_{\tau,\alpha,\gamma,\delta}, \quad \tau = T - t \] (96)

Substituting the tentative solution (96) in (95) yields
\[
\frac{\partial C}{\partial t} + v \frac{\partial D}{\partial t} - \frac{i\alpha v}{2} + \kappa(\theta - v)D - \frac{\alpha^2 v}{2} + \frac{\xi^2 v}{2}D^2 + i\alpha D \xi \rho v = 0
\]

\[
\Rightarrow \frac{\partial C}{\partial t} + \kappa \theta D + \left(\frac{\partial D}{\partial t} + \frac{\xi^2}{2}D^2 - mD - \frac{\alpha(i + \alpha)}{2}\right)v = 0 \quad \text{where} \quad m = \kappa - \alpha \xi \rho i
\]

(97)

As the \(v \) is an independent variable, (97) is zero only if

\[
\frac{\partial C}{\partial t} + \kappa \theta D = 0 \quad \text{and} \quad \frac{\partial D}{\partial t} + \frac{\xi^2}{2}D^2 - mD - \frac{\alpha(i + \alpha)}{2} = 0
\]

(98)

Changing the variable \(t \) to \(\tau = T - t \), we have

\[
\frac{\partial C}{\partial \tau} - \kappa \theta D = 0 \quad \text{and} \quad \frac{\partial D}{\partial \tau} - \frac{\xi^2}{2}D^2 + mD + \frac{\alpha(i + \alpha)}{2} = 0
\]

(99)

The terminal condition for this system of equations is given by \(C_{\tau=0} = \gamma \) and \(D_{\tau=0} = \delta \). The ODE for \(D \) is a Riccati equation that only depends on \(D \). This Riccati equation can be turned into an ODE through the change of variable, \(Z = (D - \bar{D})^{-1} \), where \(\bar{D} \) is a particular solution to the second equation in (99)

\[
\frac{\partial Z}{\partial \tau} = -\frac{1}{(D - \bar{D})^2} \frac{\partial(D - \bar{D})}{\partial \tau} = -Z^2 \left(\frac{\xi^2}{2}D^2 - mD - \frac{\xi^2}{2}\bar{D}^2 + m\bar{D}\right)
\]

\[
= -Z \left(\frac{\xi^2}{2}(D + \bar{D}) - m\right) = -Z \left(\frac{\xi^2}{2}(D - \bar{D} + 2\bar{D})\right) + mZ = -(\xi^2 \bar{D} - m)Z - \frac{\xi^2}{2}
\]

(100)

\[
\Rightarrow \frac{\partial Z}{\partial \tau} + (\xi^2 \bar{D} - m)Z + \frac{\xi^2}{2} = 0 \quad \text{or}
\]

\[
\frac{\partial Z}{\partial \tau} + BZ + A = 0 \quad \text{where} \quad A = \frac{\xi^2}{2}, \quad B = \xi^2 \bar{D} - m
\]

The solution to (100) is given by

\[
Z = -\frac{A}{B} + (Z_0 + \frac{A}{B})e^{-B\tau} \quad \text{where} \quad Z_0 = \frac{1}{D_0 - \bar{D}} = \frac{1}{\delta - \bar{D}}
\]

(101)

\[
\Rightarrow D = \frac{1}{-\frac{A}{B} + (Z_0 + \frac{A}{B})e^{-B\tau}} + \bar{D}
\]

The particular solution \(\bar{D} \) can be as simple as a constant, which implies it would be the solution of the quadratic equation.
\[-\frac{\xi^2}{2}\ddot{D}^2 + m\dot{D} + \frac{\alpha(i + \alpha)}{2} = 0 \Rightarrow \dot{D} = \frac{m + d}{\xi^2} \quad \text{where} \quad d = \pm\sqrt{m^2 + \xi^2\alpha(i + \alpha)} \quad (102)\]

This particular solution for \(\dot{D}\) makes \(B = d\). The solution for \(D\) in (101) can then be derived

\[
D = \frac{1}{-\frac{\xi^2}{2d} + \left(\frac{-\xi^2}{m + d - \delta \xi^2} + \frac{\xi^2}{2d}\right)e^{-\dot{\tau}}} + \frac{m + d}{\xi^2}
\]

\[
\Rightarrow \xi^2D = -\frac{2d(m + d - \delta \xi^2)}{2e^{-\dot{\tau}}d + (m + d - \delta \xi^2)(1 - e^{-\dot{\tau}})} + m + d
\]

\[
= -\frac{2d(m + d - \delta \xi^2)}{(m + d - \delta \xi^2) - (m - d - \delta \xi^2)e^{-\dot{\tau}}} + m + d
\]

\[
= -\frac{2d}{1 - \hat{g}e^{-\dot{\tau}}} + m + d \quad \text{(by defining} \quad \hat{g} = \frac{m - d - \delta \xi^2}{m + d - \delta \xi^2}) \quad (103)
\]

\[
= \frac{(m + d)(1 - \hat{g}e^{-\dot{\tau}}) - 2d}{1 - \hat{g}e^{-\dot{\tau}}} = \frac{m - d - (m + d)\hat{g}e^{-\dot{\tau}}}{1 - \hat{g}e^{-\dot{\tau}}}
\]

\[
= (m + d)\frac{g - \hat{g}e^{-\dot{\tau}}}{1 - \hat{g}e^{-\dot{\tau}}} \quad \text{(by defining} \quad g = \frac{m - d}{m + d})
\]

\[
\Rightarrow D = \frac{m + d g - \hat{g}e^{-\dot{\tau}}}{\xi^2} \quad \frac{1 - \hat{g}e^{-\dot{\tau}}}
\]

The \(D\) can then be plugged into the ODE for \(C\) in (99)

\[
\frac{\partial C}{\partial \tau} - \kappa \theta \frac{m + d g - \hat{g}e^{-\dot{\tau}}}{\xi^2} \frac{1 - \hat{g}e^{-\dot{\tau}}}{1 - \hat{g}e^{-\dot{\tau}}} = 0 \quad \Rightarrow \quad C = \kappa \theta \frac{m + d}{\xi^2} \int \frac{g - \hat{g}e^{-\dot{\tau}}}{1 - \hat{g}e^{-\dot{\tau}}} d\tau + K_C \quad (104)
\]

where \(K_C\) is a constant to be fixed by terminal condition. The indefinite integral in (104) can be solved through change of variable \(u = e^{-\dot{\tau}}\) where \(\frac{\partial u}{\partial \tau} = -ud\).
\[
\int g \frac{\hat{g} e^{-d\tau}}{1 - \hat{g} e^{-d\tau}} \, d\tau = - \int \left(\frac{g - \hat{g} u}{1 - \hat{g} u} \right) u \, du = - \frac{1}{d} \int \left(\frac{g - \hat{g} u}{1 - \hat{g} u} \right) \, du
\]

\[
= - \frac{1}{d} \int \left(\frac{g - \hat{g} u - g(1 - \hat{g} u)}{1 - \hat{g} u} + g \right) \, du = - \frac{1}{d} \int \left(\frac{(g - 1)\hat{g}}{1 - \hat{g} u} + \frac{g}{u} \right) \, du
\]

\[
= \frac{g - 1}{d} \ln(1 - \hat{g} u) - \frac{g}{d} \ln u = \frac{g - 1}{d} \ln(1 - \hat{g} e^{-d\tau}) + g\tau
\]

which gives

\[
C = \kappa \theta \frac{m + d}{\xi^2} \left(\frac{g - 1}{d} \ln(1 - \hat{g} e^{-d\tau}) + g\tau \right) + K_c
\]

\[
= \frac{\kappa \theta}{\xi^2} (-2 \ln(1 - \hat{g}) + (m - d)\tau) + K_c
\]

We then fix \(K_c\) by \(C_0 = \gamma\)

\[
C_0 = -2 \frac{\kappa \theta}{\xi^2} \ln(1 - \hat{g}) + K_c = \gamma \implies K_c = 2 \frac{\kappa \theta}{\xi^2} \ln(1 - \hat{g}) + \gamma
\]

Therefore we have the solution for \(C\)

\[
C = \frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - \hat{g}}{1 - \hat{g} e^{-d\tau}} + (m - d)\tau \right) + \gamma
\]

Combining the solutions in (103) and (108), the \(h_t\) is of the following form

\[
h_t = \mathbb{E}_t[g_{x_T, v_T}] = \exp(C + D v_t + i\alpha x_t) \quad \text{where}
\]

\[
m = \kappa - \alpha \xi pi, \quad d = \pm \sqrt{m^2 + \xi^2 \alpha(i + \alpha)} , \quad g = \frac{m - d}{m + d}, \quad \hat{g} = \frac{m - d - \delta \xi^2}{m + d - \delta \xi^2}
\]

\[
C = \frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - \hat{g}}{1 - \hat{g} e^{-d\tau}} + (m - d)\tau \right) + \gamma, \quad D = \frac{m + d g - \hat{g} e^{-d\tau}}{\xi^2 \frac{1 - \hat{g} e^{-d\tau}}{1 - \hat{g} e^{-d\tau}}}
\]

The marginal characteristic function of \(x_T\) is given by \(\gamma = 0\) and \(\delta = 0\) where \(\hat{g} = g\)

\[
\phi_{x_T} = \exp \left(\frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - g}{1 - g e^{-d\tau}} + (m - d)\tau \right) + \frac{m - d}{\xi^2} \frac{1 - e^{-d\tau}}{1 - g e^{-d\tau}} v_t + i\alpha x_t \right)
\]

where \(m = \kappa - \alpha \xi p, \quad d = \pm \sqrt{m^2 + \xi^2 \alpha(i + \alpha)}, \quad g = \frac{m - d}{m + d}\)
2.3.4. Vanilla Option Prices

Once we know the analytical form of the characteristic function \(\phi^x_T \) of the centered log-spot \(x_T \), we are able to compute the vanilla option prices using inversion methods. Here, we are going to discuss two methods, which treat the option price function analogous to the cumulative density function or the probability density function, respectively. In addition, we also summarize the original Heston’s method [23].

2.3.4.1. Analogy to Cumulative Density Function

For \(t \leq T \), using a European call option as an example we change the variable to \(x_t \) as in (49)

\[
C_{T,K} = \mathbb{E}_t \left[\frac{M_t}{M_T} (S_T - K)^+ \right] = e^{-rT}F_{t,T} \mathbb{E}_t [(e^{x_T} - e^K)^+]
\]

where the cash account \(M_T = M_t \exp \left(\int_t^T r_u \, du \right) \) and the interest rate \(r \) and dividend yield \(q \) are assumed constant. We then define an option forward price in percentage of the underlying forward as a function of moneyness \(\mathcal{K} \) defined as the log strike over forward

\[
\mathcal{C}_\mathcal{K} = \frac{C_{T,K}}{e^{-rT}F_{t,T}} = \mathbb{E}_t [(e^{x_T} - e^K)^+] = \mathbb{E}_t [(e^{x_T} - e^K) 1\{x_T > \mathcal{K}\}]
\]

Given we know the characteristic function of the log-spot process \(x_T \), we can derive the Fourier transform of the call option, then use numerical inversion to obtain option prices directly [15]. Since \(C_{T,K} \in [0, e^{-rT}F_{0,T}] \), we have \(\mathcal{C}_\mathcal{K} \in [0,1] \), which can treated as a cumulative density function on \(\mathcal{K} \), the Fourier transform of the option price is then given by

\[
\chi_\mathcal{C} = \int_{\mathcal{K} \in \mathbb{R}} e^{i\omega \mathcal{K}} d\mathcal{C}_\mathcal{K} = e^{i\omega \mathcal{K}} \mathcal{C}_\mathcal{K} \bigg|_{\mathcal{K} = \infty}^{\infty} = \int_{\mathbb{R}} i\omega e^{i\omega \mathcal{K}} \mathcal{C}_\mathcal{K} d\mathcal{K} = -e^{-i\omega} - \int_{\mathbb{R}} i\omega e^{i\omega \mathcal{K}} \mathcal{C}_\mathcal{K} d\mathcal{K} \quad \text{(by } \mathcal{C}_\infty = 0 \text{ and } \mathcal{C}_{-\infty} = 1) \]

(113)
\[-e^{-i\omega \infty} - \int_{\mathbb{R}} i\omega e^{i\omega \mathcal{K}} \int_{\Omega} (e^{x} - e^{\mathcal{K}}) \mathbb{1}\{x > \mathcal{K}\} dP_{x}^{X_{T}} d\mathcal{K} \]

\[= -e^{-i\omega \infty} - \int_{\Omega} \int_{\mathbb{R}} i\omega (e^{i\omega \mathcal{K} + x} - e^{(i\omega + 1)\mathcal{K}}) \mathbb{1}\{x > \mathcal{K}\} d\mathcal{K} dP_{x}^{X_{T}} \quad \text{(by Fubini's theorem)} \]

\[= -e^{-i\omega \infty} - \int_{\Omega} \int_{-\infty}^{\infty} i\omega (e^{i\omega \mathcal{K} + x} - e^{(i\omega + 1)\mathcal{K}}) d\mathcal{K} dP_{x}^{X_{T}} \]

\[= -e^{-i\omega \infty} - \int_{\Omega} \left(e^{i\omega \mathcal{K} + x} - e^{-i\omega \infty + x} - \frac{i\omega e^{(i\omega + 1)\mathcal{K}}}{i\omega + 1} + \frac{i\omega e^{-(i\omega + 1)\infty}}{i\omega + 1} \right) dP_{x}^{X_{T}} \]

\[= -e^{-i\omega \infty} + e^{-i\omega \infty} \int_{\Omega} e^{x} dP_{x}^{X_{T}} - \int_{\Omega} \left(e^{(i\omega + 1)x} - \frac{i\omega e^{(i\omega + 1)x}}{i\omega + 1} \right) dP_{x} \]

\[= -\frac{1}{i\omega + 1} \int_{\Omega} e^{i(\omega - 1)x} dP_{x}^{X_{T}} \quad \text{(by \(\int_{\Omega} e^{x} dP_{x}^{X_{T}} = \frac{1}{F_{T}} \mathbb{E}_{0}[S_{T}] = 1 \))} \]

\[= -\frac{\phi_{\omega - i}^{X_{T}}}{i\omega + 1} \]

The \(\chi_{\omega}^{\mathcal{K}} \) is the characteristic function of the option forward price \(\mathcal{C}_{\mathcal{K}} \), which is treated just as a cumulative density function. The price is then given by the \textbf{Levy's Inversion Formula} (81) [16]

\[\mathcal{C}_{\mathcal{K}} = \frac{x_{0}}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} e^{i\omega \mathcal{K}} \chi_{\omega}^{\mathcal{K}} - e^{-i\omega \mathcal{K}} \chi_{\omega}^{\mathcal{K}} d\omega \]

\[= \frac{1}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \frac{e^{i\omega \mathcal{K}} \phi_{-\omega - i}^{X_{T}}}{i\omega - 1} + \frac{e^{-i\omega \mathcal{K}} \phi_{\omega - i}^{X_{T}}}{i\omega + 1} d\omega \quad \text{(by \(\chi_{\omega}^{\mathcal{K}} = -\phi_{-i} = 1 \))} \]

(114)

\[= \frac{1}{2} + \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \left(e^{i\omega \mathcal{K}} \frac{\phi_{-\omega - i}^{X_{T}}}{-\omega^{2} - i\omega} + e^{-i\omega \mathcal{K}} \frac{\phi_{\omega - i}^{X_{T}}}{-\omega^{2} + i\omega} \right) d\omega \]

\[= \frac{1}{2} - \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \left(e^{i\omega \mathcal{K}} \frac{\phi_{-\omega - i}^{X_{T}}}{\omega^{2} + i\omega} + e^{-i\omega \mathcal{K}} \frac{\phi_{\omega - i}^{X_{T}}}{\omega^{2} - i\omega} \right) d\omega \]

In the integrand of (114), the \(\phi_{u \omega - i}^{X_{T}} \) for \(u = \pm 1 \) can be derived from the characteristic function \(\phi_{\omega}^{X_{T}} \) in (110) and given as follows (note that \(x_{t} = 0 \))
\[
\phi_{\omega-i}^{x_T} = \exp\left(\frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - g}{1 - ge^{-d\tau}} + (m - d)\tau \right) + \frac{m - d}{\xi^2} \frac{1 - e^{-d\tau}}{1 - ge^{-d\tau} v_t}\right)
\]

(115)

with \(\tau = T - t, \quad m = \kappa - u\omega \rho_1 - \xi \rho, \quad d = \pm \sqrt{m^2 + \xi^2 \omega (\omega - u i)}, \quad g = \frac{m - d}{m + d} \)

The inversion formula in (114) involves evaluation of the \(\phi_{\omega-i}^{x_T} \) function twice, which is less efficient.

Since \(\mathcal{C}_\mathcal{K} \) is real-valued, we may use (90) to perform the inversion

\[
\mathcal{C}_\mathcal{K} = \frac{x_0}{2} - \frac{1}{\pi} \int_{\mathbb{R}^+} \Im \left[\frac{e^{-i\omega \mathcal{K}}}{\omega} \right] dx_0 + \frac{1}{\pi} \int_{\mathbb{R}^+} \Im \left[\frac{e^{-i\omega \mathcal{K}} \phi_{\omega-i}^{x_T}}{i\omega^2 + \omega} \right] d\omega
\]

(116)

where \(\phi_{\omega-i}^{x_T} \) is given in (115) with \(u = 1 \) and the integral can be estimated numerically by Gauss-Laguerre quadrature. Once we have \(\mathcal{C}_\mathcal{K} \) for log-moneyness, the call option price can be computed by (112)

\[
\mathcal{C}_{T,K} = \mathcal{C}_\mathcal{K} e^{-rT} S_t e^{\mu T} = \mathcal{C}_\mathcal{K} S_t e^{-qT}
\]

(117)

and the put option price by call-put parity

\[
\mathcal{C}_{T,K} - \mathcal{P}_{T,K} = e^{-rT} (F_{t,T} - K) \Rightarrow \mathcal{P}_{T,K} = \mathcal{C}_{T,K} - S_t e^{-qT} + e^{-rT} K
\]

(118)

2.3.4.2. Analogy to Probability Density Function

In this section, we treat \(\mathcal{C}_\mathcal{K} \) analogous to a probability density [17] [18] and define in terms of generalized Fourier transform with \(z = z_r - iz_t, \quad z_r \in \mathbb{R}, \quad z_t \in \mathcal{D} \subseteq \mathbb{R}^+ \)

\[
\chi_z^\mathcal{K} = \int_{\mathbb{R}} e^{iz\mathcal{K}} \mathcal{C}_\mathcal{K} d\mathcal{K} = \int_{\mathbb{R}} e^{iz\mathcal{K}} \mathbb{E}_t [(e^{x_T} - e^{\mathcal{K}}) \mathbb{I}\{x_T > \mathcal{K}\}] d\mathcal{K}
\]

\[
= \mathbb{E}_t \left[\int_{\mathbb{R}} e^{iz\mathcal{K}} (e^{x_T} - e^{\mathcal{K}}) \mathbb{I}\{x_T > \mathcal{K}\} d\mathcal{K} \right] = \mathbb{E}_t \left[\int_{-\infty}^{x_T} e^{iz\mathcal{K}} (e^{x_T} - e^{\mathcal{K}}) d\mathcal{K} \right]
\]

(119)

\[
= \mathbb{E}_t \left[\frac{e^{izx_T} + izx_T}{iz} - \frac{e^{(iz+1)x_T}}{iz + 1} \right]_{\mathcal{K} = -\infty}^{x_T} = \mathbb{E}_t \left[\frac{e^{(iz+1)x_T}}{iz - z^2} \right] (\text{by } \lim_{\mathcal{K} \to -\infty} e^{iz\mathcal{K}} = 0)
\]

\[
= \mathbb{E}_t \left[\frac{e^{iz(x-T)}}{iz - z^2} \right] = \phi_{z-i}^{x_T} \frac{iz}{iz - z^2}
\]
For some return distributions, the return transform $\phi_{z-t}^{x_T}$ is well-defined only when z_t is in a subset of the real line. We use $\mathcal{D} \subseteq \mathbb{R}^+$ to denote the subset that both guarantees the convergence of $e^{iz\mathcal{K}}$ and $e^{i(z_t-i)\mathcal{K}}$ as $\mathcal{K} \to -\infty$, and assures the finiteness of the transform $\phi_{z-t}^{x_T}$.

The option forward price $C_{\mathcal{K}}$ is then given by the inverse Fourier transform

$$
C_{\mathcal{K}} = \frac{1}{2\pi} \int_{-\infty-i\mathcal{K}}^{\infty-i\mathcal{K}} e^{-iz\mathcal{K}} \chi_z^p dz = \frac{1}{2\pi} \int_{-\infty-i\mathcal{K}}^{\infty-i\mathcal{K}} e^{-iz\mathcal{K}} \chi_z^p d(z_r - i\mathcal{K}) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iz\mathcal{K}} \chi_z^p dz_r
$$

$$
\phi_{z-t}^{x_T} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iz\mathcal{K}} \frac{\phi_{z-t}^{x_T}}{iz - z^2} dz_r = \frac{1}{\pi} \int_{\mathbb{R}+} \Re\left[e^{-iz\mathcal{K}} \frac{\phi_{z-t}^{x_T}}{iz - z^2} \right] dz_r
$$

The last equality holds because $C_{\mathcal{K}}$ is real, which implies that the function χ_z^p is odd in its imaginary part and even in its real part. The functional form of $\phi_{z-t}^{x_T}$ can be derived again from (110) in a similar way

$$
\phi_{z-t}^{x_T} = \exp\left(\frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - g}{1 - ge^{-d\tau}} + (m - d)\tau \right) + \frac{m - d}{\xi^2} \frac{1 - e^{-d\tau}}{1 - ge^{-d\tau}} \psi_t \right)
$$

$$
m = \kappa - (z_t + 1)\xi - z_r\xi \rho, \quad d = \pm \sqrt{m^2 + \xi^2(z_r - i(z_t + 1))(z_r - i\mathcal{K})}, \quad g = \frac{m - d}{m + d}
$$

2.3.4.3. Heston’s Original Solution

At time t, the price of a European call on a stock (assuming non-dividend-bearing to qualify as a numeraire) with spot S_t and strike K is given by the no-arbitrage formula

$$
C_{t,K,S_t} = \mathbb{E}_t \left[\frac{M_t}{M_T} (S_T - K)^+ \right] = \mathbb{E}_t \left[\frac{M_t}{M_T} S_T \mathbb{1}_{\{S_T > K\}} \right] - K \mathbb{E}_t \left[\frac{M_t}{M_T} \mathbb{1}_{\{S_T > K\}} \right]
$$

$$
= \mathbb{E}_t \left[\frac{S_t}{S_T} S_T \mathbb{1}_{\{S_T > K\}} \right] - K \mathbb{E}_t^T \left[\frac{B_{t,T}}{B_{T,T}} \mathbb{1}_{\{S_T > K\}} \right] \quad \text{change numeraire } M_t \to S_t, \quad M_t \to B_{t,T}
$$

$$
= S_t \mathbb{E}_t^T \mathbb{1}_{\{S_T > K\}} - KB_{t,T} \mathbb{E}_t^T \mathbb{1}_{\{S_T > K\}}
$$

$$
= S_t \mathbb{P}_t^T \mathbb{1}_{\{S_T > K\}} - KB_{t,T} \mathbb{P}_t^T \mathbb{1}_{\{S_T > K\}}
$$

where $\mathbb{P}_t^T \mathbb{1}_{\{S_T > K\}}$ and $\mathbb{P}_t^T \mathbb{1}_{\{S_T > K\}}$ are both conditional probabilities of spot finishing in-the-money at maturity. The $\mathbb{P}_t^T \mathbb{1}_{\{S_T > K\}}$ is computed under the measure associated with the stock as the numeraire,
whereas the $\mathbb{P}_t^T [S_T > K]$ is computed under T-forward measure associated with zero coupon bond $B_{t,T}$ as the numeraire [19]. In Black-Scholes model
\[
C_{T,K,S_t}^{BS} = S_t \mathcal{N}(d_+) - K B_{t,T} \mathcal{N}(d_-), \quad d_\pm = \frac{\ln \frac{S_t}{K} + \left(r \pm \frac{\sigma^2}{2} \right) \tau}{\sigma \sqrt{\tau}}
\] (123)
the $\mathbb{P}_t^S [S_T > K]$ and $\mathbb{P}_t^T [S_T > K]$ are computed as $\mathcal{N}(d_+)$ and $\mathcal{N}(d_-)$ respectively. Since the drift adjustment due to change of numeraire is
\[
dW_t^\mathbb{Q} = d\tilde{W}_t - \sigma_N dt
\] (124)
where \mathbb{N} denotes the measure associated with numeraire N and \mathbb{Q} the risk neutral measure. The stock process under the measure with itself as the numeraire is given by
\[
\frac{dS_t}{S_t} = r dt + \sigma d\tilde{W}_t = (r + \sigma^2) dt + \sigma dW_t^S
\] (125)
The total drift adjustment $\sigma^2 \tau$ for period $\tau = T - t$ is then normalized by the total volatility $\sigma \sqrt{\tau}$ of the stock to give a shift term $\sigma \sqrt{\tau}$ as the difference between d_+ and d_- in the classic Black-Scholes formula.

Suppose we use the definition in (111) for a call option, the two conditional probabilities can be expressed as
\[
C_{T,K} = e^{-rT} F_{t,T} \mathbb{E}_t^\mathbb{Q} [(e^{x_T} - e^K)^+] = e^{-rT} F_{t,T} \left(\mathbb{E}_t^\mathbb{Q} [e^{x_T} \mathbb{1} \{x_T > \mathcal{K}\}] - e^K \mathbb{E}_t^\mathbb{Q} [\mathbb{1} \{x_T > \mathcal{K}\}] \right)
\]
\[
= e^{-rT} F_{t,T} P_\mathcal{K}^+ - e^{-rT} K P_\mathcal{K}^- \quad \text{with} \quad P_\mathcal{K}^+ = \mathbb{E}_t^\mathbb{Q} [e^{x_T} \mathbb{1} \{x_T > \mathcal{K}\}], \quad P_\mathcal{K}^- = \mathbb{E}_t^\mathbb{Q} [\mathbb{1} \{x_T > \mathcal{K}\}] \quad (126)
\]
Because in Heston model the $P_\mathcal{K}^+$ and $P_\mathcal{K}^-$ are not available in closed form, Heston [23] firstly derived the characteristic functions (i.e. the Fourier transforms) of $P_\mathcal{K}^+$ and $P_\mathcal{K}^-$ by solving the PDE (95) for each of them, and then found inverse of the two characteristic functions to obtain the option price. Since we have already derived the characteristic function of x_T as in (110), we can easily derive those for $P_\mathcal{K}^+$ and $P_\mathcal{K}^-$. For example, the $P_\mathcal{K}^+$ can be treated as a CDF and then the characteristic function of $P_\mathcal{K}^+$ becomes
\[
\chi_\omega^+ = \int_{\mathcal{K} \in \mathbb{R}} e^{i\omega \mathcal{K}} dP_\mathcal{K}^+ = e^{i\omega \mathcal{K}} P_\mathcal{K}^+ |_{\mathcal{K} = -\infty} - \int_{\mathbb{R}} i\omega e^{i\omega \mathcal{K}} P_\mathcal{K}^+ d\mathcal{K}
\] (127)
\[
- e^{-i\omega \infty} - \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} d\mathcal{K} = P^+_{\infty} = 0 \quad \text{and} \quad P^-_{\infty} = \mathbb{E}_t[e^{x_T}] = 1
\]

\[
- e^{-i\omega \infty} - \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} \int_{\Omega} e^x \mathbb{I}\{x > \mathcal{K}\} dP^x_T d\mathcal{K} = P^+_{\infty} = 0
\]

\[
- e^{-i\omega \infty} - \int_{\Omega} \int_{-\infty}^{\mathcal{K}} i \omega e^{i\omega \mathcal{K} + x} d\mathcal{K} dP^x_T = - e^{-i\omega \infty} - \int_{\Omega} e^{i\omega \mathcal{K} + x} \bigg|_{\mathcal{K} = -\infty} dP^x_T
\]

\[
- e^{-i\omega \infty} - \int_{\Omega} \left[e^{(i(\omega - i)x)} - e^{-i\omega \infty + x} \right] dP^x_T
\]

\[
- e^{-i\omega \infty} + e^{-i\omega \infty} \int_{\Omega} e^x dP^x_T - \int_{\Omega} e^{i(\omega - i)x} dP_x
\]

\[
- \int_{\Omega} e^{i(\omega - i)x} dP^x_T \quad \left(\text{by} \int_{\Omega} e^x dP^x_T = \mathbb{E}_t[e^{x_T}] = 1 \right)
\]

\[
- \phi^x_T
\]

Similarly, the characteristic function of \(P^-_{\mathcal{K}} \) is given by

\[
\chi^- = \int_{\mathcal{K} \in \mathbb{R}} e^{i\omega \mathcal{K}} dP^-_{\mathcal{K}} = e^{i\omega \mathcal{K}} \bigg|_{\mathcal{K} = -\infty} - \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} d\mathcal{K}
\]

\[
- e^{-i\omega \infty} - \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} d\mathcal{K} = P^-_{\infty} = 1
\]

\[
- e^{-i\omega \infty} - \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} \int_{\Omega} \mathbb{I}\{x > \mathcal{K}\} dP^x_T d\mathcal{K} = - e^{-i\omega \infty} - \int_{\Omega} \int_{\mathbb{R}} i \omega e^{i\omega \mathcal{K}} \mathbb{I}\{x > \mathcal{K}\} d\mathcal{K} dP^x_T
\]

\[
- e^{-i\omega \infty} - \int_{\Omega} \int_{-\infty}^{x} i \omega e^{i\omega \mathcal{K}} d\mathcal{K} dP^x_T = - e^{-i\omega \infty} - \int_{\Omega} \left[e^{i\omega \mathcal{K}} \bigg|_{\mathcal{K} = -\infty} dP^x_T
\]

\[
- e^{-i\omega \infty} - \int_{\Omega} \left(e^{i\omega x} - e^{-i\omega \infty} \right) dP^x_T = - e^{-i\omega \infty} + e^{-i\omega \infty} \int_{\Omega} dP^x_T - \int_{\Omega} e^{i\omega x} dP_x
\]

\[
- \phi^-_{\omega}
\]
The P_+^ψ and P_-^ψ are then obtained through the inverse of χ_+^ω and χ_-^ω respectively. Given that $\chi_0^+ = \chi_0^- = 1$, the Heston’s vanilla option price formula can be derived from ϕ_ω^{xT} in (110) and the inverse formula in (90) directly. Here we summarize the solution as follows

$$\text{HestonVanilla}(\kappa, \theta, \xi, \rho, r, q, \nu_t, S_t, K, \tau, \eta) = e^{-\eta q \tau} S_t (P_+ - \eta) - e^{-\eta r \tau} K (P_- - \eta)$$

with $\eta = \begin{cases} 0 & \text{for call} \\ 1 & \text{for put} \end{cases}$, $m = \begin{cases} \kappa - \rho \xi i - \xi \rho & \text{for } P_+ \\ \kappa - \rho \xi i & \text{for } P_- \end{cases}$, $u = \begin{cases} 1 & \text{for } P_+ \\ -1 & \text{for } P_- \end{cases}$

$$g = \frac{m - d}{m + d}, \quad d = \pm \sqrt{m^2 + \xi^2 \omega (\omega - ui)}, \quad C = \frac{\kappa \theta}{\xi^2} \left(2 \ln \frac{1 - g}{1 - ge^{-d \tau}} + (m - d) \tau \right)$$

$$D = \frac{m - d}{\xi^2} \frac{1 - e^{-d \tau}}{1 - ge^{-d \tau}}, \quad \chi_\omega = \exp \left(C + D \nu_t + i \omega \ln S_t e^{(r - q) \tau} \right)$$

$$P = \frac{1}{2} + \frac{1}{\pi} \int_{\mathbb{R}^+} \left[\frac{e^{-i \omega \ln K} \chi_\omega}{\omega} \right] d\omega$$

where the η denotes the option type with $\eta = 1$ for calls and $\eta = -1$ for puts. In Heston’s original formula [23], the negative solution of d is used, which makes the calculation of the complex logarithm prone to numerical instabilities. This is because taking the principal value of the logarithm causes C to jump discontinuously each time the imaginary part of the argument of the logarithm crosses the negative real axis (i.e. discontinuity due to branch cut of complex numbers), especially for long maturities.

Albrecher et al. [20] presents an extensive study proving that both solutions are completely equivalent from a theoretical point of view, it is also mentioned that rather than using the negative solution of d, the positive d guarantees numerical stability of the resulting formula under a full dimensional and unrestricted parameter space.

2.4. Piecewise Time Dependent Heston Model

The time-dependent Heston model we present here was proposed by Elices [21] in 2008. The model relies on the characteristic function of the two dimensional Markov process, which we have derived in (109). It bootstraps a series of piecewise constant Heston parameters starting from the earliest
maturity, each parameter set for a period of time, which allows the model to fit to a term structure of the implied volatility surfaces.

Consider a Markov n-dimensional stochastic process Y (i.e. $Y = \left(\frac{x_t}{y_t}\right)$ in Heston model), we define $p_{\gamma_t}^{s,t}$ the transition probability density function for having $Y = y_t$ at time t conditional on $Y = \gamma_s$ at time s where $0 \leq s \leq t \leq T$. Its characteristic function $\phi_{\omega}^{s,t}$ is the multi-dimensional Fourier transform of the transition density $p_{\gamma_t}^{s,t}$ such that

$$\phi_{\omega}^{s,t} = \int_{\mathbb{R}^n} e^{i\omega y_t} p_{\gamma_t}^{s,t} dy_t = \int_{\mathbb{R}^n} e^{i\omega y_t} \int_{\mathbb{R}^n} p_{\gamma_t}^{s,t} p_{\gamma_s}^{s,t} dy_s dy_t = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i\omega y_t} p_{\gamma_t}^{s,t} p_{\gamma_s}^{s,t} dy_s dy_t$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i\omega y_t} p_{\gamma_t}^{s,t} dy_t p_{\gamma_s}^{s,t} dy_s = \int_{\mathbb{R}^n} \phi_{\omega}^{s,t} p_{\gamma_s}^{s,t} dy_s$$

(130)

Consider a family of exponential characteristic functions with exponent linear in the state y_s at time s

$$\phi_{\omega}^{s,t} = \exp(C^{s,t}(\omega) + D^{s,t}(\omega)'y_s)$$

(131)

we have

$$\phi_{\omega}^{s,t} = \int_{\mathbb{R}^n} \exp(C^{s,t}(\omega) + D^{s,t}(\omega)'y_s) p_{\gamma_s}^{s,t} dy_s = \exp(C^{s,t}(\omega)) \int_{\mathbb{R}^n} \exp(D^{s,t}(\omega)'y_s) p_{\gamma_s}^{s,t} dy_s$$

$$= \exp(C^{s,t}(\omega)) \int_{\mathbb{R}^n} \exp\left[i(-iD^{s,t}(\omega))'y_s \right] p_{\gamma_s}^{s,t} dy_s = \exp(C^{s,t}(\omega)) \phi_{\omega}^{s,t}(-iD^{s,t}(\omega))$$

$$= \exp(C^{s,t}(\omega) + C^{s,t}(-iD^{s,t}(\omega)) + D^{s,t}(-iD^{s,t}(\omega))'y_s)$$

(132)

Identifying terms between the (131) for $s = 0$ and the (132), we find that

$$C^{s,t}(\omega) = C^{s,t}(\omega) + C^{s,t}(-iD^{s,t}(\omega)) \quad \text{and} \quad D^{s,t}(\omega) = D^{s,t}(-iD^{s,t}(\omega))$$

(133)

Formula (133) gives a recursive definition of $C^{s,t}(\omega)$ and $D^{s,t}(\omega)$, which can be used to bootstrap the Heston model parameters for each time period starting from the earliest maturity. For illustrative purpose, the first 3 periods are presented below.
<table>
<thead>
<tr>
<th>Period</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_0 \to t_1$</td>
<td>$C^{0.1}(\omega)$</td>
<td>$D^{0.1}(\omega)$</td>
</tr>
<tr>
<td>$t_1 \to t_2$</td>
<td>$C^{1.2}(\omega) + C^{0.1}(-iD^{1.2}(\omega))$</td>
<td>$D^{0.1}(-iD^{1.2}(\omega))$</td>
</tr>
<tr>
<td>$t_2 \to t_3$</td>
<td>$C^{2.3}(\omega) + C^{1.2}(-iD^{2.3}(\omega)) + C^{0.1}(-iD^{1.2}(-iD^{2.3}(\omega)))$</td>
<td>$D^{0.1}(-iD^{1.2}(-iD^{2.3}(\omega)))$</td>
</tr>
</tbody>
</table>
3. **HESTON MODEL: PDE BY FINITE ELEMENT METHOD**

In 1973, Black and Scholes introduced a simple formula [22] to price European-style options under a few strong assumptions. It was the first successful attempt to provide an arbitrage free valuation of financial derivatives. However due to limitations, the model fails to capture some critical features observed in financial markets, such as heavy tails of return, skewness and smile in implied volatility, clustering and autocorrelation in volatility, etc. Many approaches have been proposed to address these issues. One of such approaches is to assume the volatility process is stochastic and correlated with spot process. Heston [23] proposed a stochastic volatility model in 1993. It extends the Black-Scholes model and includes it as a special case. One major advantage of the Heston model is that it can be solved in closed-form for vanilla options. For exotic products, the prices are usually obtained numerically. Traditionally, the PDE’s that arise from option pricing are generally solved by finite difference method (FDM). FDM is straightforward to implement, but it also imposes many strong constraints. For example, it may demand sufficiently smooth terminal and boundary conditions, rectangular domains, etc. To relax these constraints, finite element methods (FEM) appear to be promising candidates for solving such PDE’s. Many studies have been focused on this topic. Topper [24] provides an excellent introduction to the FEM in the context of financial engineering applications. Previous work by Winkler et al. [25] illustrates an application of FEM to valuation of vanilla option in Heston stochastic volatility model. Achdou and Tchou [26] Propose a finite element analysis for Black-Scholes equation with stochastic volatility process. Miglio and Sgarra [27] discuss an application of finite element method for option pricing in a stochastic volatility model with jumps, known as the Bates model.

In this chapter, we will present an implementation of finite element method in the Heston model for pricing exotic options. Our journey starts with the PDE arising from the Heston model.

3.1. **The Partial Differential Equation**
Let $U(t, v_t, S_t) = \frac{1}{D_t} \mathbb{E}_t[D_t U(T, v_T, S_T)]$ be the price of a contingent payment $U(T, v_T, S_T)$ that occur at maturity T. Assuming deterministic interest rate, we have the dynamics of $D_t U(t, v_t, S_t)$ in Heston model (40) under risk neutral measure \mathbb{Q}, that is

$$
\frac{1}{D_t} d(D_t U(t, v_t, S_t)) = dU - rU dt
$$

$$
= \frac{\partial U}{\partial t} dt + \frac{\partial U}{\partial S} dS + \frac{1}{2} \frac{\partial^2 U}{\partial S^2} dS^2 + \frac{\partial U}{\partial v} dv + \frac{1}{2} \frac{\partial^2 U}{\partial v^2} d\nu d\nu + \frac{\partial^2 U}{\partial v \partial S} d\nu dS - rU dt
$$

$$
= \frac{\partial U}{\partial t} dt + \frac{\partial U}{\partial S} (r - q) S dt + \frac{\partial U}{\partial S} S \sqrt{\nu} \sigma d\tilde{W}_1 + \frac{\nu S^2}{2} \frac{\partial^2 U}{\partial S^2} dt + \frac{\partial U}{\partial v} \kappa (\theta - v) dt + \frac{\partial U}{\partial v} \xi \sqrt{\nu} d\tilde{W}_2
$$

$$
+ \frac{\nu \xi^2}{2} \frac{\partial^2 U}{\partial v^2} dt + S \nu \xi \rho \frac{\partial^2 U}{\partial v \partial S} dt - rU dt
$$

Since the $D_t U(t, v_t, S_t)$ is a martingale under \mathbb{Q}, the dt-term in (134) must vanish, which defines a diffusion-convection-reaction PDE that a derivative price U must follow

$$
\frac{\partial U}{\partial t} + \frac{\nu \xi^2}{2} \frac{\partial^2 U}{\partial v^2} + S \nu \xi \rho \frac{\partial^2 U}{\partial v \partial S} + \frac{\nu S^2}{2} \frac{\partial^2 U}{\partial S^2} + \kappa (\theta - v) \frac{\partial U}{\partial v} + (r - q) S \frac{\partial U}{\partial S} - rU = 0
$$

(135)

The (135) is elliptical as we always have $\rho^2 \leq 1$. By change of variable $y_t = \ln S_t$, PDE (135) can be further transformed into

$$
\frac{\partial w}{\partial t} + \frac{\xi^2 v}{2} \frac{\partial^2 w}{\partial v^2} + \rho \xi v \frac{\partial^2 w}{\partial v \partial y} + \frac{\nu}{2} \frac{\partial^2 w}{\partial y^2} + \kappa (\theta - v) \frac{\partial w}{\partial y} + (r - q - \nu) \frac{\partial w}{\partial y} - rw = 0
$$

(136)

where $w(t, v_t, y_t) = U(t, v_t, S_t)$. The PDE (136) is actually identical to our previously derived (95) knowing that

$$
w(t, v_t, y_t) = e^{rt} h(t, v_t, x_t), \quad x_t = \ln \frac{S_t}{S_0} - (r - q) t
$$

(137)

This can be shown by using the chain rule to derive partial derivatives after change of variables

$$
\frac{\partial w}{\partial t} = \left(\frac{\partial}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial}{\partial x} \right) (e^{rt} h) = e^{rt} \left(r h + \frac{\partial h}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial h}{\partial x} \right) = e^{rt} \left(r h + \frac{\partial h}{\partial t} - (r - q) \frac{\partial h}{\partial x} \right)
$$

$$
\frac{\partial w}{\partial v} = e^{rt} \frac{\partial h}{\partial v}, \quad \frac{\partial^2 w}{\partial v^2} = e^{rt} \frac{\partial^2 h}{\partial v^2}, \quad \frac{\partial^2 w}{\partial v \partial y} = \frac{\partial}{\partial v} \left(\frac{\partial (e^{rt} h)}{\partial x} \frac{\partial x}{\partial y} \right) = e^{rt} \frac{\partial^2 h}{\partial v \partial y}
$$

(138)
\[
\frac{\partial w}{\partial y} = \frac{\partial (e^{rt}h)}{\partial x} = e^{rt} \frac{\partial h}{\partial x}, \quad \frac{\partial^2 w}{\partial y^2} = e^{rt} \frac{\partial}{\partial y} \left(\frac{\partial h}{\partial t} + \frac{\partial h}{\partial x} \right) = e^{rt} \frac{\partial^2 h}{\partial x^2}
\]

For simplicity, the PDE (136) can be further expressed in terms of the gradient and divergence operator

\[
(\partial_t + \nabla \cdot A \nabla - b \cdot \nabla - r) w = 0, \quad A = \frac{v}{2} \begin{pmatrix} \xi^2 & \rho \xi \\ \rho \xi & 1 \end{pmatrix}, \quad b = \begin{pmatrix} \frac{\xi^2}{2} - \kappa(\theta - v) \\ \frac{v + \rho \xi}{2} - (r - q) \end{pmatrix}
\]

(139)

where \(\partial_t = \partial / \partial t \), the gradient operator \(\nabla = \left(\frac{\partial}{\partial y} \right) \), and the divergence operator \(\nabla \cdot = \left(\frac{\partial}{\partial y} \right) \). Note that we have the following identities

\[
\nabla \cdot A \nabla = \left(\frac{\partial}{\partial y} \right)^T \begin{pmatrix} \frac{\xi^2}{2} & \rho \xi \\ \rho \xi & 1 \end{pmatrix} \left(\frac{\partial}{\partial y} \right) = \begin{pmatrix} \frac{\xi^2 \partial_v + \rho \xi \partial_y}{2} \\ \rho \xi \partial_v + \partial_y \end{pmatrix}
\]

\[
\nabla \cdot A \nabla = \frac{\xi^2}{2} \partial_v + \frac{\rho \xi}{2} \partial_y + \rho \xi \partial_v \partial_y + \frac{v \xi^2}{2} \partial_{vv} + \frac{v}{2} \partial_{yy}
\]

(140)

\[
\nabla \cdot (A \nabla - b \cdot \nabla) = \rho \xi v \partial_{vy} + \frac{v \xi^2}{2} \partial_{vv} + \frac{v}{2} \partial_{yy} + \kappa(\theta - v) \partial_v + \left(r - q - \frac{v}{2} \right) \partial_y
\]

Henceforth, we will use (\cdot) to denote "dot product" of vectors. Here, we may think of the divergence operator as a transpose of the gradient operator (a bit abuse of notation). Derivative products can be priced by solving the PDE (139) under different terminal and boundary conditions. We first define a rectangle bounded domain

\[
\Omega := (v, y) \in \mathbb{R}^2 : v \in (v_{\min}, v_{\max}), \ y \in (y_{\min}, y_{\max})
\]

(141)

with the boundary of \(\Omega \) denoted by \(\partial \Omega \) and the closure \(\bar{\Omega} = \Omega \cup \partial \Omega \). The rectangle domain have four pieces of boundaries defined as follows
Here we assume that any points where y meets v belong to boundaries associated with y.

The PDE (139) shows a 2-D dynamic problem. To solve this problem, a semi-discretization in time is applied, which yields a series of 2-D boundary value problems. These boundary value problems are then solved numerically using 2-D finite element method as time advances.

3.2. Temporal Discretization

It should be noted that the time advances backwards, such that the initial value is given at the terminal $t_n = T$ and the solution is sought at $t_0 = 0$. The partial derivative with respect to time is approximated by finite difference method. According to (139), the z-weighted finite difference scheme for time is given as

$$
\frac{\tilde{w} - w}{t_{k+1} - t_k} + (1 - z)(\nabla \cdot A \nabla - b \cdot \nabla - r)\tilde{w} + z(\nabla \cdot A \nabla - b \cdot \nabla - r)w = 0
$$

(143)

where we denote $w = w(t_k)$ and $\tilde{w} = w(t_{k+1})$. The quantity associated with time-step t_{k+1} will be denoted with an extra “~” accent sign. In the above equation, the scheme becomes purely explicit when $z = 0$, purely implicit when $z = 1$, and becomes Crank-Nicolson scheme when $z = 0.5$. In practice, Crank-Nicolson scheme is often in favor due to its superior second order convergence. However, it is also well known that the Crank-Nicolson scheme may exhibit localized oscillations for discontinuous terminal conditions if the time step is too coarse relative to the spatial step. A remedy proposed by Rannacher is to take two fully implicit time steps ($z = 1$) before we switch to Crank-Nicolson ($z = 0.5$) time-stepping. This solution is also known as Rannacher time-stepping [28], which will be used in our implementation.
The computation starts from \(t_n = T \) and advances backwards. At maturity, the \(w(T) \) is known and given by terminal condition. At time-step \(t_k \), the \(\tilde{w} \) is already known and hence the \(w \) can derived from solving (143). The whole process is repeated until \(t = 0 \) to get the final solution. Rearrangement of (143) gives a new equation, in which we collect all the \(\tilde{w} \) terms on the right hand side and all the \(w \) terms on the left

\[
(z \nabla \cdot A \nabla - z \mathbf{b} \cdot \nabla - c)w = (\tilde{z} \nabla \cdot A \nabla - \tilde{z} \mathbf{b} \cdot \nabla - \tilde{c})\tilde{w}
\]

where \(c = zr + \frac{1}{t_{k+1} - t_k}, \quad \tilde{z} = z - 1, \quad \tilde{c} = c - r \)

3.3. Finite Element Method in 2D

Finite element method is based on weak formulation. It is ideal for solving PDE when the solution lacks smoothness and when the domain is irregular, dynamically changing, and/or unevenly spaced. Valuation of complex exotic options can often exhibit these properties, which makes FEM an ideal tool for this type of applications.

3.3.1. Weak Formulation

let’s first define a few functional spaces for the solution \(w \) and the test function \(\psi \)

\[
L^2(\Omega) = \left\{ f: \Omega \to \mathbb{R}: \int_{\Omega} f^2 < \infty \right\}
\]

\[
H^1(\Omega) = \{ f \in L^2(\Omega) : \mathcal{D}^1 f \in L^2(\Omega) \}, \quad H^1_0(\Omega) = \{ f \in H^1(\Omega) : f = 0 \text{ on } \partial \Omega \}
\]

where \(\Omega \) is the open domain given in (141), \(\mathcal{D}^1 f \) denotes the first order weak partial derivatives of function \(f \). The \(L^2(\Omega) \) is the Lebesgue space with Euclidean norm (which coincides with Hilbert space here). The \(H^1(\Omega) \) and \(H^1_0(\Omega) \) are Sobolev space. The (144) can be transformed to a weak formulation by multiplying both sides with a scalar-valued test function \(\psi \in H^1(\Omega) \) (which in turn can be constructed as a linear combination of basis functions on the 2-D domain). That is, find \(w \in H^1(\Omega) \) such that

\[
\int_{\Omega} \psi (z \nabla \cdot A \nabla - z \mathbf{b} \cdot \nabla - c)w = \int_{\Omega} \psi (\tilde{z} \nabla \cdot A \nabla - \tilde{z} \mathbf{b} \cdot \nabla - \tilde{c})\tilde{w}
\]
For all $\psi \in H^1(\Omega)$. The weak form can be derived using (first) Green's identity, which is the multidimensional analogue of integration by parts. Assuming that u is a scalar function and \mathbf{v} a vector-valued function, both are continuously differentiable, the integration by parts in multi-dimension follows

$$\int_{\Omega} u \nabla \cdot \mathbf{v} = \int_{\partial \Omega} u \mathbf{v} \cdot \mathbf{n} - \int_{\Omega} \nabla u \cdot \mathbf{v}$$ \hspace{1cm} (147)$$

where \mathbf{n} denotes the outward unit surface normal to $\partial \Omega$. Applying the transformation (147) to both sides of (146) we have

$$\int_{\Omega} \psi(z \nabla \cdot A \nabla - z \mathbf{b} \cdot \nabla - c)w = z \int_{\partial \Omega} \psi A \nabla w \cdot \mathbf{n} - \int_{\Omega} \mathcal{R} w \hspace{1cm} \text{and}$$

$$\int_{\Omega} \psi(\bar{z} \nabla \cdot A \nabla - \bar{z} \mathbf{b} \cdot \nabla - \bar{c})\bar{w} = \bar{z} \int_{\partial \Omega} \psi A \nabla \bar{w} \cdot \mathbf{n} - \int_{\Omega} \bar{\mathcal{R}} \bar{w}$$ \hspace{1cm} (148)$$

where we define two more operators

$$\mathcal{R} = z(\nabla \psi \cdot A \nabla + \psi \mathbf{b} \cdot \nabla) + c\psi, \quad \bar{\mathcal{R}} = \bar{z}(\nabla \psi \cdot A \nabla + \psi \mathbf{b} \cdot \nabla) + \bar{c}\psi$$ \hspace{1cm} (149)$$

The (146) eventually becomes

$$\int_{\Omega} \mathcal{R} w - z \int_{\partial \Omega} \psi A \nabla w \cdot \mathbf{n} = \int_{\Omega} \bar{\mathcal{R}} \bar{w} - \bar{z} \int_{\partial \Omega} \psi A \nabla \bar{w} \cdot \mathbf{n}$$ \hspace{1cm} (150)$$

Note that both \mathcal{R} and $\bar{\mathcal{R}}$ operators can be time-dependent. The (150) is also called the weak form (or variational form) of the PDE (139). This is because the requirements of the solution w in (150) have been considerably weakened over the strong form in (139). In the weak formulation of the problem, the solution w and the test function ψ must belong to $H^1(\Omega)$, however it is not necessary that all functions and derivatives be continuous.

3.3.2. Terminal Conditions

The terminal condition is defined at option maturity by payoff function of a product. For instance, a vanilla call ($\eta = 1$) or put ($\eta = -1$) that matures in $\tau = T - t$ would have a terminal condition defined by the payoff function as

$$w(T, v_T, y_T) = (\eta(\exp(y_T) - K))^+$$ \hspace{1cm} (151)$$
3.3.3. **Boundary Conditions**

The boundary conditions, on the other hand, define how a PDE should behave at domain boundaries. The boundary integral in (150)

$$\int_{\partial \Omega} \psi A \nabla w \cdot n$$

(152)

must be correctly handled to be consistent with the boundary conditions. In the following, we will introduce four types of typical boundary conditions.

3.3.3.1. **Homogeneous Dirichlet Boundary Condition**

Homogeneous Dirichlet boundary condition requires the function value at domain boundary be zero, i.e. \(w = 0\) on \(\partial \Omega\). Under this condition, we have \(w \in H^1_0(\Omega)\) and \(\psi \in H^1_0(\Omega)\). The boundary integral (152) in (150) is zero as test function \(\psi\) is zero on \(\partial \Omega\). The weak form of the PDE (150) is to find \(w \in H^1_0(\Omega)\), such that for all \(\psi \in H^1_0(\Omega)\) we have [29]

$$\int_{\Omega} R w = \int_{\Omega} \tilde{R} \tilde{w}, \quad w, \psi \in H^1_0(\Omega)$$

(153)

where the operators \(R\) and \(\tilde{R}\) are defined in (149).

3.3.3.2. **Homogeneous Neumann Boundary Condition**

Homogeneous Neumann boundary condition requires the function derivative at domain boundary be zero, i.e. \(A \nabla w \cdot n = 0\) on \(\partial \Omega\). Under this condition, we have \(w \in H^1(\Omega)\) and \(\psi \in H^1(\Omega)\). The boundary integral (152) vanishes because \(A \nabla w \cdot n = 0\) on \(\partial \Omega\). The weak form of the PDE (150) is to find \(w \in H^1(\Omega)\), such that for all \(\psi \in H^1(\Omega)\) we have [30]

$$\int_{\Omega} R w = \int_{\Omega} \tilde{R} \tilde{w}, \quad w, \psi \in H^1(\Omega)$$

(154)

Though (154) looks almost identical to (153), the function spaces for the solution and the test functions are different. In homogeneous Dirichlet condition, it is the test function \(\psi = 0\) on \(\partial \Omega\) that causes the boundary integral to vanish, while in homogeneous Neumann condition, it is the function derivative \(A \nabla w \cdot n = 0\) on \(\partial \Omega\) that erases the boundary integral.
3.3.3.3. **Inhomogeneous Dirichlet Boundary Condition**

Inhomogeneous Dirichlet boundary condition requires the solution \(w = g \) on \(\partial \Omega \) where \(g \) is a function defined on \(\partial \Omega \). The function \(g \) must satisfy some regularity conditions, and we will assume that there exists a function \(l \in \{ u \in H^1(\Omega) : u = g \text{ on } \partial \Omega \} \). It turns out that the correct space of test functions is still \(H_0^1(\Omega) \), i.e. \(\psi \in H_0^1(\Omega) \), the same as in homogeneous Dirichlet condition. However, since the desired solution \(w \) does not satisfy homogeneous Dirichlet condition, this means that \(w \notin H_0^1(\Omega) \). Instead, the function \(u = w - l \) for \(u \in H_0^1(\Omega) \) is zero on \(\partial \Omega \), and hence the solution has the form \(w = u + l \) where \(l \) is assumed to be known and \(u \) is unknown. The weak form of the PDE (150) is then to find \(w = u + l \) for \(u \in H_0^1(\Omega) \), such that for all \(\psi \in H_0^1(\Omega) \) we have [31]

\[
\int_{\Omega} \mathcal{R}(u + l) = \int_{\Omega} \mathcal{R} \tilde{w}, \quad u, \psi \in H_0^1(\Omega)
\]

In Section 3.3.6, we will show how to find a suitable function \(l \in \{ f \in H^1(\Omega) : f = g \text{ on } \partial \Omega \} \) for the purpose of finite element method that satisfies Dirichlet condition \(l = g \) on \(\partial \Omega \) (note that in a boundary value problem, only \(g \) is given, not \(l \)).

3.3.3.4. **Inhomogeneous Neumann Boundary Condition**

Inhomogeneous Neumann boundary condition requires the function derivative at domain boundary to be a known function, i.e. \(A \nabla w \cdot \mathbf{n} = h \) on \(\partial \Omega \). Under this condition, we have \(w \in H^1(\Omega) \) and \(\psi \in H^1(\Omega) \). The weak form of the PDE (150) is to find \(w \in H^1(\Omega) \), such that for all \(\psi \in H^1(\Omega) \) we have [32]

\[
\int_{\Omega} \mathcal{R}w - z \int_{\partial \Omega} \psi h = \int_{\Omega} \mathcal{R} \tilde{w} - \tilde{z} \int_{\partial \Omega} \psi \tilde{h}
\]

The weak form is the same as for the homogeneous Neumann condition, except for the extra boundary integral terms \(z \int_{\partial \Omega} \psi h \) and \(\tilde{z} \int_{\partial \Omega} \psi \tilde{h} \).

Boundaries involve a combination of these boundary conditions can be treated in a similar manner. Since Dirichlet conditions must be explicitly imposed in the weak form while Neumann
conditions are rather implied, Dirichlet conditions are often called essential boundary conditions while Neumann conditions are instead called natural boundary conditions.

3.3.4. Boundary Conditions for Vanilla Options

For a vanilla call option, we employ a rectangle domain consisting of 4 pieces of boundaries, \(\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \), as defined in (142). On \(\Gamma_1 \) where \(v = v_{\min} \), we choose \(v_{\min} = 0 \) and the boundary integral (152) becomes zero as the \(A \) term varnishes. On \(\Gamma_2 \) where \(v = v_{\max} \), we may assume inhomogeneous Neumann boundary condition with derivative \(\partial w(t, v_{\max}, y)/\partial v \) approximated in Black-Scholes model (equivalent to the vega sensitivity). We estimate the bound \(v_{\max} \) using the conditional mean and variance of \(v \) given in (47), such that

\[
v_{\max} = \mathbb{E}[v_{t+\tau}|v_t] + n\sqrt{\mathbb{V}[v_{t+\tau}|v_t]}
\]

where we set \(n = 8 \) to make the \(v_{\max} \) sufficiently large. On \(\Gamma_3 \) where \(y = y_{\min} \), an inhomogeneous Dirichlet boundary condition is devised with boundary values approximated again in Black-Scholes model. On \(\Gamma_4 \) where \(y = y_{\max} \), we manage to implement an inhomogeneous Neumann boundary condition with derivative \(\partial w(t, v_{\max}, y)/\partial y \) approximated in Black-Scholes model (equivalent to the delta sensitivity). The \(y_{\min} \) and \(y_{\max} \) are also determined by the conditional mean of \(v \), such that

\[
y_{\min} = \ln F_{t,t+\tau} - m\sqrt{\mathbb{E}[v_{t+\tau}|v_t]}, \quad y_{\max} = \ln F_{t,t+\tau} + m\sqrt{\mathbb{E}[v_{t+\tau}|v_t]}
\]

where we set \(m = 4 \) to make both \(y_{\min} \) and \(y_{\max} \) sufficiently far away from the spot. These boundary conditions are summarized below:

For \((v, y) \in \Gamma_1\), \(v_{\min} = 0 \Rightarrow \mathbf{A} \nabla w \cdot \mathbf{n} = 0 \)

For \((v, y) \in \Gamma_2\), \(\nabla w(t, v_{\max}, y) = \left(\frac{\partial w}{\partial v} \right) \Rightarrow \mathbf{A} \nabla w \cdot \mathbf{n} = h_v(t, v, y) \)

For \((v, y) \in \Gamma_3\), \(w(t, v, y_{\min}) = g(t, v, y) \)

For \((v, y) \in \Gamma_4\), \(\nabla w(t, v, y_{\max}) = \left(\frac{0}{\partial w/\partial y} \right) \Rightarrow \mathbf{A} \nabla w \cdot \mathbf{n} = h_y(t, v, y) \)

where the Dirichlet condition comes from the Black-Scholes formula (123)
\[g(t, v, y) = \exp(y - q \tau) N(d_+) - K \exp(-r \tau) N(d_-), \quad d_\pm = \frac{y - \ln K + (r + q \pm \frac{v}{2}) \tau}{\sqrt{v \tau}} \] (160)

and the Neumann conditions are further derived as follows

\[
\frac{\partial w}{\partial v} = \frac{\exp(y - q \tau) \phi(d_+)}{2\sqrt{v}} \Rightarrow h_v(t, y, v) = \left(\frac{v}{2} \begin{pmatrix} \xi^2 & \rho \xi \\ \rho \xi & 1 \end{pmatrix}\right) \left(\begin{array}{c} \partial w/\partial v \\ 0 \end{array}\right) \cdot (1) = \frac{v \xi^2}{2} \frac{\partial w}{\partial v}
\]

(161)

\[
\frac{\partial w}{\partial y} = \exp(y - q \tau) N(d_+) \Rightarrow h_y(t, y, y) = \left(\frac{v}{2} \begin{pmatrix} \xi^2 & \rho \xi \\ \rho \xi & 1 \end{pmatrix}\right) \left(\begin{array}{c} 0 \\ \partial w/\partial y \end{array}\right) \cdot (1) = \frac{v}{2} \frac{\partial w}{\partial y}
\]

More adaptive boundary conditions may also be used. However, in the case of vanilla options, the choice of boundary conditions appears immaterial when the bounded domain becomes sufficiently large.

Knowing these boundary conditions, we can define a function space

\[V = \{ f \in H^1(\Omega) : f = 0 \text{ on } \Gamma_3 \} \] (162)

The weak form of the PDE (150) is to find \(w = u + l \) for \(u \in V \) and \(l \in \{ f \in H^1(\Omega) : f = g \text{ on } \Gamma_3 \} \), such that for all \(\psi \in V \) we have

\[
\int_\Omega R(u + l) - z \int_{\Gamma_2} \psi h_v - z \int_{\Gamma_4} \psi h_y = \int_\Omega \bar{R} \bar{w} - \bar{z} \int_{\Gamma_2} \bar{\psi} \bar{h}_v - \bar{z} \int_{\Gamma_4} \bar{\psi} \bar{h}_y
\] (163)

In the case of a vanilla put, similar boundary conditions can be employed

For \((v, y) \in \Gamma_1\), \(v_{\text{min}} = 0 \Rightarrow A\nabla w \cdot n = 0 \)

For \((v, y) \in \Gamma_2\), \(v w(t, v_{\text{max}}) = \left(\frac{\partial w}{\partial v}\right) \Rightarrow A\nabla w \cdot n = h_v(t, v, y) \)

For \((v, y) \in \Gamma_3\), \(v w(t, v) = \left(\frac{0}{\partial w/\partial y}\right) \Rightarrow A\nabla w \cdot n = h_y(t, v, y) \)

For \((v, y) \in \Gamma_4\), \(w(t, v, v_{\text{max}}) = g(t, v, y) \)

where the functions are given below

\[
\frac{\partial w}{\partial v} = \frac{\exp(y - q \tau) \phi(d_+)}{2\sqrt{v}} \Rightarrow h_v(t, y, v) = \left(\frac{v}{2} \begin{pmatrix} \xi^2 & \rho \xi \\ \rho \xi & 1 \end{pmatrix}\right) \left(\begin{array}{c} \partial w/\partial v \\ 0 \end{array}\right) \cdot (1) = \frac{v \xi^2}{2} \frac{\partial w}{\partial v}
\]

(165)

\[
\frac{\partial w}{\partial y} = -\exp(y - q \tau) N(-d_+) \Rightarrow h_y(t, v, y) = \left(\frac{v}{2} \begin{pmatrix} \xi^2 & \rho \xi \\ \rho \xi & 1 \end{pmatrix}\right) \left(\begin{array}{c} 0 \\ \partial w/\partial y \end{array}\right) \cdot (0) = -\frac{v}{2} \frac{\partial w}{\partial y}
\]

\[g(t, y, v) = K \exp(-r \tau) N(-d_-) - \exp(y - q \tau) N(-d_+) \]
The resulted weak form of the PDE (150) is similar to the one we have derived for a vanilla call, which is to find $w = u + l$ for $u \in V = \{f \in H^1(\Omega) : f = 0 \text{ on } \Gamma_4\}$ and $l \in \{f \in H^1(\Omega) : f = g \text{ on } \Gamma_4\}$, such that for all $\psi \in V$ we have

$$\int_{\Omega} R(u + l) - z \int_{r_2} \psi h_v - z \int_{r_3} \psi h_y = \int_{\Omega} \tilde{R} \tilde{w} - \tilde{z} \int_{r_2} \psi \tilde{h}_v - \tilde{z} \int_{r_3} \psi \tilde{h}_y$$

We would like to demonstrate the algorithm using vanilla call as an example. In order to find numerical solution, the continuous operator problem (163) must be converted to a discrete one. We will use Galerkin method [33] [34] to perform the conversion, which computes the best approximation to the true solution from a given finite-dimensional subspace.

3.3.5. **Mesh and Basis Functions**

The finite element method is a general and systematic technique for constructing basis functions of the finite-dimensional subspace for Galerkin approximations on a mesh that discretizes the continuous domain into a union of discrete geometric cells. For our problem, we construct a triangular mesh (Figure 1), which can be either structured or unstructured. The intersection of any two triangles in the mesh must be a common vertex or a common edge. For example, we denote the closed domain $\bar{\Omega} = \Omega \cup \partial \Omega = [v_{\min}, v_{\max}] \times [y_{\min}, y_{\max}]$. The $\bar{\Omega}$ is discretized into a triangulation mesh \mathcal{T}_h consisting of triangles T_i, $i = 1, \cdots, N_t$ as the elements and their nodes D_i, $i = 1, \cdots, N_d$. The triangulation \mathcal{T}_h is labelled with mesh size h, which is the maximum diameter of any triangle in the triangulation.

The mesh generator keeps two arrays: a list of nodes and a list of triangles (i.e. elements). In addition, it also groups boundary nodes into four node sets, one for each boundary (we assume that any points where v and y meet are nodes in the triangulation, and any such nodes belong to boundaries associated with y). Each triangle element is uniquely defined by its three vertex nodes, while each node records relevant information including: index of the node in the node list, coordinates of the node, left and right neighbors if the node lies on a boundary (such that the connections of the node to its neighbors form part of the boundary. This information is used for boundary integral calculation). Figure 1
illustrates a simple evenly spaced structured mesh used in the computation. It can be seen that the mesh consists of total $I \times J$ squares, $N_t = 2IJ$ triangles and $N_d = (I + 1)(J + 1)$ nodes, where I and J are the spatial resolution for variable v and y, respectively.

![Figure 1. A structured triangular mesh](image)

The basis functions for the finite dimensional subspace on the 2-D mesh are defined as piecewise linear functions, ϕ_i, $i = 1, \cdots, N_d$, such that they take value 1 at node D_i and 0 at all other nodes. This basis is usually called Lagrange basis or nodal basis. To allow generic computations over any arbitrary triangles, each triangle is mapped by affine transformation to a reference triangle $\hat{T} = \{(\hat{v}, \hat{y}) \in \mathbb{R}^2 : \hat{v} \in [0, 1], \hat{y} \in [0, 1 - \hat{v}]\}$, where a “hat” accent is used to denote quantities defined on the reference triangle [35]. The reference triangle is shown in Figure 2. The three vertices $\hat{D}_i, i = 1, 2, 3$ are $(0, 0)$, $(1, 0) \text{ and } (0, 1)$, respectively. The open circle denotes $\hat{\phi}_i = 0$ at node \hat{D}_i if $i \neq j$, while the full circle denotes $\hat{\phi}_i = 1$ at node \hat{D}_j if $i = j$. In summary, the three basis functions on the reference triangle read

$$
\hat{\phi}_0(\hat{v}, \hat{y}) = 1 - \hat{v} - \hat{y}, \quad \hat{\phi}_1(\hat{v}, \hat{y}) = \hat{v}, \quad \hat{\phi}_2(\hat{v}, \hat{y}) = \hat{y}
$$

![Figure 2. The reference triangle and the basis functions](image)
The mapping from an arbitrary triangle to a reference triangle is achieved via affine transformation. Considering an arbitrary triangle \(T \) with vertices \(D_0 = (v_0, y_0) \), \(D_1 = (v_1, y_1) \) and \(D_2 = (v_2, y_2) \), the transformation maps the reference triangle \(\hat{T} \) onto the triangle \(T \) through

\[
(v, y) = F(\hat{v}, \hat{y}) = J \left(\frac{\hat{v}}{\hat{y}} \right) + \left(\begin{array}{c} v_0 \\ y_0 \end{array} \right), \quad J = \frac{\partial F(\hat{v}, \hat{y})}{\partial (\hat{v}, \hat{y})} = \left(\begin{array}{cc} v_1 - v_0 & v_2 - v_0 \\ y_1 - y_0 & y_2 - y_0 \end{array} \right)
\]

where \(J \) is the Jacobian matrix. Denoting the function defined on the reference triangle with a “hat”, we have \(f(v, y) = \hat{f}(\hat{v}, \hat{y}) \) whenever \((v, y) = F(\hat{v}, \hat{y}) \). In particular, the following three equations hold

\[
\hat{f}(0,0) = f(v_0, y_0), \quad \hat{f}(1,0) = f(v_1, y_1), \quad \hat{f}(0,1) = f(v_2, y_2)
\]

Additionally, the integration of a function \(f(v, y) \) over an arbitrary triangle \(T \) can be transformed into an equivalent integration over the reference triangle \(\hat{T} \) via the integral of a function

\[
\int_T f(v, y) dv dy = \int_{\hat{T}} f(F(\hat{v}, \hat{y})) \left| \frac{\partial F(\hat{v}, \hat{y})}{\partial (\hat{v}, \hat{y})} \right| d\hat{v} d\hat{y} = J \int_{\hat{T}} \hat{f}(\hat{v}, \hat{y}) d\hat{v} d\hat{y}, \quad J = |\text{det } J|
\]

where \(J \) is the absolute of Jacobian determinant of \(J \), also known as Jacobian factor. The affine transformation greatly simplifies the calculation and renders the use of unstructured mesh possible. In our application, we use a mesh grid that is non-uniformly spaced for improved numerical accuracy with denser grid points around key values, e.g. spot, strike, initial variance, etc.

3.3.6. Stiffness Matrix and Load Factor

Given the boundary conditions (159), we now can divide the mesh nodes (denoted by set \(N_d \); a bit abuse of notation here) into two groups, the nodes lying on \(\Gamma_1 \cup \Gamma_2 \cup \Gamma_4 \) or in \(\Omega \) that are called free nodes (denoted by set \(N_f \)) and the nodes on \(\Gamma_3 \) that are called constrained nodes (denoted by set \(N_c \)).

With the piecewise linear basis functions in Section 3.3.5, the function space \(P_h \) of all continuous piecewise linear functions defined on the mesh \(\mathcal{T}_h \) is a finite dimensional vector space with dimension \(N_d \), having basis functions \(\{ \phi_1, \ldots, \phi_{N_d} \} \). Each function \(\phi \in P_h \) can be identified as a linear combination of the basis functions through formula
\[f = \sum_{i \in \mathcal{N}_d} \varphi_i \phi_i \]
(171)

with a vector \(\varphi \in \mathbb{R}^{N_d} \) consisting of the nodal values of \(f \).

Using Galerkin method, the weak form (163) is to find \(w = u + l \) for \(u \in V_h = \{ f \in P_h : f = 0 \text{ on } \Gamma_3 \} \) and \(l \in \{ f \in P_h : f = g \text{ on } \Gamma_3 \} \), such that for all \(\psi \in V_h \) we have

\[a(u, \psi) = \ell(\psi) \]
(172)

where the bilinear functional \(a(\cdot, \cdot) \) and linear functional \(\ell(\cdot) \) are taken from (163) as

\[a(u, \psi) = \int_{\Omega} Ra u, \quad \ell(\psi) = \int_{\Omega} R \tilde{w} - \tilde{z} \int_{\Gamma_2} \psi \tilde{h}_v - \tilde{z} \int_{\Gamma_4} \psi \tilde{h}_y + z \int_{\Gamma_2} \psi h_v + z \int_{\Gamma_4} \psi h_y - \int_{\Omega} R l \]
(173)

We may write the solution and the test function as linear combinations of basis functions

\[u = \sum_{i \in \mathcal{N}_f} \mu_i \phi_i, \quad \psi = \sum_{i \in \mathcal{N}_f} c_i \phi_i \]
(174)

For the inhomogeneous Dirichlet boundary condition on \(\Gamma_3 \), the function \(l \) is any function in \(P_h \) that satisfies the boundary condition \(l = g \) on \(\Gamma_3 \). It may not be easy to find such \(l \) function exactly, but it is easy to define a function \(l \) that approximately satisfies the boundary condition. Indeed, the continuous piecewise linear function \(l \) defined by

\[l = \sum_{i \in \mathcal{N}_c} \lambda_i \phi_i \]
(175)

where \(\lambda_i \) is the value of function \(g \) evaluated at node \(i \), agrees with \(g \) at the endpoints of every constrained edge and therefore interpolates \(g \) on \(\Gamma_3 \). It is a sufficiently good approximation to \(g \) for the purposes of the finite element method [36].

Using linearity properties of bilinear functional and linear functional we can derive

\[a(u, \psi) = \ell(\psi) \Rightarrow a\left(\sum_{j \in \mathcal{N}_f} \mu_j \phi_j, \sum_{i \in \mathcal{N}_f} c_i \phi_i \right) = \ell\left(\sum_{i \in \mathcal{N}_f} c_i \phi_i \right) \]
(176)

\[\Rightarrow \sum_{i \in \mathcal{N}_f} c_i \sum_{j \in \mathcal{N}_f} \mu_j a(\phi_j, \phi_i) = \sum_{i \in \mathcal{N}_f} c_i \ell(\phi_i) \]
\[
\Rightarrow \sum_{i \in N_f} c_i \left(\sum_{j \in N_f} R_{ij} \mu_j - f_i \right) = 0, \quad R_{ij} = a(\phi_j, \phi_i), \quad f_i = \ell(\phi_i)
\]

Since \(c_i \) are arbitrary, it is certainly sufficient to satisfy

\[
\sum_{j \in N_f} R_{ij} \mu_j - f_i = 0 \tag{177}
\]

or write it in vector-matrix form

\[
R\mu = f \tag{178}
\]

where \(R \) is called the stiffness matrix and \(f \) the load factor. Both are known and can be calculated directly. The \(\mu \in \mathbb{R}^{N_f} \) is a vector that can be solved from inverting the stiffness matrix. It consists of the nodal values of the approximate solution in the finite-dimensional subspace.

In order to simplify the implementation, we transform (178) into an equivalent linear system, such that the solution vector consists of nodal values of the whole domain (rather than just free nodes) including the nodes on Dirichlet boundaries. We first define matrix \(Q \), vectors \(\lambda \) and \(\alpha \) as

\[
\begin{align*}
R_{N_f \times N_f} & \mu_{N_f \times 1} = \int_{\Omega} Ru, \quad Q_{N_f \times N_c} \lambda_{N_c \times 1} = \int_{\Omega} Rl \\
\alpha_{N_f \times 1} = \int_{\Omega} R\bar{w} - z \int_{R_2} \psi \bar{h}_v - z \int_{R_4} \psi \bar{h}_y + z \int_{R_2} \psi h_v + z \int_{R_3} \psi h_y
\end{align*}
\tag{179}
\]

where the \(R\mu \) is the same as in (178) and \(\alpha - Q\lambda = f \). With these definitions, the new linear system, which is equivalent to (178), would be

\[
S\omega = \beta, \quad S_{N_d \times N_d} = \begin{pmatrix} R & Q \\ 0 & I \end{pmatrix}, \quad \omega_{N_d \times 1} = \begin{pmatrix} \mu \\ \lambda \end{pmatrix}, \quad \beta_{N_d \times 1} = \begin{pmatrix} \alpha \\ \lambda \end{pmatrix} \tag{180}
\]

where the \(I \) is \(N_c \times N_c \) identity matrix and the \(\omega \) vector consists of nodal values of the whole domain including all the boundary nodes. We can see that the sub-vector \(\lambda \) is known and given by the Dirichlet boundary conditions. The sub-matrices \(R \) and \(Q \) and the sub-vector \(\alpha \) can be evaluated through the integrals in (179), which are then used to construct the matrix \(S \) and vector \(\beta \). We solve the linear system \(S\omega = \beta \) for the vector \(\omega \), which consists of the coefficients of the basis functions, provides an
approximate solution to the continuous function w at time-step t_k. We repeat the process backwards from maturity until $t = 0$, where we can then extract the call option value in the model from the final solution vector.

3.3.6.1. Computation of Integrals

From previous discussion, we know that in order to obtain the matrix H and the vector z, we must calculate the integrals in (179). For example, the R_{ij}, as shown in (176), can be calculated as

$$R_{ij} = a(\phi_j, \phi_i) = z \int_\Omega \nabla \phi_i \cdot A \nabla \phi_j + z \int_\Omega \phi_i \cdot \nabla \phi_j + c \int_\Omega \phi_i \phi_j, \quad \forall \ i, j \in N_f$$

We must evaluate three integrals over the whole triangular mesh. However, because of the local support of the basis functions, the R_{ij} is evaluated to zero unless the node i and j are vertices of the same triangle of the mesh. Instead of computing the integral over the whole domain Ω directly, we calculate the integrals over each triangular element and then assemble over all the triangle elements of the domain. Given an arbitrary triangular element T, we can see that there are only three basis functions (corresponding to the three nodes/vertices) are nonzero. There will be 9 combinations of the bilinear form to be evaluated on each element. To make the implementation simpler and yet more adaptive, the integrals on an arbitrary triangle T can be calculated through the mapping of the reference triangle \hat{T}. That is, we calculate the integrals on a reference triangle \hat{T}, which can be standardized, and the results are then linearly transformed back to the arbitrary triangle T using the aforesaid affine transformation.

Accounting for the 9 combinations of the bilinear form among the 3 basis functions, The first integral denoted by I_1 appearing in the right hand side of (181) is a 3×3 matrix. Over an arbitrary triangle T, the integral is evaluated as

$$I_1 = \left[\int_T \nabla \phi_i \cdot A \nabla \phi_j \right]_{i,j=0,1,2} = \left[\int_T \left(J^{-T} \nabla \hat{\phi}_i \right)^T (AJ^{-T} \nabla \hat{\phi}_j) \frac{\partial F(\hat{v}, \hat{y})}{\partial (\hat{v}, \hat{y})} \right]_{i,j=0,1,2}$$

$$= J \left[\int_{\hat{T}} \left(J^{-T} \nabla \hat{\phi}_i \right)^T (AJ^{-T} \nabla \hat{\phi}_j) \right]_{i,j=0,1,2} = J \left(J^{-T} \hat{G} \right)^T \left(\int_{\hat{T}} A \right) J^{-T} \hat{G} \approx \frac{1}{2} J \hat{G}^T J^{-1} \hat{A} J^{-T} \hat{G}$$

(182)
where \(\tilde{\mathbf{G}} = [\nabla \phi_j]_{j=0,1,2} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \) and
\[
\int_T \mathbf{A} \approx \tilde{\mathbf{A}} \int_T d\tilde{T} = \left(\text{average of } \mathbf{A} \text{ over triangular element} \right) \times \left(\text{area of reference triangle} \right) = \frac{\sum_{n=0}^{2} \mathbf{A}_n 1}{3} \frac{1}{2}
\]

In (182), the subscript \(i \) and \(j \) denote the matrix row and column index respectively. The \(J \) is the Jacobian factor defined in (170). The \(\tilde{\mathbf{G}} \) is the matrix of the gradients of the three basis functions (167) on reference triangle \(\tilde{T} \). Since \(\tilde{\mathbf{G}} \) is constant, it can move out of the integral. The \(\mathbf{A}_n, n = 0, 1, 2 \) are the matrix \(\mathbf{A} \) evaluated at the three vertices of the triangle \(T \). To compute the integral \(\int_T \mathbf{A} \), matrix \(\mathbf{A} \) is assumed to be constant within \(T \) and takes an average over the three vertices. The second integral \(I_2 \) is computed as
\[
I_2 = \left[\int_T \phi_i \mathbf{b} \cdot \nabla \phi_j \right]_{i,j=0,1,2} \approx J \left[\int_T \hat{\phi}_i \hat{\phi}_j \right]_{i,j=0,1,2} \mathbf{b}^T J^{-T} \tilde{\mathbf{G}} = \frac{J}{6} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mathbf{b}^T J^{-T} \tilde{\mathbf{G}} \quad \text{and} \quad \mathbf{b} = \frac{1}{3} \sum_{n=0}^{2} \mathbf{b}_n \tag{183}
\]

In (183), the \(\left[\int_T \hat{\phi}_i \hat{\phi}_j \right]_{i,j=0,1,2} \) can be regarded as the volumes of the triangular pyramids formed by the 3 basis functions integrated over the reference triangle \(\tilde{T} \). Similar to matrix \(\mathbf{A} \), The vector \(\mathbf{b} \) is assumed to be constant within a element triangle and takes an average over the three vertices. Hence it can also move out of the integral along with the matrix \(\tilde{\mathbf{G}} \). The computation of the third integral \(I_3 \) is even simpler
\[
I_3 = \left[\int_T \phi_i \phi_j \right]_{i,j=0,1,2} = J \left[\int_T \hat{\phi}_i \hat{\phi}_j \right]_{i,j=0,1,2} = \frac{J}{24} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \tag{184}
\]

It can be seen that \(I_1, I_2 \) and \(I_3 \) are \(3 \times 3 \) matrix, while \(I_2 \) appears to be asymmetric. In the process we determine the nine combinations of the \(i \) and \(j \) vertex for each triangle \(T \). We then map the local vertex indices \(i \) and \(j \) of the triangle \(T \) to the node indices of the mesh. The global stiffness matrix \(R \) is then assembled over the mesh \(T_h \) from the integrals computed on each triangle of the mesh. That is, by assuming \(i \) and \(j \) are node indices of the mesh (e.g. \(i, j \in N_f \)), we can find the global stiffness matrix
\[
R_{ij} = \sum_{T \in T_h} \left[z \int_T \nabla \phi_i \cdot \mathbf{A} \nabla \phi_j + z \int_T \phi_i \mathbf{b} \cdot \nabla \phi_j + c \int_T \phi_i \phi_j \right]_{i,j}, \quad \forall \; i, j \in N_f \tag{185}
\]
The entries of matrix Q in (179) can be derived in the same manner, except that for Q we have $i \in N_f$ and $j \in N_c$. In our implementation, we actually construct matrix S directly, in a simpler way. We first initiate S as an $N_d \times N_d$ identity matrix and then set its entries as follows

$$S_{ij} = \sum_{T \in \mathcal{T}_h} \left[z \int_T \nabla \phi_i \cdot A \nabla \phi_j + z \int_T \phi_i \cdot b \cdot \nabla \phi_j + c \int_T \phi_i \phi_j \right]_{i,j}, \quad \forall \ i \in N_f, \ j \in N_d$$ \hspace{1cm} (186)

The computation of vector β in (180) is a bit more complicated. In our implementation, we compute the β in a few steps. We first obtain the vector β as

$$\beta = \tilde{S} \omega = \int_{\Omega} \tilde{\mathcal{R}} \tilde{\mathbf{w}}$$ \hspace{1cm} (187)

where the vector $\tilde{\mathbf{w}}$ is known and the matrix \tilde{S} is constructed in a way very similar to the matrix S. We initiate \tilde{S} as an $N_d \times N_d$ identity matrix and then update its entries by

$$\tilde{S}_{ij} = \sum_{T \in \mathcal{T}_h} \left[\tilde{z} \int_T \nabla \phi_i \cdot A \nabla \phi_j + \tilde{z} \int_T \phi_i \cdot b \cdot \nabla \phi_j + \tilde{c} \int_T \phi_i \phi_j \right]_{i,j}, \quad \forall \ i \in N_f, \ j \in N_d$$ \hspace{1cm} (188)

The resulted vector β must be updated according to the Dirichlet boundary conditions, that is we assign

$$\beta_i = \lambda_i, \quad \forall \ i \in N_c$$ \hspace{1cm} (189)

Lastly, the boundary integrals resulted from inhomogeneous Neumann boundary conditions must also be taken into account. This is relatively easy on a rectangular domain as the basis functions are just triangle functions at domain boundary. Assuming Neumann condition on boundary Γ with function h, we can estimate the boundary integral as

$$\int_{\Gamma} \psi h = \gamma, \quad \gamma_i = \int_{\Gamma} h_i \phi_i = \frac{1}{2} h_i \delta_i, \quad \forall \ i \in \Gamma$$ \hspace{1cm} (190)

where δ_i is the base of function ϕ_i along Γ. For example, in the case of Γ_2 (where $\nu = \nu_{\text{max}}$), we have $\delta_i = y_{i+1} - y_{i-1}$, and the y_{i+1} and y_{i-1} are the y coordinates of the right and left neighbor of the node i along Γ_2. This is equivalent to calculating the area of a triangle determined by vertices h_i, y_{i+1} and y_{i-1}. Once γ is estimated, we can finalize the vector β by taking
\[\beta_i = \beta_i + \gamma_i, \quad \forall \ i \in \Gamma \]

(191)

for each of the inhomogeneous Neumann boundaries.

In our implementation, we assume time-invariant (constant) model parameters for simplicity and hence the matrix \(R, Q \) and \(\tilde{R} \) remain unchanged through time. In practical application where time-dependent model parameters are assumed, these matrices must be constructed dynamically for each time-step.

3.3.7. Iterative Linear Solvers

Because of local support of basis functions, a basis function can interact with at most, including itself, seven basis functions. The matrix \(S \) in (180) can therefore be sparse. To avoid the unnecessary memory storage for the zeros, we use sparse matrix implementation provided by GNU Scientific Library (GSL) \[37\]. The linear systems resulted from this problem can be quite large. Traditional direct method and simple iterative methods will not work well for this type of applications. Additionally, since the matrix \(S \) in (180) is asymmetric (due to asymmetric \(I_2 \) in (183)), the conjugate gradient method, an effective method for symmetric positive definite systems, is no longer applicable. Instead, we have implemented conjugate gradient squared (CGS) method \[38\] and (restarted) generalized minimal residual (GMRES) method \[39\] to solve the linear systems. Interested readers may refer to Kelley’s book \[40\] for details of the two algorithms. In our application, we will primarily use the GMRES solver with a trivial preconditioner \(M = (\text{diag}(S))^{-1} \) \[41\] for its high robustness and efficiency. GSL also provides an implementation of the GMRES solver, but currently there is no preconditioners available \[42\]. Numerical experiments also show that our implementation of GMRES (with the trivial preconditioner) converges much faster than the GSL counterpart.

3.3.8. Interpolation of Numerical Solution

Numerical solution to the PDE is obtained as an approximate solution vector \(\omega \) consisting of the nodal values of function \(w \). To extract a solution for an arbitrary point in the domain, interpolation
among the nodal values must be performed. To do this, we convert the point coordinate to a barycentric coordinate in a triangle of the mesh. Providing the coordinate \((v, y)\) of the point, its barycentric coordinates \(\lambda_0, \lambda_1, \text{ and } \lambda_2\) within a triangle can be determined from the three triangular vertices \(((v_0, y_0), (v_1, y_1), (v_2, y_2))\), such that

\[
\begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix} = \begin{pmatrix} v_0 - v_2 & v_1 - v_2 \\ y_0 - y_2 & y_1 - y_2 \end{pmatrix}^{-1} \begin{pmatrix} v - v_2 \\ y - y_2 \end{pmatrix}, \quad \lambda_2 = 1 - \lambda_0 - \lambda_1
\]

(192)

If \(\lambda_i \in [0,1] \forall i = 0,1,2\), then the point is inside the triangle and the solution can be interpolated by

\[
w(v, y) = \lambda_0 w(v_0, y_0) + \lambda_1 w(v_1, y_1) + \lambda_2 w(v_2, y_2)
\]

(193)

3.3.9. Numerical Solution of Vanilla Options

We attempt to compute the PV as well as the implied volatility (inverted from PV) of vanilla call and put using the FEM method along with the boundary conditions described above. The model and the FEM PDE parameters used in the experiments are shown in Table 1. The solution (PV) vectors at \(t = 0\) are obtained for both the call and put option. They are shown as a surface, a function of initial variance and initial spot, in Figure 3. The PV of the two products can be interpolated from the two surfaces using \(S_0 = 100\) and \(v_0 = 0.12\).

<table>
<thead>
<tr>
<th>Table 1. Model and PDE parameters used for vanilla call and put valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heston</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Call/Put Strike</td>
</tr>
<tr>
<td>Option Expiry</td>
</tr>
<tr>
<td>PDE</td>
</tr>
<tr>
<td>Log Spot Resolution</td>
</tr>
<tr>
<td>Temporal Resolution</td>
</tr>
</tbody>
</table>
Figure 3. Solution surface for the call (left) and the put (right) using parameters in Table 1

The implied volatility as a function of strike is also derived and presented in Table 2. As a comparison, we have also calculated the analytic results using 3 different types of Fourier inversion method (described in Section 2.3.4). It can be seen that numerical results from FEM PDE follow closely with the analytic results. The maximal absolute difference is well within 1 basis point.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Put 50</td>
<td>38.47% 38.47% 38.47%</td>
<td>0.3205 38.46%</td>
</tr>
<tr>
<td>Put 60</td>
<td>36.79% 36.79% 36.79%</td>
<td>0.9013 36.78%</td>
</tr>
<tr>
<td>Put 70</td>
<td>35.34% 35.34% 35.34%</td>
<td>2.0649 35.35%</td>
</tr>
<tr>
<td>Put 80</td>
<td>34.09% 34.09% 34.09%</td>
<td>4.0575 34.08%</td>
</tr>
<tr>
<td>Put 90</td>
<td>32.99% 32.99% 32.99%</td>
<td>7.0957 33.00%</td>
</tr>
<tr>
<td>Call 100</td>
<td>32.05% 32.05% 32.05%</td>
<td>13.2184 32.05%</td>
</tr>
<tr>
<td>Call 120</td>
<td>30.56% 30.56% 30.56%</td>
<td>6.0256 30.57%</td>
</tr>
<tr>
<td>Call 140</td>
<td>29.54% 29.54% 29.54%</td>
<td>2.4237 29.55%</td>
</tr>
<tr>
<td>Call 160</td>
<td>28.88% 28.88% 28.88%</td>
<td>0.8948 28.89%</td>
</tr>
<tr>
<td>Call 180</td>
<td>28.51% 28.51% 28.51%</td>
<td>0.3171 28.52%</td>
</tr>
<tr>
<td>Call 200</td>
<td>28.32% 28.32% 28.32%</td>
<td>0.1113 28.32%</td>
</tr>
</tbody>
</table>

3.4. Double Barrier and Double-No-Touch Products

Double barrier knock-out options and double-no-touch products share great similarity. They differ only in payoff functions (i.e. terminal conditions). For both products, we use again a rectangular domain with $v_{\min} = 0$ and v_{\max} given in (157). Unlike vanilla trades, we set the y_{\min} and y_{\max} of the
domain to the upper and lower barrier (log) levels. The treatment of boundary conditions is essential the same for both. Specifically, for an up-and-out-down-and-out double barrier call, its boundary conditions can be treated as follows

\[
\begin{align*}
\text{For } (v, y) \in \Gamma_1, \quad & v_{\text{min}} = 0 \Rightarrow A \nabla w \cdot n = 0 \\
\text{For } (v, y) \in \Gamma_2, \quad & v_{\text{max}} = 0 \Rightarrow A \nabla w \cdot n = 0 \\
\text{For } (v, y) \in \Gamma_3, \quad & w(t, v, y_{\text{min}}) = g \\
\text{For } (v, y) \in \Gamma_4, \quad & w(t, v, y_{\text{max}}) = g
\end{align*}
\]

(194)

where \(g \) is a fixed amount of rebate paid upon knock-out event. For boundary \(\Gamma_2 \), the exact value of \(\partial w / \partial v \) is difficult to estimate, therefore we simply assume a homogeneous Neumann condition \(\partial w / \partial v = 0 \) for this boundary, which removes the boundary integral. This assumption appears justifiable as vega sensitivity diminishes as volatility approaches to a very large number. With these boundary conditions, we can define a function space

\[
V = \{ f \in H^1(\Omega) : f = 0 \text{ on } \Gamma_3 \cup \Gamma_4 \}
\]

(195)

The weak form of the PDE is then to find \(w = u + l \) for \(u \in V \) and \(l \in \{ f \in H^1(\Omega) : f = g \text{ on } \Gamma_3 \cup \Gamma_4 \} \), such that for all \(\psi \in V \) we have

\[
\int_\Omega R(u + l) = \int_\Omega \tilde{R} \tilde{w}
\]

(196)

The problem can then be solved accordingly using the FEM method.

In the following, we will demonstrate some numerical results using the FEM PDE solver. We first present the PV benchmarking against analytic solution to confirm the correctness of the implementation. Then we show a typical solution surface for a double barrier option using the established FEM solver.

3.4.1. PV Comparison against Analytic Solution

We attempt to compute the PV of some sample double barrier options. The model and PDE parameters used in the experiments are shown in Table 3. Lipton [43] proposed a (semi-)analytical
solution for both double barrier and double-no-touch products in Heston model, however the analytical formula exists only if we assume zero correlation \(\rho = 0.0 \) and equal rates \(r = q \). Faulhaber’s Excel spreadsheet [44], which implements Lipton’s algorithm, is used to compute the benchmark PV for comparison. Figure 4 and Figure 5 show the solution (PV) surface at \(t = 0 \) for the sample barrier call and put, respectively. The PV surface is illustrated as a function of initial variance \(v_0 \) and initial spot \(S_0 \), from which we can interpolate the product PV using \(v_0 = 0.12 \) and \(S_0 = 100 \).

Table 3. Model and PDE parameters used for double barrier knock-out call and put

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Spot Price</td>
<td>(S_0)</td>
<td>100</td>
</tr>
<tr>
<td>Initial Variance</td>
<td>(v_0)</td>
<td>0.12</td>
</tr>
<tr>
<td>Mean Variance/Reversion Level</td>
<td>(\theta)</td>
<td>0.10</td>
</tr>
<tr>
<td>Mean Reversion Rate</td>
<td>(\kappa)</td>
<td>1.50</td>
</tr>
<tr>
<td>Volatility of Variance</td>
<td>(\xi)</td>
<td>0.50</td>
</tr>
<tr>
<td>Correlation</td>
<td>(\rho)</td>
<td>0.00</td>
</tr>
<tr>
<td>Risk Free Rate/Domestic Rate</td>
<td>(r)</td>
<td>3%</td>
</tr>
<tr>
<td>Dividend Rate/Foreign Rate</td>
<td>(q)</td>
<td>3%</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Strike</td>
<td>(K)</td>
<td>100</td>
</tr>
<tr>
<td>Option Expiry</td>
<td>(T)</td>
<td>1Y</td>
</tr>
<tr>
<td>Lower Barrier</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Upper Barrier</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>Rebate</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PDE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance Resolution</td>
<td>(N_v)</td>
<td>50</td>
</tr>
<tr>
<td>Log Spot Resolution</td>
<td>(N_y)</td>
<td>60</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>(N_t)</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 4. Solution surface of the sample barrier call ($K = 100$)
PV comparison: 1.3499 (FEM) vs 1.3501 (Analytic)

Figure 5. Solution surface of the sample barrier put ($K = 100$)
PV comparison: 2.7917 (FEM) vs 2.7919 (Analytic)

Using the same model parameters in Table 3, we have also calculated the PV of barrier options at various strike and barrier levels. The PV comparison is shown in Table 4. As can be seen, the PV differences between the FEM PDE method and Lipton’s analytic formula are typically quite small.

<table>
<thead>
<tr>
<th>Option</th>
<th>Strike</th>
<th>Lower Barrier</th>
<th>Upper Barrier</th>
<th>FEM PDE</th>
<th>Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call</td>
<td>80</td>
<td>60</td>
<td>140</td>
<td>9.5476</td>
<td>9.5499</td>
</tr>
<tr>
<td>Call</td>
<td>85</td>
<td>65</td>
<td>135</td>
<td>5.9997</td>
<td>6.0000</td>
</tr>
<tr>
<td>Call</td>
<td>90</td>
<td>70</td>
<td>130</td>
<td>3.2028</td>
<td>3.2036</td>
</tr>
<tr>
<td>Call</td>
<td>95</td>
<td>75</td>
<td>125</td>
<td>1.2963</td>
<td>1.2969</td>
</tr>
<tr>
<td>Call</td>
<td>100</td>
<td>80</td>
<td>120</td>
<td>0.3090</td>
<td>0.3090</td>
</tr>
<tr>
<td>Call</td>
<td>105</td>
<td>85</td>
<td>115</td>
<td>0.0206</td>
<td>0.0206</td>
</tr>
<tr>
<td>Put</td>
<td>120</td>
<td>60</td>
<td>140</td>
<td>15.6883</td>
<td>15.6854</td>
</tr>
<tr>
<td>Put</td>
<td>115</td>
<td>65</td>
<td>135</td>
<td>10.1213</td>
<td>10.1208</td>
</tr>
<tr>
<td>Put</td>
<td>110</td>
<td>70</td>
<td>130</td>
<td>5.4893</td>
<td>5.4900</td>
</tr>
<tr>
<td>Put</td>
<td>105</td>
<td>75</td>
<td>125</td>
<td>2.2328</td>
<td>2.2334</td>
</tr>
<tr>
<td>Put</td>
<td>100</td>
<td>80</td>
<td>120</td>
<td>0.5297</td>
<td>0.5297</td>
</tr>
<tr>
<td>Put</td>
<td>95</td>
<td>85</td>
<td>115</td>
<td>0.0350</td>
<td>0.0349</td>
</tr>
</tbody>
</table>

A similar PV comparison is also obtained for double-no-touch products at various barrier levels. The result is shown in Table 5. The PV differences between the FEM PDE method and Lipton’s analytic
formula are negligibly small. Figure 6 displays the solution surface of a double-no-touch with lower barrier 70 and upper barrier 130.

<table>
<thead>
<tr>
<th>Lower Barrier</th>
<th>Upper Barrier</th>
<th>FEM PDE</th>
<th>Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>140</td>
<td>0.5981</td>
<td>0.5982</td>
</tr>
<tr>
<td>65</td>
<td>135</td>
<td>0.4908</td>
<td>0.4909</td>
</tr>
<tr>
<td>70</td>
<td>130</td>
<td>0.3659</td>
<td>0.3660</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0.2334</td>
<td>0.2335</td>
</tr>
<tr>
<td>80</td>
<td>120</td>
<td>0.1128</td>
<td>0.1128</td>
</tr>
<tr>
<td>85</td>
<td>115</td>
<td>0.0312</td>
<td>0.0312</td>
</tr>
</tbody>
</table>

Figure 6. Solution surface of a double-no-touch (lower barrier 70 and upper barrier 130) PV comparison: 0.3659 (FEM) vs 0.3660 (Analytic)

3.4.2. Crank-Nicolson Oscillation and Remedy

Terminal conditions in barrier options can be discontinuous, pure Crank-Nicolson scheme time-stepping may exhibit localized oscillations in solution. To demonstrate this issue, we have temporarily disabled the Rannacher time-stepping in our implementation and obtained the solution surface for the same sample barrier call. The result is shown in Figure 7, which clearly exhibits kinks at the vicinity of the strike. This issue is mitigated by Rannacher time-stepping, with which we end up with a smooth surface shown in Figure 4.
3.4.3. Barrier Call with Knock-Out Rebate

Lastly, we employ the FEM solver to value a barrier call option with a rebate payment upon knock-out. The restrictions of zero correlation and equal rates have been relaxed and the model parameters used in this experiment are shown in Table 6. The solution surface is displayed in Figure 8.

Table 6. Model and PDE parameters for a double barrier with a knock-out rebate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Spot Price</td>
<td>S_0</td>
</tr>
<tr>
<td>Initial Variance</td>
<td>v_0</td>
</tr>
<tr>
<td>Mean Variance/Reversion Level</td>
<td>θ</td>
</tr>
<tr>
<td>Mean Reversion Rate</td>
<td>κ</td>
</tr>
<tr>
<td>Volatility of Variance</td>
<td>ξ</td>
</tr>
<tr>
<td>Correlation</td>
<td>ρ</td>
</tr>
<tr>
<td>Risk Free Rate/Domestic Rate</td>
<td>r</td>
</tr>
<tr>
<td>Dividend Rate/Foreign Rate</td>
<td>q</td>
</tr>
<tr>
<td>Call Strike</td>
<td>K</td>
</tr>
<tr>
<td>Option Expiry</td>
<td>T</td>
</tr>
<tr>
<td>Lower Barrier</td>
<td></td>
</tr>
<tr>
<td>Upper Barrier</td>
<td></td>
</tr>
<tr>
<td>Rebate</td>
<td></td>
</tr>
<tr>
<td>Variance Resolution</td>
<td>N_v</td>
</tr>
<tr>
<td>Log Spot Resolution</td>
<td>N_y</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>N_t</td>
</tr>
</tbody>
</table>
Figure 8. Solution surface for the double barrier with a knock-out rebate
REFERENCES

28. Andersen and Piterbarg 2010 - *Interest Rate Modeling*, ch. 2.5.1 page 58

38. Online resource: http://www.netlib.org/templates/matlab/cgs.m

39. Online resource: http://www.netlib.org/templates/matlab/gmres.m
 Online resource: http://www.netlib.org/templates/matlab/rotmat.m

41. Wikipage: https://en.wikipedia.org/wiki/Preconditioner

44. Faulhaber, O., *Analytic methods for pricing double barrier options in the presence of stochastic volatility*, Master's thesis, Mathematics Department, University of Kaiserslautern, Germany, 2002